Proton beam de-energisation and the Bragg Peak for cancer therapy via jump stochastic differential equations

Andreas Kyprianou
Department of Statistics, University of Warwick

With thanks to team members: Emma Horton (Warwick), Ali Crossley (Warwick), Karen
Haberman (Warwick), Sarah Osman (UCLH), Colin Baker (UCLH), Ana Lourenço (NPL),
Tristan Pryer (Bath), Alex Cox (Bath), Veronika Chronholm (Bath)

Nuclear interactions of a proton beam

- Ionization (Coulomb effect)
- Coulomb interactions with atomic nucleus
- Nuclear interactions with atomic nucleus

(a)
inelastic scattering

(b)
elastic scattering
Recoil nucleus

These interactions govern how protons deposit their dose in patient

Figure: Diagram taken from: Newhauser and Zhang 2015 Phys. Med. Biol. 60 R155.

Bragg Peak

SCHEMATIC OF SEQUENTIAL PROTON TRACK

Proton beam SDE

A special kind of Stochastic Differential Equation models the energy deposition of individual proton streams: $Y_{\ell}=\left(\epsilon_{\ell}, r_{\ell}, \Omega_{\ell}\right) \in \mathcal{C}:=[0, \infty) \times D \times \mathbb{S}_{2}$

- ϵ_{ℓ} is the energy of the proton stream after it has traversed a distance ℓ
r_{ℓ} is the position of the proton stream after it covers a distance ℓ
$-\Omega_{\ell}$ is the direction of travel of the proton after it covers a distance ℓ.

$$
\begin{aligned}
\epsilon_{\ell}= & \epsilon_{0}-\int_{0}^{\ell} \varsigma\left(Y_{l-}\right) \mathrm{d} l-\int_{0}^{\ell} \int_{(0,1]} \int_{\mathbb{S}_{2}} u \epsilon_{l-} N\left(Y_{l-} ; \mathrm{d} l, \mathrm{~d} \Omega^{\prime}, \mathrm{d} u\right) \\
r_{\ell}= & r_{0}+\int_{0}^{\ell} \Omega_{l-} \mathrm{d} l \\
\Omega_{\ell}= & \Omega_{0}-\int_{0}^{\ell} m\left(Y_{l}\right)^{2} \Omega_{l-} \mathrm{d} l+\int_{0}^{\ell} m\left(Y_{l-}\right) \Omega_{l-} \wedge \mathrm{d} B_{l} \\
& \quad+\int_{0}^{\ell} \int_{(0,1]} \int_{\mathbb{S}_{2}}\left(\Omega^{\prime}-\Omega_{l-}\right) N\left(Y_{l-} ; \mathrm{d} l, \mathrm{~d} \Omega^{\prime}, \mathrm{d} u\right)
\end{aligned}
$$

for $\ell<\Lambda:=\inf \left\{\ell>0: \epsilon_{\ell}=0\right.$ or $\left.r_{\ell} \notin D\right\}$

SDE COMPONENTS

$$
\begin{aligned}
\epsilon_{\ell}= & \epsilon_{0}-\int_{0}^{\ell} \varsigma\left(Y_{l-}\right) \mathrm{d} l-\int_{0}^{\ell} \int_{(0,1]} \int_{\mathbb{S}_{2}} u \epsilon_{l-} N\left(Y_{l-} ; \mathrm{d} l, \mathrm{~d} \Omega^{\prime}, \mathrm{d} u\right) \\
r_{\ell}= & r_{0}+\int_{0}^{\ell} \Omega_{l-} \mathrm{d} l
\end{aligned} \quad \begin{aligned}
\Omega_{\ell}= & \Omega_{0}-\int_{0}^{\ell} m\left(Y_{l}\right)^{2} \Omega_{l-} \mathrm{d} l+\int_{0}^{\ell} m\left(Y_{l-}\right) \Omega_{l-} \wedge \mathrm{d} B_{l}
\end{aligned} \quad \begin{aligned}
& \quad+\int_{0}^{\ell} \int_{(0,1]} \int_{\mathbb{S}_{2}}\left(\Omega^{\prime}-\Omega_{l-}\right) N\left(Y_{l-} ; \mathrm{d} l, \mathrm{~d} \Omega^{\prime}, \mathrm{d} u\right)
\end{aligned}
$$

