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!Based on a paper of the same name to appear in JEMS



A CLASSICAL SDE

» When does there exist a non-trivial solution to the SDE:
dX; =o(Xi—)dY:

where Y is a one-dimensional a-stable Lévy process, Xj € R and o is measurable?
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«-STABLE PROCESS

> A stable process lies in the intersection of the class of Lévy process (stationary and
independent increments) and the class of self-similar Markov processes: for all
c>0andx € R,

(cX.—ay, t > 0) under Py is equal in law to (X;, t > 0) under Py,
where (Py, x € R) are the probabilities of X and « € (0, 2).
> Semigroup of X is entirely characterised by W(z) := — log Eg [¢*X1], satisfying
‘I/(Z) = |Z‘a (Eﬂ-ia(%_p)l{z>0} + e_ﬁia(%_p)l{z<0}) , zeR.
where p = P(X; > 0).
> The Lévy measure associated with W:

IT(dx)
dx

sin(rap) 1 sin(rap) 1
=TI+ a)fil(:oo) + I+ a)fml("«])’

x1+a
where p := 1 — p. In the case that « = 1, we take p = 1/2, meaning that X
corresponds to the Cauchy process.

Y%pause
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a-STlABLE LEVY lPROCES|S

index jumps path asymptotic behaviour
a e (0,1) transient
p=0 — monotone decreasing ]PX(T{O} < o00) =0,x € R, limy_, o Xy = —00
p=1 + monotone increasing ]PX(T{O} < o00) =0,x € R, limj_, o X = 00
p € (0,1) +, - bounded variation Pe(r10 < 00) = 0,x € R, limy_y o0 |X;| = 0o
a=1 recurrent
1 B - Py(719 < c0) = 0,x € R,
P=73 +, unbounded variation lim supy_, o, Xt = oo, lim infry o |X¢| = 0
a € (1,2) recurrent
0 —
ap =1 — unbounded variation L. P"(T{ ! < o0) T 1,x R,
liminf;_, o Xy = —oo, limsup;_, o, X; = oo
0 —
ap=a—1 + unbounded variation L ]P"(T{ ¥ < oo)'— LxeRr,
liminf;_, oo Xy = —oolimsup; , ., X; = oo
ap € (o —1,1) +, - unbounded variation Br(rt < o0) =1xeR,
liminf;_, o Xy = —oo, limsup;_, o, X} = oo
a =2 recurrent
{0} =
p= % no jumps unbounded variation Px(T <o) =1Lx€eR,

liminf; , o Xy =

—oo, limsup;_, o, X = oo
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PATH INTEGRALS

dXi =o(X—)dY;
> Every non-trivial solution can be written in the form
Xt =Y, where 7 =inf{s>0: /OS U(Yu)_zdu >t}
providing fos o(Yu)"*du < oo forall s > 0 (up to some sy > 0).

> Hence this is really about the question of understanding when path integrals of

the form :
/ o(Y)~* du
0

> In fact we will end up addressing finiteness of such path integrals for any
‘standard” Markov process on a general state space E (locally compact Hausdorff
space with a countable bas)

are finite.
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ENGELBERT-SCHMIDT TYPE RESULTS

» o = 2: Engelbert-Schmidt (1981).
Classic results of ES81 tell us that when Y; = B; (standard Brownian motion)
Theorem:
t €
Elt>0:/ (Ys) 2ds < 0o = o(x)72dx < oo for some € > 0.
0 —e
> « € (1,2): Zanzotto (2002)
Extends ES81 to the setting that Y} is an a-stable Lévy process.
Theorem: The exact same statement as ES81 holds except o2 replaced by o .
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» o = 2: Engelbert-Schmidt (1981).
Classic results of ES81 tell us that when Y; = B; (standard Brownian motion)
Theorem:

t €
Elt>0:/ (Ys) 2ds < 0o = o(x)72dx < oo for some € > 0.
0

—€

> « € (1,2): Zanzotto (2002)
Extends ES81 to the setting that Y} is an a-stable Lévy process.
Theorem: The exact same statement as ES81 holds except o2 replaced by o .

> Rough idea of proof for o € (1,2]:
Can appeal to the existence of local time at each x € R, say fo) and write

t
/a(ys)—ads=/a(x)—aL§">dx
0 R

and then argue away the Lt(x) in the integral.
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ENGELBERT-SCHMIDT TYPE RESULTS

» o = 2: Engelbert-Schmidt (1981).
Classic results of ES81 tell us that when Y; = B; (standard Brownian motion)
Theorem:

t €
Elt>0:/ (Ys) 2ds < 0o = o(x)72dx < oo for some € > 0.
0

—€

> « € (1,2): Zanzotto (2002)
Extends ES81 to the setting that Y} is an a-stable Lévy process.
Theorem: The exact same statement as ES81 holds except o2 replaced by o .

