General path integrals and stable SDEs¹ Andreas Kyprianou

(based on joint work with Leif Döring & Sam Baguley)

¹Based on a paper of the same name to appear in JEMS

A CLASSICAL SDE

When does there exist a non-trivial solution to the SDE:

 $d X_t = \sigma(X_{t-}) d Y_t$

where *Y* is a one-dimensional α -stable Lévy process, $X_0 \in \mathbb{R}$ and σ is measurable?

2/15

α -Stable process

A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all *c* > 0 and *x* ∈ ℝ,

 $(cX_{c-\alpha_t}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X_t, t \ge 0)$ under \mathbb{P}_{cx} ,

where $(\mathbb{P}_x, x \in \mathbb{R})$ are the probabilities of *X* and $\alpha \in (0, 2)$.

Semigroup of X is entirely characterised by $\Psi(z) := -\log \mathbb{E}_0 \left[e^{izX_1} \right]$, satisfying

$$\Psi(z) = |z|^{\alpha} \left(e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z > 0\}} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z < 0\}} \right), \quad z \in \mathbb{R}.$$

where $\rho = \mathbb{P}(X_1 > 0)$.

• The Lévy measure associated with Ψ :

$$\frac{\Pi(dx)}{dx} = \Gamma(1+\alpha) \frac{\sin(\pi\alpha\rho)}{\pi} \frac{1}{x^{1+\alpha}} \mathbf{1}_{(x>0)} + \Gamma(1+\alpha) \frac{\sin(\pi\alpha\hat{\rho})}{\pi} \frac{1}{|x|^{1+\alpha}} \mathbf{1}_{(x<0)},$$

where $\hat{\rho} := 1 - \rho$. In the case that $\alpha = 1$, we take $\rho = 1/2$, meaning that *X* corresponds to the Cauchy process. %pause

α -STABLE LÉVY PROCESS

index	jumps	path	asymptotic behaviour
$\alpha \in (0, 1)$			transient
$\rho = 0$	_	monotone decreasing	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 0, x \in \mathbb{R}, \lim_{t \to \infty} X_{t} = -\infty$
$\rho = 1$	+	monotone increasing	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 0, x \in \mathbb{R}, \lim_{t \to \infty} X_{t} = \infty$
$\rho \in (0,1)$	+, -	bounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 0, x \in \mathbb{R}, \lim_{t \to \infty} X_{t} = \infty$
$\alpha = 1$			recurrent
$\rho = \frac{1}{2}$	+, -	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 0, x \in \mathbb{R}, \\ \limsup_{t \to \infty} X_{t} = \infty, \liminf_{t \to \infty} X_{t} = 0$
$\alpha \in (1,2)$			recurrent
$\alpha \rho = 1$	_	unbounded variation	$ \begin{split} \mathbb{P}_{x}(\tau^{\{0\}} < \infty) &= 1, x \in \mathbb{R}, \\ \liminf_{t \to \infty} X_{t} &= -\infty, \limsup_{t \to \infty} X_{t} = \infty \end{split} $
$\alpha \rho = \alpha - 1$	+	unbounded variation	$ \begin{split} \mathbb{P}_{x}(\tau^{\{0\}} < \infty) &= 1, x \in \mathbb{R}, \\ \liminf_{t \to \infty} X_{t} &= -\infty \limsup_{t \to \infty} X_{t} = \infty \end{split} $
$\alpha \rho \in (\alpha - 1, 1)$	+, -	unbounded variation	$ \begin{split} \mathbb{P}_{x}(\tau^{\{0\}} < \infty) &= 1, x \in \mathbb{R}, \\ \liminf_{t \to \infty} X_{t} &= -\infty, \limsup_{t \to \infty} X_{t} = \infty \end{split} $
$\alpha = 2$			recurrent
$\rho = \frac{1}{2}$	no jumps	unbounded variation	$\mathbb{P}_{x}(\tau^{\{0\}} < \infty) = 1, x \in \mathbb{R}, \\ \liminf_{t \to \infty} X_{t} = -\infty, \limsup_{t \to \infty} X_{t} = \infty $ $4 f$

・ロト・日・・日・・日・・ 日・ つくで

PATH INTEGRALS

$$d X_t = \sigma(X_{t-}) d Y_t$$

Every non-trivial solution can be written in the form

$$X_t = Y_{\tau_t}$$
 where $\tau_t = \inf\{s > 0 : \int_0^s \sigma(Y_u)^{-2} du > t\}$

providing $\int_0^s \sigma(Y_u)^{-\alpha} du < \infty$ for all s > 0 (up to some $s_0 > 0$).

