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NUCLEAR INTERACTIONS OF A PROTON BEAM
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Figure: Diagram taken from: Newhauser and Zhang 2015 Phys. Med. Biol. 60 R155.
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BRAGG PEAK
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SCHEMATIC OF SEQUENTIAL PROTON TRACK
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PROTON BEAM SDE

A special kind of Stochastic Differential Equation models the energy deposition of
individual proton streams: Y, = (eg,7¢,) € C :=[0,00) X D X S,

> ¢y is the energy of the proton stream after it has traversed a distance ¢
> 71y is the position of the proton stream after it covers a distance ¢
> Qg is the direction of travel of the proton after it covers a distance £.
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SDE COMPONENTS
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(Bg, £ > 0) is a standard Brownian motion on R® and
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represents Brownian motion on a sphere with ‘speed” m
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SDE COMPONENTS
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s(x) is the configuration dependent continuous rate of loss of energy (due to
inelastic Coulomb interaction and small elastic Coulomb interaction);

Foreachx € [0,¢y] X D X Sp,£>0,Q € Sy,u € (0,1], N(x;d ¢,dQ’,du), is an
optional random measure with previsible compensator o (x)7(x; d Q',d u) d 1, so
that o(x) = oe(x) + one(x) is a finite cross section and at each arrival, the
incoming configuration x = (ey_,rp—, Qy_) jumps to configuration

(e0—(1 —u),re—, Q) with probability distribution
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WHERE’S THE MATH?
> Interrogating energy deposition: We can define for a test function f on
(0,00) x D x S; (the configuration space of the solution), the ‘interrogation’
potential of where (and how much) energy is deposited along its stochastic path:

U[f](x) = —Ex [/OAf(Yg_)deg} . xecC

> A is the total distance covered by the proton stream and Y, = (ez,7¢, Q)
> x € Cis the incoming configuration of the stream
> A proton stream is one random physical sequence of radiative events; averaging over

proton streams gives the behaviour of a proton beam
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WHERE’S THE MATH?
> Interrogating energy deposition: We can define for a test function f on
(0,00) x D x S; (the configuration space of the solution), the ‘interrogation’
potential of where (and how much) energy is deposited along its stochastic path:
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> A is the total distance covered by the proton stream and Y, = (ez,7¢, Q)

> x € Cis the incoming configuration of the stream

> A proton stream is one random physical sequence of radiative events; averaging over
proton streams gives the behaviour of a proton beam

> Suppose there is an occupation density:
A
E, [/0 1oy, edp) dé} — () dy, yeC

> If (and that’s a big if!) there is an occupation density: then we can write

off](x /f u(x,y) dy,

then, forx,y € C,
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WHERE’S THE MATH?

> Interrogating energy deposition: We can define for a test function f on
(0,00) x D x S; (the configuration space of the solution), the ‘interrogation’
potential of where (and how much) energy is deposited along its stochastic path:

U[fl(x) = —Ex [/OAf(ye_)dQ} . xecC

> A is the total distance covered by the proton stream and Y, = (ez, ¢, Q)

> x € C is the incoming configuration of the stream

> A proton stream is one random physical sequence of radiative events; averaging over
proton streams gives the behaviour of a proton beam

> Suppose there is an occupation density:

A
Ey |:‘/0 l(YgEdy) d€:| = r(x,y) dy, y < C,

> If there is an occupation density: then we can write

off](x /f u(e,y) dy,

then, for x,y € C, we see a higher-dimensional Bethe-Bloch formula emerging
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WHERE’S THE MATH?

» Now if we define

DIf](x) := — lim lg, [/OA (f(i’g + Q) —f(re)) dq}

e—0¢e
— / Q- Vf(Hulz) dz,
T

where u(x, z) is a density associated to U[f](x).
> Because of the existence of the density, we can appeal to duality to tell us that

DIfJ(x) = (@ Vif ulx, ) = =(f, 2 Vrulx, ).
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WHERE’S THE MATH?

» Now if we define
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where u(x, z) is a density associated to U[f](x).
> Because of the existence of the density, we can appeal to duality to tell us that

D[f](x (Q-Vif,ulx, ) = —({,Q Veul(x,)).

> Theorem (and the added value of this heavy mathematical perspective): the
density exists!
This carries the implication that:
P b(x,y) := Q- V,u(x,y) is the natural notion of energy deposition that extends the
Bethe-Bloch formula
> Monte—Carlo simulation of ¢ ~! fOA (1A (re + Q) — 1a (Tg)) d g is a natural way to
numerically simulate b(x, A)
> Important: the analytical structure of the theory developed here works whether the SDE
is simulated using e.g. FLUKA /GEANT-4/etc or whether one uses ab in-line parametric

family of rate functions and calibrates against experimental data - in 1D, 2D or 3D. o)



We defined the path Bragg manifold to be the quantity

b(x,z) = —Q- V,u(x,z).

As alluded to above, this is the average rate of directional energy deposition at
configuration z = (e, 7,2) € C in the sequential proton track for an initial configuration
xeC.
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(L) Realisation of 1,000 proton paths in 3D plotted against stopping power giving a
realisation of a Bragg surface (x,y) — b(x,y). (C) Two dimensional heat map of the stopping
power (x,y) — b(x,y) for a simulated protons beam with heat added according to stopping
power. (R) The projection of the Bragg surface (x,y) — b(x, y) onto the x-axis giving,

x — b(x, (=20, 20)) a classical Bragg peak.
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Figure: (R) 3D simulated proton beam. (L) Scaled 3D simulated proton beam.



(L) Realisation of 10,000 proton paths in 2D plotted against stopping power giving a
realisation of a Bragg surface (x,y) — b(x,y). (C) Two dimensional heat map of the stopping
power (x,y) — b(x,y) for a simulated protons beam with heat added according to stopping
power. (R) The projection of the Bragg surface (x,y) — b(x, y) onto the x-axis giving,

x — b(x, (=20, 20)) a classical Bragg peak.



Thank you!
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