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Travelling wave solutions to the K-P-P equation:
alternatives to Simon Harris’ probabilistic analysis
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Abstract

Recently Harris [Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 503], using probabilistic methods alone, has given new
proofs for the existence, asymptotics and uniqueness of travelling wave solutions to the K-P-P equation. Following in this vein
we outline alternative probabilistic proofs. Specifically the techniques are confined to the study of additive and multiplicative
martingales and spinal path decompositions along the lines of [B. Chauvin, A. Rouault, Probab. Theory Related Fields 80
(1988) 299], [R. Lyons, in: K.B. Athreya, P. Jagers (eds.), Classical and Modern Branching Processes, Vol. 84, Springer-Verlag,
New York, 1997, pp. 217–222] and [R. Lyons et al., Ann. Probab. 23 (1995) 1125]. We also make use of a new decomposition
where the spine is a conditioned process. Some new results concerning martingale convergence are obtained as a by-product of
the analysis.
 2003 Elsevier SAS. All rights reserved.
Résumé

Harris a récemment donné [Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 503], par des méthodes purement probabilistes,
de nouvelles preuves de l’existence, du comportement asymptotique et de l’unicité des propagations d’onde de l’équation KPP.
En suivant la même veine, nous indiquons des preuves probabilistes alternatives. Les techniques sont limitées à l’étude de
martingales additives et multiplicatives ainsi qu’aux décompositions « spinales » des trajectoires, employées dans [B. Chauvin,
A. Rouault, Probab. Theory Related Fields 80 (1988) 299], [R. Lyons, dans : K.B. Athreya, P. Jagers (eds.), Classical and
Modern Branching Processes, Vol. 84, Springer-Verlag, New York, 1997, pp. 217–222] et [R. Lyons et al., Ann. Probab. 23
(1995) 1125]. Nous utilisons également une nouvelle décomposition à partir d’un processus conditionné. De nouveaux résultats
sur la convergence des martingales sont obtenus, chemin faisant.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

A branching Brownian motion is constructed as follows. An initial ancestor begins its existence at the
origin of one-dimensional Euclidean space. This individual moves according to an independent copy of standard
Brownian motion B = {B(t): t ! 0} and produces a random number of offspring, 1 + X, after a time η which
is exponentially distributed with parameter β > 0. We shall assume that X has distribution {pk: k ! 0} such that
m := ∑

k!0 kpk < ∞. Starting from their point of creation on the path of their parent, each of these children moves
and reproduces according to an independent copy of the triple (B,η,X). Note that there is always at least one
offspring guaranteed and hence the process survives with probability one.
In this text we shall use the Ulam–Harris labelling notation such that an individual u is identified by its line of

decent from the initial ancestor. That is, if u = (∅, i1, . . . , in−1, in) then she is the inth child of the in−1th child of
. . . of the i1th child of the initial ancestor, ∅. Thus uv refers to the individual who, from u’s perspective, has line
of descent expressed as v. Let Zt be the point process describing the number and positions of individuals alive at
time t , {Ξu(t): u ∈ Nt } where Nt is the set of individuals alive at time t .
Let Ft = σ (Zs : s " t), P be the law of the branching Brownian motion as it is defined above and E be

expectation with respect to P . A natural P -martingale with respect to the filtration Ft that arises in branching
Brownian motion takes the form

Wt(λ) :=
∑

u∈Nt

e−λ(Ξu(t)+cλt )

for t and λ positive with cλ = λ/2 + βm/λ. See Chauvin [14], Kingman [30], Biggins [6] and Neveu [39] for
further details. From these references one can find the following theorem, or similar versions of it.

Theorem 1. Let λ := √
2βm so that cλ attains a local minimum and local maximum at ±λ. The limit W(λ) :=

limt↑∞ Wt(λ) exists P -almost surely and

(i) if |λ| > λ then W(λ) = 0 P -almost surely,
(ii) if |λ| = λ then W(λ) = 0 P -almost surely,
(iii) if |λ| ∈ [0,λ ) then W(λ) = 0 P -almost surely or W(λ) is an L1(P )-limit accordingly as E(X log+ X) = ∞

or E(X log+ X) < ∞.