Hence this is really about the question of understanding when path integrals of the form

$$\int_0^s \sigma(Y_u)^{-\alpha} \,\mathrm{d}\, u$$

are finite.

In fact we will end up addressing finiteness of such path integrals for any 'standard' Markov process on a general state space *E* (locally compact Hausdorff space with a countable bas)

5/15

・ロト・日本・モート モー うへの

ENGELBERT-SCHMIDT TYPE RESULTS

• $\alpha = 2$: Engelbert-Schmidt (1981).

Classic results of ES81 tell us that when $Y_t = B_t$ (standard Brownian motion) **Theorem:**

$$\exists t > 0: \int_0^t \sigma(Y_s)^{-2} \, \mathrm{d} \, s < \infty \Longleftrightarrow \int_{-\epsilon}^{\epsilon} \sigma(x)^{-2} \, \mathrm{d} \, x < \infty \text{ for some } \epsilon > 0.$$

• $\alpha \in (1,2)$: Zanzotto (2002)

Extends ES81 to the setting that Y_t is an α -stable Lévy process. **Theorem:** The exact same statement as ES81 holds except σ^{-2} replaced by $\sigma^{-\alpha}$.

• Rough idea of proof for $\alpha \in (1, 2]$:

Can appeal to the existence of local time at each $x \in \mathbb{R}$, say $L_t^{(x)}$ and write

$$\int_0^t \sigma(Y_s)^{-\alpha} \, \mathrm{d}\, s = \int_{\mathbb{R}} \sigma(x)^{-\alpha} L_t^{(x)} \, \mathrm{d}\, x$$

and then argue away the $L_t^{(x)}$ in the integral.

- $\alpha \in (0, 1)$: existence of local time at a point fails \longrightarrow dealt with in this talk
- $\alpha = 1$: existence of local time at a point fails \rightarrow no clue what is going on

ENGELBERT-SCHMIDT TYPE RESULTS

• $\alpha = 2$: Engelbert-Schmidt (1981).

Classic results of ES81 tell us that when $Y_t = B_t$ (standard Brownian motion) **Theorem:**

$$\exists t > 0: \int_0^t \sigma(Y_s)^{-2} \, \mathrm{d} \, s < \infty \Longleftrightarrow \int_{-\epsilon}^{\epsilon} \sigma(x)^{-2} \, \mathrm{d} \, x < \infty \text{ for some } \epsilon > 0.$$

- $\alpha \in (1, 2)$: Zanzotto (2002) Extends ES81 to the setting that Y_t is an α -stable Lévy process. **Theorem:** The exact same statement as ES81 holds except σ^{-2} replaced by $\sigma^{-\alpha}$.
- Rough idea of proof for $\alpha \in (1, 2]$:

Can appeal to the existence of local time at each $x \in \mathbb{R}$, say $L_t^{(x)}$ and write

$$\int_0^t \sigma(Y_s)^{-\alpha} \, \mathrm{d}\, s = \int_{\mathbb{R}} \sigma(x)^{-\alpha} L_t^{(x)} \, \mathrm{d}\, x$$

and then argue away the $L_t^{(x)}$ in the integral.

- $\alpha \in (0,1)$: existence of local time at a point fails \longrightarrow dealt with in this talk
- $\alpha = 1$: existence of local time at a point fails \rightarrow no clue what is going on

ENGELBERT-SCHMIDT TYPE RESULTS

• $\alpha = 2$: Engelbert-Schmidt (1981).

Classic results of ES81 tell us that when $Y_t = B_t$ (standard Brownian motion) **Theorem:**

$$\exists t > 0: \int_0^t \sigma(Y_s)^{-2} \, \mathrm{d} \, s < \infty \Longleftrightarrow \int_{-\epsilon}^{\epsilon} \sigma(x)^{-2} \, \mathrm{d} \, x < \infty \text{ for some } \epsilon > 0.$$

- $\alpha \in (1, 2)$: Zanzotto (2002) Extends ES81 to the setting that Y_t is an α -stable Lévy process. **Theorem:** The exact same statement as ES81 holds except σ^{-2} replaced by $\sigma^{-\alpha}$.
- Rough idea of proof for $\alpha \in (1, 2]$:

Can appeal to the existence of local time at each $x \in \mathbb{R}$, say $L_t^{(x)}$ and write

$$\int_0^t \sigma(Y_s)^{-\alpha} \, \mathrm{d}\, s = \int_{\mathbb{R}} \sigma(x)^{-\alpha} L_t^{(x)} \, \mathrm{d}\, x$$

and then argue away the $L_t^{(x)}$ in the integral.

