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General path integrals and stable SDEs1

Andreas Kyprianou

(based on joint work with Leif Döring & Sam Baguley)

1Based on a paper of the same name to appear in JEMS
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A CLASSICAL SDE

I When does there exist a non-trivial solution to the SDE:

d Xt = σ(Xt−) d Yt

where Y is a one-dimensional α-stable Lévy process, X0 ∈ R and σ is measurable?
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α-STABLE PROCESS

I A stable process lies in the intersection of the class of Lévy process (stationary and
independent increments) and the class of self-similar Markov processes: for all
c > 0 and x ∈ R,

(cXc−αt, t ≥ 0) under Px is equal in law to (Xt, t ≥ 0) under Pcx,

where (Px, x ∈ R) are the probabilities of X and α ∈ (0, 2).
I Semigroup of X is entirely characterised by Ψ(z) := − logE0

[
eizX1

]
, satisfying

Ψ(z) = |z|α
(

eπiα( 1
2−ρ)1{z>0} + e−πiα( 1

2−ρ)1{z<0}

)
, z ∈ R.

where ρ = P(X1 > 0).
I The Lévy measure associated with Ψ:

Π(dx)

dx
= Γ(1 + α)

sin(παρ)

π

1
x1+α

1(x>0) + Γ(1 + α)
sin(παρ̂)

π

1
|x|1+α

1(x<0),

where ρ̂ := 1− ρ. In the case that α = 1, we take ρ = 1/2, meaning that X
corresponds to the Cauchy process.
%pause
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α-STABLE LÉVY PROCESS
index jumps path asymptotic behaviour

α ∈ (0, 1) transient

ρ = 0 − monotone decreasing Px(τ
{0} <∞) = 0, x ∈ R, limt→∞ Xt = −∞

ρ = 1 + monotone increasing Px(τ
{0} <∞) = 0, x ∈ R, limt→∞ Xt =∞

ρ ∈ (0, 1) +,− bounded variation Px(τ
{0} <∞) = 0, x ∈ R, limt→∞ |Xt| =∞

α = 1 recurrent

ρ = 1
2 +,− unbounded variation Px(τ

{0} <∞) = 0, x ∈ R,
lim supt→∞ |Xt| =∞, lim inft→∞ |Xt| = 0

α ∈ (1, 2) recurrent

αρ = 1 − unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

lim inft→∞ Xt = −∞, lim supt→∞ Xt =∞

αρ = α− 1 + unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

lim inft→∞ Xt = −∞ lim supt→∞ Xt =∞

αρ ∈ (α− 1, 1) +,− unbounded variation Px(τ
{0} <∞) = 1, x ∈ R,

lim inft→∞ Xt = −∞, lim supt→∞ Xt =∞

α = 2 recurrent

ρ = 1
2 no jumps unbounded variation Px(τ

{0} <∞) = 1, x ∈ R,
lim inft→∞ Xt = −∞, lim supt→∞ Xt =∞
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PATH INTEGRALS

d Xt = σ(Xt−) d Yt

I Every non-trivial solution can be written in the form

Xt = Yτt where τt = inf{s > 0 :

∫ s

0
σ(Yu)−2 d u > t}

providing
∫ s

0 σ(Yu)−α d u <∞ for all s > 0 (up to some s0 > 0).

I Hence this is really about the question of understanding when path integrals of
the form ∫ s

0
σ(Yu)−α d u

are finite.
I In fact we will end up addressing finiteness of such path integrals for any

‘standard’ Markov process on a general state space E (locally compact Hausdorff
space with a countable bas)
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ENGELBERT-SCHMIDT TYPE RESULTS

I α = 2: Engelbert-Schmidt (1981).
Classic results of ES81 tell us that when Yt = Bt (standard Brownian motion)
Theorem:

∃t > 0 :

∫ t

0
σ(Ys)

−2 d s <∞⇐⇒
∫ ε

−ε
σ(x)−2 d x <∞ for some ε > 0.

I α ∈ (1, 2): Zanzotto (2002)
Extends ES81 to the setting that Yt is an α-stable Lévy process.
Theorem: The exact same statement as ES81 holds except σ−2 replaced by σ−α.