Remark 2. In contrast to part (iii) above note that for the case of dyadic branching (binary splitting) with unit
branching rate, Neveu [39] establishes Lp(P ) convergence for p ∈ (1,2] provided that pλ2/2" 1.

It is also known that the negative derivative ofWt(λ),

∂Wt(λ) := − ∂

∂λ
Wt(λ) =

∑

u∈Nt

(
Ξu(t) + λt

)
e−λ(Ξu(t)+cλt ),

is a signed P -martingale with respect to Ft (it is also easy to check) which we shall refer to as the derivative
martingale. As far as the author is aware, the following theorem concerning this martingale strengthens existing
results for branchingBrownianmotion. The result shall appear as a by-product of subsequent analysis in this article.

Theorem 3. For all |λ| ! λ , ∂W(λ) := limt↑∞ ∂Wt(λ) exists P -almost surely. Further,

(i) if |λ| > λ then ∂W(λ) = 0 almost surely,
(ii) if |λ| = λ then ∂W(λ) = 0 when E(X(log+ X)2−δ) = ∞ for some δ > 0 or ∂W(λ) ∈ (0,∞) (respectively

∂W(λ) ∈ (−∞,0)) P -almost surely when λ > 0 (respectively λ < 0) and E(X(log+ X)2+δ) < ∞ for some
δ > 0.
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For the case of dyadic (binary splitting) branching Brownian motion, the result in part (ii) of this theorem was
proved for |λ| = λ by both Neveu [39] and Harris [26]; both using an application of solutions to a certain travelling
wave equation which we shall shortly describe.

Remark 4. The theorem above is lacking a statement for the regime |λ| ∈ [0,λ ). Unfortunately it seems difficult to
see how the methods used in this text may apply to this case. The point of failure of the current methods is pointed
out in the discussion following Theorem 9 in Section 4. Results in this regime are however available in [7,8] where
it is proved that under appropriate moment conditions ∂W(λ) exists as a limit almost surely and, for example, in
L1(P ) (as a consequence ofW(·) being analytic on a suitable domain).

Remark 5. The moment conditions in Theorem 3 have a ‘gap’ in the sense that it is not clear what happens when
for example E(X(log+ X)2) < ∞. A similar result to that of Theorem 3 was developed in [10] for the branching
random walk. In that case however, the moment conditions are much sharper than those given here although still
have a ‘gap’. In principle one could use the methods there to sharpen the moments given here.

Interest in the limit of these martingales is stimulated by its intimate connection with travelling wave solutions
to the Kolmogorov–Petrovskii–Piskounov equation

∂u

∂ t
= 1
2
∂2u

∂x2
+ β

(
f (u) − u

)
, (1)

where f (u) = E(sX+1), taking solutions u : R × R+ → [0,1]. This reaction–diffusion equation has been studied
by many authors, both probabilistically and analytically (see, for example, Kolmogorov et al. [31], Fisher [23],
Skorohod [43], McKean [38], Bramson [11,12], Neveu [39], Uchiyama [44], Aronson and Weinburger [1],
Karpelevich et al. [28] and Kelbert and Suhov [29] to name but a few).
Of particular interest however is the recent exposition of Harris [26] who, using probabilistic arguments alone,

gives an elegant derivation of the existence, uniqueness and asymptotics of travelling wave solutions to (1).
By a travelling wave solution it is meant a twice continuously differentiable, monotone increasing function
Φc :R → [0,1] such that Φc(−∞) = 0 = 1 − Φc(∞) with u(x, t) = Φc (x − ct) a solution to (1); c ∈ R is the
wave speed. Substituting into (1) shows that Φc solves the ordinary differential equation

1
2
Φ ′′

c + cΦ ′
c + β

(
f (Φc) −Φc

) = 0. (2)

In the sequel, when talking of (non-trivial) travelling waves, we shall always mean in the sense described above.
Otherwise, it is possible to talk of travelling waves which, for example, are not monotone and bounded in [0,1]; cf.
McKean [38] or Kolmogorov et al. [31]. We wish to exclude these travelling waves from this discussion. It is also
worth pointing out that Eq. (2) always admits the trivial solutions which are the functions that are identically 0 and
identically 1. Note also that if Φc(x) is a travelling wave with wave speed c then so is Φc(x + y) for any y ∈ R.
Uniqueness can thus in principle only be established up to a spatial shift.
We shall offer in this paper a proof of the existence, asymptotics and uniqueness of the above mentioned

travelling wave solutions to (1) using again purely probabilistic methods but none the less of a different flavour to
those of Harris [26]. Indeed we shall demonstrate the following results.