- $\alpha \in (0,1)$: existence of local time at a point fails \longrightarrow dealt with in this talk
- $\alpha = 1$: existence of local time at a point fails \rightarrow no clue what is going on

THIS TALK

• Is it true for α -stable Y that the natural criteria for

$$\mathrm{d} X_t = \sigma(X_{t-}) \,\mathrm{d} Y_t$$

to have a solution under \mathbb{P} is always

$$\int_{-\epsilon}^{\epsilon} \sigma(x)^{-\alpha} \, \mathrm{d} \, x < \infty?$$

Sanity check: Consider

$$d X_t = |X_{t-}|^\beta d Y_t, \qquad \beta > 0.$$

Engelbert-Schmidt-Zanzotto integral tests predicts for $\alpha \in (0, 2]$ that a non-trivial solution occurs when

$$\int_{-\epsilon}^{\epsilon} |x|^{-\alpha\beta} \, \mathrm{d}\, x < \infty \Longrightarrow \beta \le 1/\alpha$$

▶ It is known from (e.g. Bass-Burdzy-Chen 2004) that when $\alpha \in (0, 1)$, a sharp condition in this setting is that $\beta < 1$. In which case the Engelbert-Schmidt-Zanzotto cannot be right for $\alpha \in (0, 1)$.

THIS TALK

• Is it true for α -stable *Y* that the natural criteria for

$$d X_t = \sigma(X_{t-}) d Y_t$$

to have a solution under \mathbb{P} is always

$$\int_{-\epsilon}^{\epsilon} \sigma(x)^{-\alpha} \, \mathrm{d}\, x < \infty?$$

Sanity check: Consider

$$d X_t = |X_{t-}|^\beta d Y_t, \qquad \beta > 0.$$

Engelbert-Schmidt-Zanzotto integral tests predicts for $\alpha \in (0, 2]$ that a non-trivial solution occurs when

$$\int_{-\epsilon}^{\epsilon} |x|^{-\alpha\beta} \, \mathrm{d}\, x < \infty \Longrightarrow \beta \le 1/\alpha$$

► It is known from (e.g. Bass-Burdzy-Chen 2004) that when $\alpha \in (0, 1)$, a sharp condition in this setting is that $\beta < 1$. In which case the Engelbert-Schmidt-Zanzotto cannot be right for $\alpha \in (0, 1)$.

PERPETUAL INTEGRALS FOR LÉVY PROCESSES

Döring-K 2016 (following results of multiple authors e.g. including Koshnevisan, Salminen and Yor) have the following result:

Theorem: Suppose that *Y* is a Lévy process with local times at a point, $Y_t \to \infty$ and $f \ge 0$ is locally bounded, then

$$\mathbb{P}\left(\int_0^\infty f(Y_s)\,\mathrm{d}\,s<\infty\right)=0\text{ or }1.$$

and

$$\int_0^\infty f(Y_s) \, \mathrm{d} \, s < \infty \text{ a.s. } \iff \int_{\mathbb{R}} f(x) \, \mathrm{d} \, x < \infty.$$

Proof: Write $U(dx) = \int_0^\infty \mathbb{P}(Y_s \in dx) \, ds$ for the potential measure of *Y*. The existence of local times is equivalent to the existence of a density $U(dx) = u(x) \, dx$, so

$$\mathbb{E}\left[\int_0^\infty f(Y_s)\,\mathrm{d}\,s\right] = \int_{\mathbb{R}} f(x)u(x)\,\mathrm{d}\,x.$$

Then argue away the u(x).

Note: we always start the Lévy process from 0 WLOG because of stationary and independents.