> Rough idea of proof for o € (1,2]:
Can appeal to the existence of local time at each x € R, say fo) and write

t
/U(Ys)_ads=/a(x)_aLt(x)dx
0 R

and then argue away the Lt(x) in the integral.
> o € (0,1): existence of local time at a point fails — dealt with in this talk

> «a = 1: existence of local time at a point fails— no clue what is going on
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THIS TALK

> Is it true for a-stable Y that the natural criteria for
dXi =o(Xi—)dY:

to have a solution under P is always

/ o(x)"%dx < o0?

—€
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THIS TALK

> Is it true for a-stable Y that the natural criteria for
dXt = O'(Xt,)dyt

to have a solution under P is always

/ o(x)"%dx < o0?

—€

> Sanity check: Consider
dX; = |X,§_|6dy1§7 B> 0.

> Engelbert-Schmidt-Zanzotto integral tests predicts for « € (0, 2] that a non-trivial
solution occurs when

/ ¥ 7P dx < oo = B <1/

—€

> Tt is known from (e.g. Bass-Burdzy-Chen 2004) that when a € (0, 1), a sharp
condition in this setting is that # < 1. In which case the
Engelbert-Schmidt-Zanzotto cannot be right for a € (0, 1).
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PERPETUAL INTEGRALS FOR LEVY PROCESSES

> Doring-K 2016 (following results of multiple authors e.g. including Koshnevisan,
Salminen and Yor) have the following result:

Theorem: Suppose that Y is a Lévy process with local times at a point, Y; — oo
and f > 0is locally bounded, then

P(/Ooof(Ys)ds<oo) —0orl.

/oof(Ys)ds<ooa.s. (:)/f(x)dx<oo.
0 R

and

Proof: Write U(dx) = [;° P(Ys € dx)ds for the potential measure of Y. The
existence of local times is equivalent to the existence of a density
U(dx) = u(x)dx, so

E Vooof(ys)ds] :/Rf(x)u(x)dx.

Then argue away the u(x).

Note: we always start the Lévy process from 0 WLOG because of stationary and
independents. 8/15



PERPETUAL INTEGRALS FOR LEVY PROCESSES

> Kolb-Savov 2020 have the following result (stated in terms of its added value):

Theorem: Suppose that Y is a Lévy process without local time such that Y; — oo,
f > 0is continuous or ultimately non-increasing (locally bounded) function

/oof(Ys)ds < coas. <:>/ FEOUR) < 0o
0 R\B

for some transient set? B

Proof: <—: easy to see that

/Ooof(ys) ds < 00 & /Ooof(Ys)l(yse]R\B) ds < 00 < /R\Bf(x)ll(dx) < .

—: this is where the meat is.

2B is a transient set if the process eventually leaves it and never revisits the set. Formally: a Borel set with
P(sup{t > 0:Y; € B} < o0) = 1.
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PERPETUAL INTEGRALS FOR LEVY PROCESSES

> Kolb-Savov 2020 have the following result (stated in terms of its added value):

Theorem: Suppose that Y is a Lévy process without local time such that Y; — oo,
f > 0is continuous or ultimately non-increasing (locally bounded) function

/oof(Ys)ds < ocoas. <:>/ f()U(dx) < oo
0 R\B

for some transient set? B

Proof: <—: easy to see that
o0 o0
/ F(Yo)ds < oo @/ FO . erp ds < 00 < /\ FEUAx) < oo.
0 0 R\B

—: this is where the meat is.

> Main problem with these and previous results is that they require locally bounded
functions.

2B is a transient set if the process eventually leaves it and never revisits the set. Formally: a Borel set with 9/15
P(sup{t > 0:Y; € B} < o0) = 1.



GENERAL MARKOV PROCESSES

> Lets consider a general standard® Markov process X on a general* state space E
with a possible cemetery state (and lifetime denoted by (). Denote its probabilities
by P = (P;,z € E).

> A Borel set B € E is called P;-avoidable if P,(Dp < ¢) < 1, where
Dp =inf{t > 0: X; € D}.

> If B is avoidable then its complement M = E\B is called P;-supportive, and
satisfies P, (X; € M for allt € [0,¢)) > 0.

> In general it is not at all clear what form avoidable or supportive sets should take
but a vast literature exists for special processes. Examples include:

P If X is a recurrent Markov process then only polar sets are avoidable.

> If X is a symmetric stable process on R of index o € (1, 2] then only the empty set is
avoidable.

> If X is a symmetric stable process on R of index o € (0, 1) then any compact set not
containing z is P;-avoidable.

3We mean cadlag, quasi leftcontinous, strong Markov property 10/ 15
41ocally compact Hausdorff space with a countable base



PATH INTEGRALS FOR GENERAL MARKOV PROCESSES

> Let us introduce the potential of X given by U(x,dz) = Ex [ foc 1(x,cdz) d t]
Note: as a general Markov process, we now index by the point of issue x.

» Theorem: Letf : E — [0, +-00] be measurable and X a standard Markov process
with (possibly infinite) life time ¢. Let z € E. Then the following are equivalent.

> P [ f(X)ds < oc0) > 0;
> The integral test [, E\B f(x) U(z,dx) < oo holds for a P.-avoidable set B.
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PATH INTEGRALS FOR GENERAL MARKOV PROCESSES

> Let us introduce the potential of X given by U(x,dz) = Ex [foc 1(x,cdz) d t]
Note: as a general Markov process, we now index by the point of issue x.