Kolmogorov–Petrovskii–Piskounov travelling waves.
Subcriticality. Travelling waves do not exist when |c| < c := √

2βm = λ.
Criticality.When |c| = c and E(X(log+ X)2+δ) < ∞ for some δ > 0 then (modulo an additive constant in the

argument) there is a unique travelling wave at speed c given by

Φc(x) = E
(
exp

{
−e−λx∂W(λ)

})
.
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Further this unique travelling wave has the asymptotic

1−Φc(x) ∼ const×xe−λx (3)

as x tends to infinity.
Supercriticality.When |c| > c andE(X log+ X) < ∞ then (modulo an additive constant in the argument) there

is a unique travelling wave at speed c given by

Φcλ(x) = E
(
exp

{−e−λxW(λ)
})

,

where |λ| ∈ [0,λ ) such that c = cλ. Further this unique travelling wave has the asymptotic

1−Φcλ(x) ∼ const×e−λx (4)

as x tends to infinity.

Remark 6. The summary above is of course not complete as one may still ask what happens at criticality when
E(X(log+ X)2+δ) = ∞ for all δ > 0 and at supercriticality when E(X log+ X) = ∞. In the latter case, Biggins and
Kyprianou [9] have shown that (for example) when m = E(X) < ∞ there exist Seneta–Heyde norming constants,
say {ct : t ! 0}, so that there exists a limit in probability of the sequence {ctWt (λ): t ! 0} whose Laplace transform
is a non-trivial travelling wave. It is then possible to construct arguments based on those of Biggins and Kyprianou
[9] to show that this non-trivial travelling wave is in fact unique and further has the same asymptotic as above.
The issue of existence at criticality in the case that E(X(log+ X)2+δ) = ∞ is somewhat less clear. It might be
conjectured that one could produce a Seneta–Heyde norming of the martingale W in this case whose limit will
provide existence of a travelling. Indeed embedded in the results of [5] is the existence of a Seneta–Heyde norming
sequence for an analogue of the martingaleW under an x logx moment condition and within the context of a special
class of branching random walk. In this case the limit again has Laplace transform which provides a solution to an
analogue of the travelling wave equation.

The main difference in the probabilistic approach that we use here when comparing with [26] is that we first
establish non-trivial martingale limitsW and ∂W fromwhich existence, uniqueness and asymptotics follow. Harris
relied on classical ‘single particle’ martingale representations of the travelling wave equation using the Feynman–
Kac formula to first achieve asymptotics. Once the asymptotics had been established Harris then applies them
together with simple probabilistic considerations to recover convergence of ∂W and uniqueness of the travelling
waves at critical and supercritical wave speeds. Note also that Harris [26] also only considers dyadic branching.
Here we appeal to ‘spine decompositions’ in order to prove martingale convergence, similar versions of which

have appeared in [36,35,22] for superprocesses. Note that in the latter reference the decomposition is known as
the ‘immortal particle picture’ and concerns processes which become extinct with probability one. The spine
decomposition given here is essentially the one given in [15, p. 306]. Other examples of spine decompositions
for a variety of branching particle processes can be found in [17,3,32,40]. For the critical case, we work with
a decomposition in which the spine has a conditioned behaviour. Part of the work here was inspired by and has
inspired methods in [10] for the branching randomwalk where the techniques work equally well. The methods used
here to deduce martingale convergence have also been used successfully in [20] for related martingales that appear
naturally for more general branchingMarkov diffusions. Consideration of martingale convergence and conditioned
spine decomposition there lead to probabilistic proofs of results concerning local extinction/survival properties.
The idea of a branching particle process being intimately linked to a certain class of travelling waves is not a