8/15

PERPETUAL INTEGRALS FOR LÉVY PROCESSES

▶ Kolb-Savov 2020 have the following result (stated in terms of its added value):

Theorem: Suppose that *Y* is a Lévy process without local time such that $Y_t \to \infty$, $f \ge 0$ is continuous or ultimately non-increasing (locally bounded) function

$$\int_0^\infty f(Y_s) \, \mathrm{d} \, s < \infty \text{ a.s. } \iff \int_{\mathbb{R} \setminus B} f(x) U(\mathrm{d} \, x) < \infty$$

for some transient set² B

Proof: \Leftarrow : easy to see that

$$\int_0^\infty f(Y_s) \, \mathrm{d} \, s < \infty \Leftrightarrow \int_0^\infty f(Y_s) \mathbf{1}_{(Y_s \in \mathbb{R} \setminus B)} \, \mathrm{d} \, s < \infty \Leftarrow \int_{\mathbb{R} \setminus B} f(x) U(\mathrm{d} \, x) < \infty.$$

 \implies : this is where the meat is.

Main problem with these and previous results is that they require locally bounded functions.

9/15

²*B* is a transient set if the process eventually leaves it and never revisits the set. Formally: a Borel set with $\mathbb{P}(\sup\{t > 0 : Y_t \in B\} < \infty) = 1$.

PERPETUAL INTEGRALS FOR LÉVY PROCESSES

▶ Kolb-Savov 2020 have the following result (stated in terms of its added value):

Theorem: Suppose that *Y* is a Lévy process without local time such that $Y_t \to \infty$, $f \ge 0$ is continuous or ultimately non-increasing (locally bounded) function

$$\int_0^\infty f(Y_s) \, \mathrm{d} \, s < \infty \text{ a.s. } \iff \int_{\mathbb{R} \setminus B} f(x) U(\mathrm{d} \, x) < \infty$$

for some transient set² B

Proof: \Leftarrow : easy to see that

$$\int_0^\infty f(Y_s) \, \mathrm{d} \, s < \infty \Leftrightarrow \int_0^\infty f(Y_s) \mathbf{1}_{(Y_s \in \mathbb{R} \setminus B)} \, \mathrm{d} \, s < \infty \Leftarrow \int_{\mathbb{R} \setminus B} f(x) U(\mathrm{d} \, x) < \infty.$$

 \implies : this is where the meat is.

Main problem with these and previous results is that they require locally bounded functions.

9/15

²*B* is a transient set if the process eventually leaves it and never revisits the set. Formally: a Borel set with $\mathbb{P}(\sup\{t > 0 : Y_t \in B\} < \infty) = 1$.

GENERAL MARKOV PROCESSES

- Lets consider a general standard³ Markov process *X* on a general⁴ state space *E* with a possible cemetery state (and lifetime denoted by ζ). Denote its probabilities by $\mathbb{P} = (\mathbb{P}_z, z \in E)$.
- A Borel set $B \in E$ is called \mathbb{P}_z -avoidable if $\mathbb{P}_z(D_B < \zeta) < 1$, where $D_B = \inf\{t \ge 0 : X_t \in D\}$.
- ▶ If *B* is avoidable then its complement $M = E \setminus B$ is called \mathbb{P}_z -supportive, and satisfies $\mathbb{P}_z(X_t \in M \text{ for all } t \in [0, \zeta)) > 0$.
- In general it is not at all clear what form avoidable or supportive sets should take but a vast literature exists for special processes. Examples include:
 - ▶ If X is a recurrent Markov process then only polar sets are avoidable.
 - ▶ If X is a symmetric stable process on \mathbb{R} of index $\alpha \in (1, 2]$ then only the empty set is avoidable.
 - ▶ If X is a symmetric stable process on \mathbb{R} of index $\alpha \in (0, 1)$ then any compact set not containing *z* is \mathbb{P}_z -avoidable.

³We mean cadlag, quasi leftcontinous, strong Markov property ⁴locally compact Hausdorff space with a countable base