I Rough idea of proof for α ∈ (1, 2]:
Can appeal to the existence of local time at each x ∈ R, say L(x)

t and write∫ t

0
σ(Ys)

−α d s =

∫
R
σ(x)−αL(x)

t d x

and then argue away the L(x)
t in the integral.

I α ∈ (0, 1): existence of local time at a point fails −→ dealt with in this talk
I α = 1: existence of local time at a point fails−→ no clue what is going on
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THIS TALK

I Is it true for α-stable Y that the natural criteria for

d Xt = σ(Xt−) d Yt

to have a solution under P is always∫ ε

−ε
σ(x)−α d x <∞?

I Sanity check: Consider

d Xt = |Xt−|β d Yt, β > 0.

I Engelbert-Schmidt-Zanzotto integral tests predicts for α ∈ (0, 2] that a non-trivial
solution occurs when ∫ ε

−ε
|x|−αβ d x <∞ =⇒ β ≤ 1/α

I It is known from (e.g. Bass-Burdzy-Chen 2004) that when α ∈ (0, 1), a sharp
condition in this setting is that β < 1. In which case the
Engelbert-Schmidt-Zanzotto cannot be right for α ∈ (0, 1).
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PERPETUAL INTEGRALS FOR LÉVY PROCESSES
I Döring-K 2016 (following results of multiple authors e.g. including Koshnevisan,

Salminen and Yor) have the following result:

Theorem: Suppose that Y is a Lévy process with local times at a point, Yt →∞
and f ≥ 0 is locally bounded, then

P
(∫ ∞

0
f (Ys) d s <∞

)
= 0 or 1.

and ∫ ∞
0

f (Ys) d s <∞ a.s. ⇐⇒
∫
R

f (x) d x <∞.

Proof: Write U(d x) =
∫∞

0 P(Ys ∈ d x) d s for the potential measure of Y. The
existence of local times is equivalent to the existence of a density
U(d x) = u(x) d x, so

E
[∫ ∞

0
f (Ys) d s

]
=

∫
R

f (x)u(x) d x.

Then argue away the u(x).

Note: we always start the Lévy process from 0 WLOG because of stationary and
independents.
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PERPETUAL INTEGRALS FOR LÉVY PROCESSES

I Kolb-Savov 2020 have the following result (stated in terms of its added value):

Theorem: Suppose that Y is a Lévy process without local time such that Yt →∞,
f ≥ 0 is continuous or ultimately non-increasing (locally bounded) function∫ ∞

0
f (Ys) d s <∞ a.s. ⇐⇒

∫
R\B

f (x)U(d x) <∞

for some transient set2 B

Proof:⇐=: easy to see that∫ ∞
0

f (Ys) d s <∞⇔
∫ ∞

0
f (Ys)1(Ys∈R\B) d s <∞⇐

∫
R\B

f (x)U(d x) <∞.

=⇒: this is where the meat is.
I Main problem with these and previous results is that they require locally bounded

functions.

2B is a transient set if the process eventually leaves it and never revisits the set. Formally: a Borel set with
P(sup{t > 0 : Yt ∈ B} <∞) = 1.
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GENERAL MARKOV PROCESSES

I Lets consider a general standard3 Markov process X on a general4 state space E
with a possible cemetery state (and lifetime denoted by ζ). Denote its probabilities
by P = (Pz, z ∈ E).

I A Borel set B ∈ E is called Pz-avoidable if Pz(DB < ζ) < 1, where
DB = inf{t ≥ 0 : Xt ∈ D}.

I If B is avoidable then its complement M = E\B is called Pz-supportive, and
satisfies Pz(Xt ∈ M for all t ∈ [0, ζ)) > 0.

I In general it is not at all clear what form avoidable or supportive sets should take
but a vast literature exists for special processes. Examples include:

I If X is a recurrent Markov process then only polar sets are avoidable.
I If X is a symmetric stable process on R of index α ∈ (1, 2] then only the empty set is

avoidable.
I If X is a symmetric stable process on R of index α ∈ (0, 1) then any compact set not

containing z is Pz-avoidable.

3We mean cadlag, quasi leftcontinous, strong Markov property
4locally compact Hausdorff space with a countable base
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PATH INTEGRALS FOR GENERAL MARKOV PROCESSES

I Let us introduce the potential of X given by U(x,d z) = Ex

[∫ ζ
0 1(Xt∈d z) d t

]
Note: as a general Markov process, we now index by the point of issue x.