$\left(B_{\ell}, \ell \geq 0\right)$ is a standard Brownian motion on \mathbb{R}^{3} and

$$
\Omega_{\ell}=\Omega_{0}-\int_{0}^{\ell} m^{2} \Omega_{l-} \mathrm{d} l+\int_{0}^{\ell} m \Omega_{l-} \wedge \mathrm{d} B_{l}
$$

represents Brownian motion on a sphere with 'speed' m

SDE COMPONENTS

$$
\left.\begin{array}{rl}
\epsilon_{\ell} & =\epsilon_{0}-\int_{0}^{\ell} \varsigma\left(Y_{l-}\right) \mathrm{d} l-\int_{0}^{\ell} \int_{(0,1]} \int_{\mathbb{S}_{2}} u \epsilon_{l-} N\left(Y_{l-} ; \mathrm{d} l, \mathrm{~d} \Omega^{\prime}, \mathrm{d} u\right) \\
r_{\ell}= & r_{0}+\int_{0}^{\ell} \Omega_{l-} \mathrm{d} l
\end{array}\right\} \begin{aligned}
\Omega_{\ell}= & \Omega_{0}-\int_{0}^{\ell} m\left(Y_{l}\right)^{2} \Omega_{l-} \mathrm{d} l+\int_{0}^{\ell} m\left(Y_{l-}\right) \Omega_{l-} \wedge \mathrm{d} B_{l}
\end{aligned} \quad \begin{aligned}
& \quad+\int_{0}^{\ell} \int_{(0,1]} \int_{\mathbb{S}_{2}}\left(\Omega^{\prime}-\Omega_{l-}\right) N\left(Y_{l-} ; \mathrm{d} l, \mathrm{~d} \Omega^{\prime}, \mathrm{d} u\right)
\end{aligned}
$$

- $\varsigma(x)$ is the configuration dependent continuous rate of loss of energy (due to inelastic Coulomb interaction and small elastic Coulomb interaction);
- For each $x \in\left[0, \epsilon_{0}\right] \times D \times \mathbb{S}_{2}, \ell \geq 0, \Omega^{\prime} \in \mathbb{S}_{2}, u \in(0,1], N\left(x ; \mathrm{d} \ell, \mathrm{d} \Omega^{\prime}, \mathrm{d} u\right)$, is an optional random measure with previsible compensator $\sigma(x) \pi\left(x ; \mathrm{d} \Omega^{\prime}, \mathrm{d} u\right) \mathrm{d} l$, so that $\sigma(x)=\sigma_{\mathrm{e}}(x)+\sigma_{\mathrm{ne}}(x)$ is a finite cross section and at each arrival, the incoming configuration $x=\left(\epsilon_{\ell-}, r_{\ell_{-}}, \Omega_{\ell-}\right)$ jumps to configuration $\left(\epsilon_{\ell-}(1-u), r_{\ell-}, \Omega^{\prime}\right)$ with probability distribution

$$
\pi\left(x ; \mathrm{d} \Omega^{\prime}, \mathrm{d} u\right):=\frac{\sigma_{\mathrm{e}}(x)}{\sigma(x)} \pi_{\mathrm{e}}\left(x ; \mathrm{d} \Omega^{\prime}\right)+\frac{\sigma_{\mathrm{ne}}(x)}{\sigma(x)} \pi_{\mathrm{ne}}\left(x ; \mathrm{d} \Omega^{\prime}, \mathrm{d} u\right), \quad u \in(0,1], \Omega^{\prime} \in \mathbb{S}_{2}
$$

Where's the math?