PATH INTEGRALS FOR GENERAL MARKOV PROCESSES

- ► Let us introduce the potential of *X* given by $U(x, dz) = \mathbb{E}_x \left[\int_0^{\zeta} \mathbf{1}_{(X_t \in dz)} dt \right]$ Note: as a general Markov process, we now index by the point of issue *x*.
- ▶ **Theorem:** Let $f : E \to [0, +\infty]$ be measurable and *X* a standard Markov process with (possibly infinite) life time ζ . Let $z \in E$. Then the following are equivalent.
 - $\mathbb{P}_{z} \left(\int_{0}^{\infty} f(X_{s}) \, \mathrm{d} \, s < \infty \right) > 0;$
 - The integral test $\int_{E \setminus B} f(x) U(z, dx) < \infty$ holds for a \mathbb{P}_z -avoidable set *B*.
- ▶ **Proof:** ← This is the easy direction as $\int_{E \setminus B} f(x) U(z, dx) < \infty$ implies that $\int_0^\infty f(X_s) \mathbf{1}_{(X_s \in E \setminus B)} ds < \infty$ w.p.p. which implies $\int_0^\infty f(X_s) ds < \infty$ w.p.p. as $E \setminus B$ is a supporting set.
- ▶ \implies The crux of the argument is to show that if, for some $n \in \mathbb{N}$, $p \in (0, 1)$,

$$M_{n,p} = \left\{ y \in E : \mathbb{P}_y \left(\int_0^\infty f(X_s) \, \mathrm{d}\, s \le n \right) > p \right\}$$

is non-empty then $\int_M f(x) U(z, dx) < \infty$. Moreover, $\mathbb{P}_z \left(\int_0^\infty f(X_s) ds < \infty \right) > 0$ implies that $M_{n,p}$ is non-empty and a \mathbb{P}_z -supportive set.

PATH INTEGRALS FOR GENERAL MARKOV PROCESSES

- ► Let us introduce the potential of *X* given by $U(x, dz) = \mathbb{E}_x \left[\int_0^{\zeta} \mathbf{1}_{(X_t \in dz)} dt \right]$ Note: as a general Markov process, we now index by the point of issue *x*.
- ▶ **Theorem:** Let $f : E \to [0, +\infty]$ be measurable and *X* a standard Markov process with (possibly infinite) life time ζ . Let $z \in E$. Then the following are equivalent.
 - $\mathbb{P}_{z} \left(\int_{0}^{\infty} f(X_{s}) \, \mathrm{d} \, s < \infty \right) > 0;$
 - The integral test $\int_{E \setminus B} f(x) U(z, dx) < \infty$ holds for a \mathbb{P}_z -avoidable set *B*.
- ▶ **Proof:** ← This is the easy direction as $\int_{E \setminus B} f(x) U(z, dx) < \infty$ implies that $\int_0^\infty f(X_s) \mathbf{1}_{(X_s \in E \setminus B)} ds < \infty$ w.p.p. which implies $\int_0^\infty f(X_s) ds < \infty$ w.p.p. as $E \setminus B$ is a supporting set.
- ▶ \implies The crux of the argument is to show that if, for some $n \in \mathbb{N}$, $p \in (0, 1)$,

$$M_{n,p} = \left\{ y \in E : \mathbb{P}_y \left(\int_0^\infty f(X_s) \, \mathrm{d} \, s \le n \right) > p \right\}$$

is non-empty then $\int_M f(x) U(z, dx) < \infty$. Moreover, $\mathbb{P}_z \left(\int_0^\infty f(X_s) ds < \infty \right) > 0$ implies that $M_{n,p}$ is non-empty and a \mathbb{P}_z -supportive set.

> 11/15 《 ㅁ › 《 @ › 《 볼 › 《 볼 › 일 · 이익은

VARIOUS COROLLARIES

Corollary: Let *X* be a standard Markov process on state space *E* and $f: E \rightarrow [0, \infty]$ measurable. Then the following are equivalent.

$$\mathbb{P}_{z} \left(\int_{0}^{\infty} f(X_{s}) \, \mathrm{d} \, s < \infty \right) = 1;$$

For every $\varepsilon > 0$ there exists a \mathbb{P}_z -supportive set M such that $\int_M f(x) U(z, dx) < \infty$ and X stays in M with probability at least $1 - \varepsilon$.

▶ **Corollary:** Let *X* be a standard Markov process on \mathbb{R}^d with trivial tail σ -algebra when issued from $z \in \mathbb{R}^d$, and let $f : \mathbb{R}^d \to [0, \infty)$ be measurable and bounded on compact sets. Suppose in addition that the process is conservative $(\mathbb{P}_z(\zeta = \infty) = 1)$. Then the following are equivalent:

$$\mathbb{P}_{z} \Big(\int_{0}^{\infty} f(X_{s}) \, \mathrm{d} \, s < \infty \Big) = 1;$$

There exists a transient set⁵ B such that integral test $\int_{\mathbb{R}^d \setminus B} f(x) U(z, dx) < \infty$ holds.