I Theorem: Let f : E→ [0,+∞] be measurable and X a standard Markov process
with (possibly infinite) life time ζ. Let z ∈ E. Then the following are equivalent.

I Pz
( ∫∞

0 f (Xs) d s <∞
)
> 0;

I The integral test
∫

E\B f (x) U(z, d x) <∞ holds for a Pz-avoidable set B.

I Proof:⇐=. This is the easy direction as
∫

E\B f (x) U(z,d x) <∞ implies that∫∞
0 f (Xs)1(Xs∈E\B) d s <∞w.p.p. which implies

∫∞
0 f (Xs) d s <∞w.p.p. as E\B

is a supporting set.
I =⇒ The crux of the argument is to show that if, for some n ∈ N, p ∈ (0, 1),

Mn,p =
{

y ∈ E : Py
( ∫ ∞

0
f (Xs) d s ≤ n

)
> p
}

is non-empty then
∫

M f (x) U(z,d x) <∞.
Moreover, Pz

( ∫∞
0 f (Xs) d s <∞

)
> 0 implies that Mn,p is non-empty and a

Pz-supportive set.
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VARIOUS COROLLARIES

I Corollary: Let X be a standard Markov process on state space E and
f : E→ [0,∞] measurable. Then the following are equivalent.

I Pz
( ∫∞

0 f (Xs) d s <∞
)
= 1;

I For every ε > 0 there exists a Pz-supportive set M such that
∫

M f (x) U(z, d x) <∞ and
X stays in M with probability at least 1− ε.

I Corollary: Let X be a standard Markov process on Rd with trivial tail σ-algebra
when issued from z ∈ Rd, and let f : Rd → [0,∞) be measurable and bounded on
compact sets. Suppose in addition that the process is conservative
(Pz(ζ =∞) = 1). Then the following are equivalent:

I Pz
( ∫∞

0 f (Xs) d s <∞
)
> 0;

I Pz
( ∫∞

0 f (Xs) d s <∞
)
= 1;

I There exists a transient set5 B such that integral test
∫
Rd\B f (x) U(z, d x) <∞ holds.

5a Borel set with Pz(sup{t > 0 : Xt ∈ B} <∞) = 1
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BACK TO THE SDE DRIVEN BY AN α-STABLE PROCESS WITH α ∈ (0, 1)
I When α ∈ (0, 1), we know U(x,d y) = |x− y|α−1 d y

I For finite time integrals, the role of avoidable sets is replaced by sets which are
avoided for a positive amount of time, so-called thin sets.

I Theorem: If N(σ) denotes the zero-set of σ and

O(σ, α) =
{

x ∈ R :

∫
R\B

σ(y)−α|x− y|α−1 d y =∞ for all Px-thin sets B
}

denotes the set of irregular points, then the following statements hold.

1. For fixed z ∈ R there exists a non-trivial (i.e. non-constant) local weak solution if and
only if z 6∈ O(σ, α).

2. A global weak solution exists for all initial conditions z ∈ R if and only if
O(σ, α) ⊆ N(σ).

3. A non-trivial global weak solution exists for all z ∈ R if and only ifO(σ, α) = ∅.
4. There exists a global weak solution for all z ∈ R, each of which is unique in law, if and

only ifO(σ, α) = N(σ).

I If σ has only isolated monotone zeros (e.g. σ(x) = |x|β ) then we can work with
the cleaner integral tests

O(σ, α) =
{

x ∈ R :

∫ x+ε

x−ε
σ(y)−α|x− y|α−1 d y =∞ for all ε > 0

}
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SANITY CHECK σ(y) = |y|β , α ∈ (0, 1)

I For fixed z ∈ R there exists a non-trivial (i.e. non-constant) local weak solution if
and only if z 6∈ O(σ, α)

I Need ∫ x+ε

x−ε
σ(y)−α|y|α−1 d y =

∫ x+ε

x−ε
|y|α(1−β)−1 d y <∞

for all x ∈ R, ε > 0.

I Suffices that β < 1, consistent with Bass-Burdzy-Chen 2004.
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Thank you!