- Interrogating energy deposition: We can define for a test function f on $(0, \infty) \times D \times \mathbb{S}_{2}$ (the configuration space of the solution), the 'interrogation' potential of where (and how much) energy is deposited along its stochastic path:

$$
\mathrm{U}[f](x)=-\mathbb{E}_{x}\left[\int_{0}^{\Lambda} f\left(Y_{\ell-}\right) \mathrm{d} \epsilon_{\ell}\right], \quad x \in \mathcal{C}
$$

- Λ is the total distance covered by the proton stream and $Y_{\ell}=\left(\epsilon_{\ell}, r_{\ell}, \Omega_{\ell}\right)$
- $x \in \mathcal{C}$ is the incoming configuration of the stream
- A proton stream is one random physical sequence of radiative events; averaging over proton streams gives the behaviour of a proton beam
- Suppose there is an occupation density:

$>$ If (and that's a big if!) there is an occupation density: then we can write

then, for $x, y \in \mathcal{C}$,

WHERE'S THE MATH?

- Interrogating energy deposition: We can define for a test function f on $(0, \infty) \times D \times \mathbb{S}_{2}$ (the configuration space of the solution), the 'interrogation' potential of where (and how much) energy is deposited along its stochastic path:

$$
\mathrm{U}[f](x)=-\mathbb{E}_{x}\left[\int_{0}^{\Lambda} f\left(Y_{\ell-}\right) \mathrm{d} \epsilon_{\ell}\right], \quad x \in \mathcal{C}
$$

- Λ is the total distance covered by the proton stream and $Y_{\ell}=\left(\epsilon_{\ell}, r_{\ell}, \Omega_{\ell}\right)$
- $x \in \mathcal{C}$ is the incoming configuration of the stream
- A proton stream is one random physical sequence of radiative events; averaging over proton streams gives the behaviour of a proton beam
- Suppose there is an occupation density:

$$
\mathbb{E}_{x}\left[\int_{0}^{\Lambda} 1_{\left(Y_{\ell} \in \mathrm{d} y\right)} \mathrm{d} \ell\right]=r(x, y) \mathrm{d} y, \quad y \in \mathcal{C}
$$

- If (and that's a big if!) there is an occupation density: then we can write

then, for $x, y \in \mathcal{C}$,

WHERE'S THE MATH?

- Interrogating energy deposition: We can define for a test function f on $(0, \infty) \times D \times \mathbb{S}_{2}$ (the configuration space of the solution), the 'interrogation' potential of where (and how much) energy is deposited along its stochastic path:

$$
\mathrm{U}[f](x)=-\mathbb{E}_{x}\left[\int_{0}^{\Lambda} f\left(Y_{\ell-}\right) \mathrm{d} \epsilon_{\ell}\right], \quad x \in \mathcal{C}
$$

- Λ is the total distance covered by the proton stream and $Y_{\ell}=\left(\epsilon_{\ell}, r_{\ell}, \Omega_{\ell}\right)$
- $x \in \mathcal{C}$ is the incoming configuration of the stream
- A proton stream is one random physical sequence of radiative events; averaging over proton streams gives the behaviour of a proton beam
- Suppose there is an occupation density:

$$
\mathbb{E}_{x}\left[\int_{0}^{\Lambda} 1_{\left(Y_{\ell} \in \mathrm{d} y\right)} \mathrm{d} \ell\right]=r(x, y) \mathrm{d} y, \quad y \in \mathcal{C}
$$

- If (and that's a big if!) there is an occupation density: then we can write

$$
\mathrm{U}[f](x)=\int_{\mathcal{C}} f(y) \mathrm{u}(x, y) \mathrm{d} y
$$

then, for $x, y \in \mathcal{C}$,

$$
\mathrm{u}(x, y)=\left\{\varsigma(\epsilon, r, \Omega)+\epsilon \sigma(y) \int_{(0,1]} u \pi\left((\epsilon, r, \Omega) ; \mathbb{S}_{2}, \mathrm{~d} u\right)\right\} r(x, y),
$$

WHERE'S THE MATH?