story that is unique to branching Brownian motion. Of the few other examples that can be seen in the literature, one
should consult [13,34] where a coupled system of reaction–diffusion equations are linked to a two type branching
diffusion and [24,25] where it can be seen that travelling waves to a diffusion equation with two spatial parameters
and a spatially dependent branching rate exists. For branching randomwalks, one has a functional equation in place
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of the travelling wave equation, see [6]. In contrast, the analogous relationship between superprocesses and certain
non-linear differential equations has received more attention; see, for example, the overviews in [21,33,19].
In what follows and for the remainder of the paper we shall deal only with the case that c ! 0 and λ ! 0

unless otherwise stated. Travelling waves with negative wave speeds can be analyzed by simple considerations of
symmetry.

2. Proof of Theorem 1 and existence of supercritical travelling waves

2.1. Spines

For future use we shall recall some standard Radon–Nikodym derivatives for measures we shall be interested
in. Let L(α) be the law of a Poisson process n = ({νi : i = 1, . . . , nt }: t ! 0) with rate α > 0 that is adapted to some
filtration {Gt : t ! 0}. Let L(α)

t be its restriction to Gt . We have

dL
(β(m+1))
t

dL
(β)
t

(n) = e−βmt(m + 1)nt (5)

for all t > 0. Define P−λ to be the law under which B is a Brownian motion with drift −λ, where λ ∈ R. Assume
that B is adapted to some filtration {Ht : t ! 0}. Let P−λ

t be its restriction to Ht so that

dP−λ
t

dPt
(B) = e−λB(t)−λ2t/2 (6)

for all t > 0 where P = P0. Finally let (p̃k: k ! 0) be the tilted distribution forX such that p̃k = (k +1)pk/(m+1)
for all k ! 0.
Now let (T ,F ,Ft , P ) be the filtered probability space in which the branching Brownian motion {Zt : t ! 0}

is defined. The symbol T denotes the space of Galton–Watson trees with nodes having marks in R+× C(R+,R)

(where C(R+,R) is the space of continuous maps from R+ to R) which are realizations of their life length and
spatial path whilst alive relative to their birth position and F may be taken as σ (T ).
To be more specific, let T be the space of Galton–Watson trees. A Galton–Watson tree τ ∈ T is a point in the

space of possible Ulam–Harris labels

Ω = ∅ ∪
⋃

n∈N+
(N)n

where N = {1,2,3, . . .} such that

(i) ∅ ∈ τ (the initial ancestor),
(ii) if u,v ∈Ω , the concatenation uv ∈ τ implies u ∈ τ ,
(iii) for all u ∈ τ , there exists Xu ∈ {0,1,2, . . .} so that when j ∈ N, uj ∈ τ if and only if 1" j " 1+ Xu.

Each individual u ∈ τ has mark (ηu,Bu) ∈ R+ × C(R+,R) where Bu = {Bu(s): s ∈ [0,ηu)} is the motion
of u relative to its birth position whilst alive and ηu is the life length of u at which point it undergoes fission.
With this notation we have that the moment of death of individual u can be written as νu = ∑

v"u ηv , the
moment of birth bu = ∑

v<u ηv (an empty sum is zero) and the position of u when alive at time t is given by
Ξu(t) = ∑

v<u Bv(ηv) + Bu(t − bu). In this way we may identify, for example, our earlier notation as

Nt = {u ∈ τ : bu " t < νu} and Zt(·) =
∑

u∈Nt

δΞu(t)(·)
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with δx as the usual unit point measure at x ∈ R.
We shall write (τ,B,η) as short hand for the marked Galton–Watson tree {(u,ηu,Bu): u ∈ τ } so that

T = {(τ,B,η): τ ∈ T}. The sigma-algebra Ft is generated by
{(

u,Xu,ηu,
{
Bu(s): s ∈ [0,ηu]

}
: u ∈ τ with νu " t

)
and

(
u,

{
Bu(s): s ∈ [0, t − bu]

}
: u ∈ τ with t ∈ [bu,νu)

)
: τ ∈ T.