» Theorem: Letf : E — [0, +-00] be measurable and X a standard Markov process
with (possibly infinite) life time ¢. Let z € E. Then the following are equivalent.

> P [ f(X)ds < oc0) > 0;
> The integral test fE\Bf(x) U(z,dx) < oo holds for a P.-avoidable set B.

> Proof: <. This is the easy direction as fE\B f(x)U(z,d x) < oo implies that

fo F(Xs)1(x,ep\p) ds < oo w.p.p. which implies [ f(Xs) ds < co w.p.p. as E\B
is a supporting set.

» — The crux of the argument is to show that if, for somen € N, p € (0,1),

Mn,,,z{yeE;]Py(/Ooof(xs)dsgn) >p}

is non-empty then f}, f(x) U(z,d x) < oo.
Moreover, P, ( oo f(Xs)ds < o0) > 0 implies that M,  is non-empty and a
P.-supportive set.
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VARIOUS COROLLARIES

> Corollary: Let X be a standard Markov process on state space E and
f: E— [0, co] measurable. Then the following are equivalent.

> Pz(fooof(xs)ds < oo) =1;

> For every e > 0 there exists a P.-supportive set M such that [, f(x) U(z,dx) < oo and
X stays in M with probability at least 1 — e.
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VARIOUS COROLLARIES

> Corollary: Let X be a standard Markov process on state space E and
f: E— [0, co] measurable. Then the following are equivalent.

> Pz(fooof(xs)ds < oo) =1;

> For every e > 0 there exists a P.-supportive set M such that [, f(x) U(z,dx) < oo and
X stays in M with probability at least 1 — e.

> Corollary: Let X be a standard Markov process on R? with trivial tail o-algebra
when issued from z € R, and let f : R — [0, 00) be measurable and bounded on
compact sets. Suppose in addition that the process is conservative
(P2(¢ = o0) = 1). Then the following are equivalent:

> P [ f(X)ds < oc0) > 0
PP ([T f(Xs)ds < o0) =15
> There exists a transient set® B such that integral test fRd\B f(x) U(z,dx) < oo holds.

5a Borel set with P, (sup{t > 0: X; € B} < o0) = 1
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BACK TO THE SDE DRIVEN BY AN a-STABLE PROCESS WITH « € (0,1)
> When a € (0,1), we know U(x,dy) = |x —y|*~1dy

13/ 15



BACK TO THE SDE DRIVEN BY AN a-STABLE PROCESS WITH « € (0,1)
> When a € (0,1), we know U(x,dy) =[x —y|*~'dy

> For finite time integrals, the role of avoidable sets is replaced by sets which are
avoided for a positive amount of time, so-called thin sets.

> Theorem: If N(o) denotes the zero-set of o and

O(o,a) = {x ER: /R\B a(y)~%x — y|* "1 dy = oo for all Py-thin sets B}

denotes the set of irregular points, then the following statements hold.

1.

For fixed z € R there exists a non-trivial (i.e. non-constant) local weak solution if and
onlyifz ¢ O(o, a).

. A global weak solution exists for all initial conditions z € R if and only if

O(o,a) C N(o).

. A non-trivial global weak solution exists for all z € R if and only if O(c, a) = 0.
. There exists a global weak solution for all z € R, each of which is unique in law, if and

only if O(o, a) = N(o).
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BACK TO THE SDE DRIVEN BY AN a-STABLE PROCESS WITH « € (0, 1)

> When a € (0,1), we know U(x,dy) =[x —y|*~'dy

> For finite time integrals, the role of avoidable sets is replaced by sets which are
avoided for a positive amount of time, so-called thin sets.

> Theorem: If N(o) denotes the zero-set of o and
O(o,a) = {x ER: / a(y)~%x — y|* "1 dy = oo for all Py-thin sets B}
R\B

denotes the set of irregular points, then the following statements hold.
1. For fixed z € R there exists a non-trivial (i.e. non-constant) local weak solution if and
onlyifz ¢ O(o, a).
2. A global weak solution exists for all initial conditions z € R if and only if
O(o,a) C N(o).
3. A non-trivial global weak solution exists for all z € R if and only if O (o, o) = 0.

4. There exists a global weak solution for all z € R, each of which is unique in law, if and
only if O(o, a) = N(o).

> If o has only isolated monotone zeros (e.g. o(x) = |x|?) then we can work with
the cleaner integral tests

O(U,a):{xER:/

X—€

x+e
o(y)"¥x —y|*tdy = oo forall e > 0}
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SANITY CHECK o (y) = |y|?, a € (0,1)

> For fixed z € R there exists a non-trivial (i.e. non-constant) local weak solution if
and only if z ¢ O(o, «)

> Need e 1 ie 1 1
[ ety = [0y < o0
X X—€

—€

forallx € R,e > 0.

> Suffices that 5 < 1, consistent with Bass-Burdzy-Chen 2004.
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Thank you!
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