- Interrogating energy deposition: We can define for a test function f on $(0, \infty) \times D \times \mathbb{S}_{2}$ (the configuration space of the solution), the 'interrogation' potential of where (and how much) energy is deposited along its stochastic path:

$$
\mathrm{U}[f](x)=-\mathbb{E}_{x}\left[\int_{0}^{\Lambda} f\left(Y_{\ell-}\right) \mathrm{d} \epsilon_{\ell}\right], \quad x \in \mathcal{C}
$$

- Λ is the total distance covered by the proton stream and $Y_{\ell}=\left(\epsilon_{\ell}, r_{\ell}, \Omega_{\ell}\right)$
- $x \in \mathcal{C}$ is the incoming configuration of the stream
- A proton stream is one random physical sequence of radiative events; averaging over proton streams gives the behaviour of a proton beam
- Suppose there is an occupation density:

$$
\mathbb{E}_{x}\left[\int_{0}^{\Lambda} 1_{\left(Y_{\ell} \in \mathrm{d} y\right)} \mathrm{d} \ell\right]=r(x, y) \mathrm{d} y, \quad y \in \mathcal{C}
$$

- If there is an occupation density: then we can write

$$
\mathrm{U}[f](x)=\int_{\mathcal{C}} f(y) \mathrm{u}(x, y) \mathrm{d} y
$$

then, for $x, y \in \mathcal{C}$, we see a higher-dimensional Bethe-Bloch formula emerging

$$
\mathrm{u}(x, y)=-\left\langle\frac{\mathrm{d} \epsilon}{\mathrm{~d} \ell}\right\rangle \mathrm{r}(x, y),
$$

Where's the math?

- Now if we define

$$
\begin{aligned}
D[f](x) & :=-\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \mathbb{E}_{x}\left[\int_{0}^{\Lambda}\left(f\left(r_{\ell}+\varepsilon \Omega_{\ell}\right)-f\left(r_{\ell}\right)\right) \mathrm{d} \epsilon_{\ell}\right] \\
& =\int_{\Upsilon} \Omega \cdot \nabla_{r} f(r) \mathrm{u}(z) \mathrm{d} z
\end{aligned}
$$

where $\mathrm{u}(x, z)$ is a density associated to $\mathrm{U}[f](x)$.

- Because of the existence of the density, we can appeal to duality to tell us that

$$
D[f](x)=\left\langle\Omega \cdot \nabla_{r} f, \mathrm{u}(x, \cdot)\right\rangle=-\left\langle f, \Omega \cdot \nabla_{r} \mathrm{u}(x, \cdot)\right\rangle .
$$

- Theorem (and the added value of this heavy mathematical perspective): the density exists!
This carties the implication that:
$\Rightarrow \mathrm{b}(x, y):=\Omega \cdot \nabla_{r \mathrm{u}}(x, y)$ is the natural notion of energy deposition that extends the Bethe-Bloch formula
\triangleright Monte-Carlo simulation of $\varepsilon^{-1} \int_{0}^{A}\left(1_{A}\left(r_{\ell}+\varepsilon_{\Omega}\right)-1_{A}\left(r_{R}\right)\right) d$ e is a natural way to numerically simulate $\mathrm{b}(x, A)$
- Important: the analytical structure of the theory developed here works whether the SDE is simulated using e.g. FLUKA/GEANT-4/etc or whether one uses $a b$ in-line parametric famity of rate functions and caltorates against expenimental data- in 10, 20 of 30.

Where's the math?

- Now if we define

$$
\begin{aligned}
D[f](x) & :=-\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \mathbb{E}_{x}\left[\int_{0}^{\Lambda}\left(f\left(r_{\ell}+\varepsilon \Omega_{\ell}\right)-f\left(r_{\ell}\right)\right) \mathrm{d} \epsilon_{\ell}\right] \\
& =\int_{\Upsilon} \Omega \cdot \nabla_{r} f(r) \mathrm{u}(z) \mathrm{d} z
\end{aligned}
$$

where $\mathrm{u}(x, z)$ is a density associated to $\mathrm{U}[f](x)$.

- Because of the existence of the density, we can appeal to duality to tell us that

$$
D[f](x)=\left\langle\Omega \cdot \nabla_{r} f, \mathrm{u}(x, \cdot)\right\rangle=-\left\langle f, \Omega \cdot \nabla_{r} \mathrm{u}(x, \cdot)\right\rangle .
$$

- Theorem (and the added value of this heavy mathematical perspective): the density exists!