}

The measure P corresponds to the unique law such that individuals live for independent exponential lengths of time
at the end of which they produce a number of offspring independently distributed like 1+X which are positioned at
the spatial point of death of their parent and whose motion whilst alive is that of an independent Brownian motion.
(A similar description of a branching Brownian motion to this has appeared for example in [15,16].) We shall use
Pt for the restriction of P to Ft .
For any τ ∈ T we can identify distinguished genealogical lines of descent from the initial ancestor each of which

shall be referred to as a spine. An identified spine will be written ξ = {ξ0 = ∅, ξ1, ξ2, . . .} where ξn ∈ τ is the label
of ξ ’s node in the nth generation. We shall write u ∈ ξ to mean that u = ξi for some i ! 0. Now let

T̃ = {
(τ,B,η, ξ): ξ ⊆ τ ∈ T

}

be the enriched space of marked trees in T with distinguished spine, ξ , let F̃ = σ (T̃ ) and
F̃t = σ

(
Ft ,

{
(ξ : u ∈ ξ): u ∈ Nt

})

the sigma-algebra generated by Ft and sets of spines which are characterized by their common genealogy up to
time t . We shall denote Ξ = {Ξ(t): t ! 0} the spatial path followed by a spine and write n = {nt : t ! 0} for
the counting process of points of fission along the spine. Both Ξ and n can be constructed from (τ,B,η, ξ).
Indeed, if a spine contains the node u ∈ Nt then in accordance with previous notation, Ξ(t) = Ξu(t), which is
ultimately recovered from the marks B . Further, nt = |u| and {νv: v < u} are the times of fission along the spine
until time t , all of which can be recovered from the marks η. Also at the fission time corresponding to node v
there are Xv independent new marked trees rooted at the space time point (Ξ(νv),νv) growing off the spine, say
{(τ,B,η)vj ∈ T : 1" j " Xv}.
We construct the non-probabilitymeasure P ∗

t on (T̃ , F̃t ) such that

dP ∗
t (τ,B,η, ξ) = dPt (Ξ) dL

(β)
t (n)

∏

v<ξnt

pXv

Xv∏

j=1
dPt−νv

(
(τ,B,η)vj

)

(empty products are taken as one). Note that pXv = ∑
k!0 pk1(Xv=k) is the probability that individual v has 1+Xv

offspring. For a given F̃t -measurable test function of the form

f (τ,B,η, ξ) =
∑

u∈Nt

fu(τ,B,η)1(u∈ξ )

where fu(τ,B,η) is Ft -measurable, we have the following decomposition
∫

T̃

f (τ,B,η, ξ) dP ∗
t (τ,B,η, ξ) =

∫

T̃

∑

u∈Nt

fu(τ,B,η)1(u∈ξ ) dP ∗
t (τ,B,η, ξ)

=
∫

T

∑

u∈Nt

fu(τ,B,η) dPt (τ,B,η). (7)

Note in particular then that the total mass of P ∗
t is given by

P ∗
t

(
T̃

) =
∫

T̃

∑

u∈Nt

1(u∈ξ ) dP ∗
t (τ,B,η, ξ) =

∫

T

|Nt |dPt(τ,B,η) = emβt (8)
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where |Nt | = Zt(R) is the cardinality of the set of individuals alive at time t . The last equality is well known for
Markov branching processes, see, for example, [2].
Consider also the bivariate measure π∗

t on (T̃ , F̃t ) given by

dπ∗
t (τ,B,η, ξ) = e−λ(Ξ(t)+cλt )dP ∗

t (τ,B,η, ξ)

= e−λΞ(t)−λ2t/2e−βmt(m + 1)nt
∏

v<ξnt

(
Xv + 1
m + 1

)
1

Xv + 1 dP ∗
t (τ,B,η, ξ)

= dP−λ
t (Ξ) dL

(β(m+1))
t (n)

∏

v<ξnt

(
Xv + 1
m + 1

)
pXv

1
Xv + 1

Xv∏

j=1
dPt−νv

(
(τ,B,η)vj

)
(9)

inducing a measure π∗ on (T̃ , F̃ ). Using (7) we can perform a similar calculation to (8) to check that π∗
t and

hence π∗ are probability measures;
∫

T̃

dπ∗
t (τ,B,η, ξ) =

∫

T̃

e−λ(Ξ(t)+cλt ) dP ∗
t (τ,B,η, ξ)