⁵a Borel set with $\mathbb{P}_{z}(\sup\{t > 0 : X_{t} \in B\} < \infty) = 1$

VARIOUS COROLLARIES

Corollary: Let *X* be a standard Markov process on state space *E* and $f: E \rightarrow [0, \infty]$ measurable. Then the following are equivalent.

$$\mathbb{P}_{z} \left(\int_{0}^{\infty} f(X_{s}) \, \mathrm{d} \, s < \infty \right) = 1;$$

- For every $\varepsilon > 0$ there exists a \mathbb{P}_z -supportive set M such that $\int_M f(x) U(z, dx) < \infty$ and X stays in M with probability at least 1ε .
- ▶ **Corollary:** Let *X* be a standard Markov process on \mathbb{R}^d with trivial tail σ -algebra when issued from $z \in \mathbb{R}^d$, and let $f : \mathbb{R}^d \to [0, \infty)$ be measurable and bounded on compact sets. Suppose in addition that the process is conservative $(\mathbb{P}_z(\zeta = \infty) = 1)$. Then the following are equivalent:

$$\blacktriangleright \mathbb{P}_z \left(\int_0^\infty f(X_s) \, \mathrm{d} \, s < \infty \right) = 1;$$

▶ There exists a transient set⁵ *B* such that integral test $\int_{\mathbb{R}^d \setminus B} f(x) U(z, dx) < \infty$ holds.

⁵a Borel set with $\mathbb{P}_{z}(\sup\{t > 0 : X_{t} \in B\} < \infty) = 1$

BACK TO THE SDE DRIVEN BY AN α -STABLE PROCESS WITH $\alpha \in (0, 1)$ \blacktriangleright When $\alpha \in (0, 1)$, we know $U(x, dy) = |x - y|^{\alpha - 1} dy$

- For finite time integrals, the role of avoidable sets is replaced by sets which are avoided for a positive amount of time, so-called thin sets.
- **Theorem:** If $N(\sigma)$ denotes the zero-set of σ and

$$\mathcal{O}(\sigma,\alpha) = \left\{ x \in \mathbb{R} : \int_{\mathbb{R} \setminus B} \sigma(y)^{-\alpha} | x - y|^{\alpha - 1} \, \mathrm{d} \, y = \infty \text{ for all } \mathbb{P}_x \text{-thin sets } B \right\}$$

denotes the set of irregular points, then the following statements hold.

- 1. For fixed $z \in \mathbb{R}$ there exists a non-trivial (i.e. non-constant) local weak solution if and only if $z \notin \mathcal{O}(\sigma, \alpha)$.
- A global weak solution exists for all initial conditions z ∈ ℝ if and only if *O*(σ, α) ⊆ N(σ).
- 3. A non-trivial global weak solution exists for all $z \in \mathbb{R}$ if and only if $\mathcal{O}(\sigma, \alpha) = \emptyset$.
- 4. There exists a global weak solution for all $z \in \mathbb{R}$, each of which is unique in law, if and only if $\mathcal{O}(\sigma, \alpha) = N(\sigma)$.
- ▶ If σ has only isolated monotone zeros (e.g. $\sigma(x) = |x|^{\beta}$) then we can work with the cleaner integral tests

$$\mathcal{O}(\sigma,\alpha) = \left\{ x \in \mathbb{R} : \int_{x-\varepsilon}^{x+\varepsilon} \sigma(y)^{-\alpha} |x-y|^{\alpha-1} \, \mathrm{d}\, y = \infty \text{ for all } \varepsilon > 0 \right\}$$

$$(13/1)$$

BACK TO THE SDE DRIVEN BY AN α -STABLE PROCESS WITH $\alpha \in (0, 1)$ Multiply When $\alpha \in (0, 1)$, we know $U(x, dy) = |x - y|^{\alpha - 1} dy$

- For finite time integrals, the role of avoidable sets is replaced by sets which are avoided for a positive amount of time, so-called thin sets.
- **Theorem:** If $N(\sigma)$ denotes the zero-set of σ and

$$\mathcal{O}(\sigma,\alpha) = \left\{ x \in \mathbb{R} : \int_{\mathbb{R} \setminus B} \sigma(y)^{-\alpha} |x-y|^{\alpha-1} \, \mathrm{d} \, y = \infty \text{ for all } \mathbb{P}_x \text{-thin sets } B \right\}$$

denotes the set of irregular points, then the following statements hold.