This carries the implication that:

$\Rightarrow \mathrm{b}(x, y):=\Omega \cdot \nabla_{r \mathrm{a}}(x, y)$ is the natural notion of energy deposition that extends the

Bethe-Bloch formula

- Monte-Carlo simulation of $\varepsilon^{-1} \int_{0}^{\wedge}\left(I_{A}\left(r_{\ell}+\Omega_{\ell}\right)-1_{A}\left(r_{C}\right)\right)$ de is a natural way to numerically simulate $\mathrm{b}(x, A)$
- Important: the analytical structure of the theory developed here works whether the SDE is simulated using e.g. FLUKA/GEANT-4/etc or whether one uses ab in-line parametric family of rate functions and calibrates against experimental data = in 10, 20 or 30

WHERE'S THE MATH?

- Now if we define

$$
\begin{aligned}
D[f](x) & :=-\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \mathbb{E}_{x}\left[\int_{0}^{\Lambda}\left(f\left(r_{\ell}+\varepsilon \Omega_{\ell}\right)-f\left(r_{\ell}\right)\right) \mathrm{d} \epsilon_{\ell}\right] \\
& =\int_{\Upsilon} \Omega \cdot \nabla_{r} f(r) \mathrm{u}(z) \mathrm{d} z
\end{aligned}
$$

where $\mathrm{u}(x, z)$ is a density associated to $\mathrm{U}[f](x)$.

- Because of the existence of the density, we can appeal to duality to tell us that

$$
D[f](x)=\left\langle\Omega \cdot \nabla_{r} f, \mathrm{u}(x, \cdot)\right\rangle=-\left\langle f, \Omega \cdot \nabla_{r} \mathrm{u}(x, \cdot)\right\rangle .
$$

- Theorem (and the added value of this heavy mathematical perspective): the density exists!
This carries the implication that:
$\Rightarrow \mathrm{b}(x, y):=\Omega \cdot \nabla_{r} \mathrm{u}(x, y)$ is the natural notion of energy deposition that extends the Bethe-Bloch formula
\Rightarrow Monte-Carlo simulation of $\varepsilon^{-1} \int_{0}^{\Lambda}\left(1_{A}\left(r_{\ell}+\varepsilon \Omega_{\ell}\right)-1_{A}\left(r_{\ell}\right)\right) \mathrm{d} \epsilon_{\ell}$ is a natural way to numerically simulate $\mathrm{b}(x, A)$
- Important: the analytical structure of the theory developed here works whether the SDE is simulated using e.g. FLUKA/GEANT-4/etc or whether one uses ab in-line parametric family of rate functions and calibrates against experimental data - in 1D, 2D or 3D.

BRAGG MANIFOLD

We defined the path Bragg manifold to be the quantity

$$
\mathrm{b}(x, z)=-\Omega \cdot \nabla_{r} \mathrm{u}(x, z)
$$

As alluded to above, this is the average rate of directional energy deposition at configuration $z=(\epsilon, r, \Omega) \in \mathcal{C}$ in the sequential proton track for an initial configuration $x \in \mathcal{C}$.

Figure: (L) Realisation of 1,000 proton paths in 3D plotted against stopping power giving a realisation of a Bragg surface $(x, y) \mapsto \mathrm{b}(x, y)$. (C) Two dimensional heat map of the stopping power $(x, y) \mapsto \mathrm{b}(x, y)$ for a simulated protons beam with heat added according to stopping power. (R) The projection of the Bragg surface $(x, y) \mapsto \mathrm{b}(x, y)$ onto the x-axis giving, $x \mapsto \mathrm{~b}(x,(-20,20))$ a classical Bragg peak.

Figure: (R) 3D simulated proton beam. (L) Scaled 3D simulated proton beam.

Figure: (L) Realisation of 10,000 proton paths in 2D plotted against stopping power giving a realisation of a Bragg surface $(x, y) \mapsto \mathrm{b}(x, y)$. (C) Two dimensional heat map of the stopping power $(x, y) \mapsto \mathrm{b}(x, y)$ for a simulated protons beam with heat added according to stopping power. (R) The projection of the Bragg surface $(x, y) \mapsto \mathrm{b}(x, y)$ onto the x-axis giving, $x \mapsto \mathrm{~b}(x,(-20,20))$ a classical Bragg peak.

Thank you!