=
∫

T̃

∑

u∈Nt

e−λ(Ξu(t)+cλt )1(u∈ξ ) dP ∗
t (τ,B,η, ξ)

=
∫

T

Wt(λ) dPt (τ,B,η)

which equals one on account of Wt(λ) being a normalized martingale. Further, we can marginalize π∗
t to (T ,Ft )

giving a probability measure πt (t ! 0) which we claim satisfies
dπt

dPt
= Wt(λ) (10)

thus inducing a measure π on (T ,F). To see why this claim is true note that for any Ft -measurable test function
g(τ,B,η) we can argue again via the formula (7) in the following way;

∫

T

g(τ,B,η) dπt (τ,B,η) =
∫

T̃

g(τ,B,η) dπ∗
t (τ,B,η, ξ)

=
∫

T̃

g(τ,B,η)
∑

u∈Nt

1(u∈ξ ) dπ∗
t (τ,B,η, ξ)

=
∫

T̃

g(τ,B,η)
∑

u∈Nt

e−λ(Ξu(t)+cλt )1(u∈ξ ) dP ∗
t (τ,B,η, ξ)

=
∫

T

g(τ,B,η)Wt (λ) dPt (τ,B,η).

In view of the Radon–Nikodym derivatives outlined at the beginning of this section, the construction in (9)
shows that the process {Zt : t ! 0} under π corresponds to the law of a non-homogeneous branching motion with
distinguished and randomized spine having the following properties:

(i) the diffusion along the spine begins from the origin of space and time and moves according to a Brownian
motion with drift −λ,
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(ii) points of fission along the spine are independent of its motion and occur with accelerated rate (m + 1)β ,
(iii) the distribution of offspring numbers at each point of fission on the spine is independent of spinal motion and

times of reproduction and has tilted measure (p̃k: k ! 0),
(iv) the spine is chosen randomly so that at each fission point the next individual to represent the spine is chosen

with uniform probability from the offspring of the current representative,
(v) offspring of individuals on the spine which are not part of the spine initiate P -branching Brownian motions

at their space-time point of creation.

This decomposition was first established in [15].

2.2. Proof of Theorem 1

Using the change of measure (10) we can recover the known necessary and sufficient conditions on λ and X
that imply L1(P )-convergence ofWt(λ). Essential to the argument is the following fundamental measure theoretic
result (see, for example, [18, p. 242], [3]). LetW(λ) = limsupt↑∞ Wt(λ) so thatW(λ) = W(λ) P -a.s., then

W(λ) = ∞ π-a.s. ⇐⇒ W(λ) = 0 P -a.s. (11)

W(λ) < ∞ π-a.s. ⇐⇒
∫

W(λ) dP = 1. (12)

We proceed now with the proofs of the three parts of Theorem 1 in a similar manner to [35] and [36].
(i)–(ii) Suppose that λ ! λ. We have cλ " λ so that {Ξ(t) + cλt : t ! 0} is a π∗-Brownian motion with non-

positive drift. As
Wt(λ) ! exp

{
−λ

(
Ξ(t) + cλt

)}

it follows immediately thatW(λ) = ∞ π∗-a.s. and hence by (11),W(λ) = 0 P -a.s.
(iii) We begin the proof of this part by making some remarks on the finiteness of E(X log+ X). A sequence of

simple calculations shows that E(X log+ X) is (in)finite if and only if
∑

k!1
P̃r(logX > ck)

is (in)finite for any c > 0 where under P̃r, X has the tilted distribution {p̃k: k ! 0}. Thus if under P̃r, {Xn: n ! 0}
is a sequence of independent copies of X, then (by the Borel–Cantelli lemma)

lim sup
t↑∞

n−1 logXn =
{
0 if E(X log+ X) < ∞,

∞ if E(X log+ X) = ∞.

