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NUCLEAR INTERACTIONS OF A PROTON BEAM

Figure: Diagram taken from: Newhauser and Zhang 2015 Phys. Med. Biol. 60 R155.
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BRAGG PEAK
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SCHEMATIC OF SEQUENTIAL PROTON TRACK
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PROTON BEAM SDE
A special kind of Stochastic Differential Equation models the energy deposition of
individual proton streams: Y` = (ε`, r`,Ω`) ∈ C := [0,∞)× D× S2

I ε` is the energy of the proton stream after it has traversed a distance `
I r` is the position of the proton stream after it covers a distance `
I Ω` is the direction of travel of the proton after it covers a distance `.

ε` = ε0 −
∫ `

0
ς(Yl−) d l−

∫ `

0

∫
(0,1]

∫
S2

uεl−N(Yl−; d l,d Ω′,d u)

r` = r0 +

∫ `

0
Ωl− d l

Ω` = Ω0 −
∫ `

0
m(Yl)

2Ωl− d l +

∫ `

0
m(Yl−)Ωl− ∧ d Bl

+

∫ `

0

∫
(0,1]

∫
S2

(Ω′ − Ωl−)N(Yl−; d l,d Ω′,d u)

for ` < Λ := inf{` > 0 : ε` = 0 or r` 6∈ D}
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SDE COMPONENTS

ε` = ε0 −
∫ `

0
ς(Yl−) d l−

∫ `

0

∫
(0,1]

∫
S2

uεl−N(Yl−; d l, d Ω
′
, d u)

r` = r0 +

∫ `

0
Ωl− d l

Ω` = Ω0 −
∫ `

0
m(Yl)

2
Ωl− d l +

∫ `

0
m(Yl−)Ωl− ∧ d Bl

+

∫ `

0

∫
(0,1]

∫
S2

(Ω
′ − Ωl−)N(Yl−; d l, d Ω

′
, d u)

(B`, ` ≥ 0) is a standard Brownian motion on R3 and

Ω` = Ω0 −
∫ `

0
m2Ωl− d l +

∫ `

0
mΩl− ∧ d Bl

represents Brownian motion on a sphere with ‘speed’ m
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I ς(x) is the configuration dependent continuous rate of loss of energy (due to
inelastic Coulomb interaction and small elastic Coulomb interaction);

I For each x ∈ [0, ε0]× D× S2, ` ≥ 0,Ω′ ∈ S2, u ∈ (0, 1], N(x; d `,d Ω′,d u), is an
optional random measure with previsible compensator σ(x)π(x; d Ω′,d u) d l, so
that σ(x) = σe(x) + σne(x) is a finite cross section and at each arrival, the
incoming configuration x = (ε`−, r`−,Ω`−) jumps to configuration
(ε`−(1− u), r`−,Ω′) with probability distribution

π(x; d Ω′,d u) :=
σe(x)

σ(x)
πe(x; d Ω′)+

σne(x)

σ(x)
πne(x; d Ω′,d u), u ∈ (0, 1],Ω′ ∈ S2.
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WHERE’S THE MATH?
I Interrogating energy deposition: We can define for a test function f on

(0,∞)× D× S2 (the configuration space of the solution), the ‘interrogation’
potential of where (and how much) energy is deposited along its stochastic path:

U[f ](x) = −Ex

[∫ Λ

0
f (Y`−)dε`

]
, x ∈ C

I Λ is the total distance covered by the proton stream and Y` = (ε`, r`,Ω`)
I x ∈ C is the incoming configuration of the stream
I A proton stream is one random physical sequence of radiative events; averaging over

proton streams gives the behaviour of a proton beam
I Suppose there is an occupation density:

Ex

[∫ Λ

0
1(Y`∈d y) d `

]
= r(x, y) d y, y ∈ C,

I If (and that’s a big if!) there is an occupation density: then we can write

U[f ](x) =

∫
C

f (y)u(x, y) d y,

then, for x, y ∈ C,

u(x, y) =

{
ς(ε, r,Ω) + εσ(y)

∫
(0,1]

uπ((ε, r,Ω); S2,d u)

}
r(x, y),
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Ex
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0
1(Y`∈d y) d `

]
= r(x, y) d y, y ∈ C,

I If there is an occupation density: then we can write

U[f ](x) =

∫
C

f (y)u(x, y) d y,

then, for x, y ∈ C, we see a higher-dimensional Bethe-Bloch formula emerging

u(x, y) = −
〈

d ε
d `

〉
r(x, y),
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WHERE’S THE MATH?

I Now if we define

D[f ](x) := − lim
ε→0

1
ε
Ex

[∫ Λ

0

(
f (r` + εΩ`)− f (r`)

)
d ε`

]
=

∫
Υ

Ω · ∇rf (r)u(z) d z,

where u(x, z) is a density associated to U[f ](x).
I Because of the existence of the density, we can appeal to duality to tell us that

D[f ](x) = 〈Ω · ∇rf ,u(x, ·)〉 = −〈f ,Ω · ∇ru(x, ·)〉.

I Theorem (and the added value of this heavy mathematical perspective): the
density exists!
This carries the implication that:
I b(x, y) := Ω · ∇ru(x, y) is the natural notion of energy deposition that extends the

Bethe–Bloch formula
I Monte–Carlo simulation of ε−1 ∫ Λ

0

(
1A(r` + εΩ`)− 1A(r`)

)
d ε` is a natural way to

numerically simulate b(x,A)
I Important: the analytical structure of the theory developed here works whether the SDE

is simulated using e.g. FLUKA/GEANT-4/etc or whether one uses ab in-line parametric
family of rate functions and calibrates against experimental data - in 1D, 2D or 3D.
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BRAGG MANIFOLD

We defined the path Bragg manifold to be the quantity

b(x, z) = −Ω · ∇ru(x, z).

As alluded to above, this is the average rate of directional energy deposition at
configuration z = (ε, r,Ω) ∈ C in the sequential proton track for an initial configuration
x ∈ C.
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3D

Figure: (L) Realisation of 1,000 proton paths in 3D plotted against stopping power giving a
realisation of a Bragg surface (x, y) 7→ b(x, y). (C) Two dimensional heat map of the stopping
power (x, y) 7→ b(x, y) for a simulated protons beam with heat added according to stopping
power. (R) The projection of the Bragg surface (x, y) 7→ b(x, y) onto the x-axis giving,
x 7→ b(x, (−20, 20)) a classical Bragg peak.
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3D

Figure: (R) 3D simulated proton beam. (L) Scaled 3D simulated proton beam.
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2D

Figure: (L) Realisation of 10,000 proton paths in 2D plotted against stopping power giving a
realisation of a Bragg surface (x, y) 7→ b(x, y). (C) Two dimensional heat map of the stopping
power (x, y) 7→ b(x, y) for a simulated protons beam with heat added according to stopping
power. (R) The projection of the Bragg surface (x, y) 7→ b(x, y) onto the x-axis giving,
x 7→ b(x, (−20, 20)) a classical Bragg peak.
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Thank you!