- 1. For fixed $z \in \mathbb{R}$ there exists a non-trivial (i.e. non-constant) local weak solution if and only if $z \notin \mathcal{O}(\sigma, \alpha)$.
- 2. A global weak solution exists for all initial conditions $z \in \mathbb{R}$ if and only if $\mathcal{O}(\sigma, \alpha) \subseteq N(\sigma)$.
- 3. A non-trivial global weak solution exists for all $z \in \mathbb{R}$ if and only if $\mathcal{O}(\sigma, \alpha) = \emptyset$.
- 4. There exists a global weak solution for all $z \in \mathbb{R}$, each of which is unique in law, if and only if $\mathcal{O}(\sigma, \alpha) = N(\sigma)$.
- ▶ If σ has only isolated monotone zeros (e.g. $\sigma(x) = |x|^{\beta}$) then we can work with the cleaner integral tests

$$\mathcal{O}(\sigma,\alpha) = \left\{ x \in \mathbb{R} : \int_{x-\varepsilon}^{x+\varepsilon} \sigma(y)^{-\alpha} |x-y|^{\alpha-1} \, \mathrm{d}\, y = \infty \text{ for all } \varepsilon > 0 \right\}$$

$$(13/1)$$

BACK TO THE SDE DRIVEN BY AN α -STABLE PROCESS WITH $\alpha \in (0, 1)$ Multiply When $\alpha \in (0, 1)$, we know $U(x, dy) = |x - y|^{\alpha - 1} dy$

- For finite time integrals, the role of avoidable sets is replaced by sets which are avoided for a positive amount of time, so-called thin sets.
- **Theorem:** If $N(\sigma)$ denotes the zero-set of σ and

$$\mathcal{O}(\sigma,\alpha) = \left\{ x \in \mathbb{R} : \int_{\mathbb{R} \setminus B} \sigma(y)^{-\alpha} |x-y|^{\alpha-1} \, \mathrm{d}\, y = \infty \text{ for all } \mathbb{P}_x \text{-thin sets } B \right\}$$

denotes the set of irregular points, then the following statements hold.

- For fixed z ∈ ℝ there exists a non-trivial (i.e. non-constant) local weak solution if and only if z ∉ O(σ, α).
- 2. A global weak solution exists for all initial conditions $z \in \mathbb{R}$ if and only if $\mathcal{O}(\sigma, \alpha) \subseteq N(\sigma)$.
- 3. A non-trivial global weak solution exists for all $z \in \mathbb{R}$ if and only if $\mathcal{O}(\sigma, \alpha) = \emptyset$.
- 4. There exists a global weak solution for all $z \in \mathbb{R}$, each of which is unique in law, if and only if $\mathcal{O}(\sigma, \alpha) = N(\sigma)$.
- If σ has only isolated monotone zeros (e.g. $\sigma(x) = |x|^{\beta}$) then we can work with the cleaner integral tests

$$\mathcal{O}(\sigma,\alpha) = \left\{ x \in \mathbb{R} : \int_{x-\varepsilon}^{x+\varepsilon} \sigma(y)^{-\alpha} |x-y|^{\alpha-1} \, \mathrm{d} \, y = \infty \text{ for all } \varepsilon > 0 \right\}$$

Sanity check $\sigma(y) = |y|^{\beta}$, $\alpha \in (0, 1)$

For fixed z ∈ R there exists a non-trivial (i.e. non-constant) local weak solution if and only if z ∉ O(σ, α)

► Need $\int_{x-\varepsilon}^{x+\varepsilon} \sigma(y)^{-\alpha} |y|^{\alpha-1} \, \mathrm{d} \, y = \int_{x-\varepsilon}^{x+\varepsilon} |y|^{\alpha(1-\beta)-1} \, \mathrm{d} \, y < \infty$ for all $x \in \mathbb{R}, \varepsilon > 0$.

Suffices that $\beta < 1$, consistent with Bass-Burdzy-Chen 2004.

14/15 《 ㅁ ▷ 《 큔 ▷ 《 콘 ▷ 《 콘 ▷ 》 즉 ⓒ Thank you!

15/15