P̃r-almost surely.
Now suppose that λ ∈ [0,λ ) and E(X log+ X) = ∞. The motion along the spine {Ξ(t) + cλt : t ! 0} is a

π∗-Brownian motion with strictly positive drift. Let {νξi : i ! 0} be the times of fission along the spine ξ . Since
Wνξk

(λ) ! Xξk exp
{
−λ

(
Ξ(νξk ) + cλνξk

)}

the Strong Law of Large Numbers together with the behaviour of the sequences {Xξk : k ! 0} and {Ξ(t)+ cλt : t !
0} yields that W(λ) = ∞ π∗-a.s. and hence once again by (11),W(λ) = 0 P -a.s.
Finally suppose that λ ∈ [0,λ ) and E(X log+ X) < ∞. Define G to be the sigma-algebra generated by the

genealogy along the spine, the diffusion on the spine Ξ, the Poisson process representing the birth times along the
spine n and {Xξi : i ! 0}. A brief computation, based on the decomposition of Wt(λ) according to contributions
from descendents of individuals born along the spine, yields

Eπ∗
(
Wt(λ)|G

) =
nt∑

i=1
Xξi−1e

−λ(Ξ(νξi−1 )+cλνξi−1 ) + e−λ(Ξ(t)+cλt ). (13)
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Recall that within the specified regime of λ, {Ξ(t)+cλt : t ! 0} is a π∗-Brownian motionwith strictly positive drift.
(Note however that when λ= 0, the summands in (13) are simplyXξi−1e

−βmt .) The moment condition ensures that
extremes of the sequence of variables {Xξi : i ! 0} have sub-exponential behaviour. Consequently (again using the
Law of Large Numbers)

lim sup
t↑∞

Eπ∗
(
Wt(λ)|G

)
< ∞ π∗-a.s.

Fatou’s lemma now tells us that lim inft↑∞ Wt(λ) < ∞ π -a.s. In light of (10), Wt(λ)
−1 is a π -martingale with an

almost sure limit and thus by the previous sentence, limt↑∞ Wt(λ) < ∞ π -a.s. We thus conclude from (12) that for
λ ∈ [0,λ ) and E(X log+ X) < ∞,Wt(λ) converges P -almost surely and in L1(P ).

2.3. Existence at supercriticality

Existence at supercritical wave speeds in the regime cλ > c, λ ∈ [0,λ ) and E(X log+ X) < ∞ follows readily.
To see this it suffices to follow the reasoning of Harris [26] or Biggins and Kyprianou [9] as below.
We can easily make the decomposition for all t > s > 0,

Wt(λ)
d=

∑

u∈Ns

e−λ(Ξu(s)+cλs)Wt−s(λ, u), (14)

where Wt−s(λ, u) are independent copies of Wt−s(λ) for each u ∈ Ns . Letting t tend to infinity and taking an
exponentially rescaled Laplace transform of the resulting identity yields the functional equation

Φ(x) = E

[ ∏

u∈Ns

Φ
(
x +Ξu(s) + cλs

)]
(15)

for all s > 0, whereΦ(x) = E[exp{−e−λxW(λ)}]. It is known thatΦ solves the functional equation (15) if and only
if it solves the ODE (2) with wave speed cλ; see, for example, [38,13]. Existence of a non-trivial travelling wave
as we have defined it in the introduction would be established were it not for the fact that it is not clear whether
Φ(−∞) = 0 on account of the fact that we have not proved that p := P(W(λ) = 0) = 0. (Note monotonicity,
boundedness and the fact that Φ(∞) = 0 can all be trivially checked.) However by taking limits in (14), it is
clear from the distributional identity that follows that p must satisfy p = E(pZs(R)) for all s > 0. Thanks to the
Markov and branching property, it is easily confirmed that {pZt (R): t ! 0} is a martingale. Since p < 1, the limit
of this latter martingale will be zero, contradicting the Martingale Convergence theorem unless p = 0. The proof
of existence is now complete.

Remark 7. In this paper we do not offer new probabilistic non-existence of travelling waves for wave speeds less
than c. For completeness we quickly recall the martingale argument given in [26]. Let Lt = inf{Ξu(t): u ∈ Nt }.
A classic result for branching Brownian motion says that limt↑∞ Lt/t = c. It follows that limt↑∞ Lt + ct =
−∞ for all c < c. For any c < c, a non-trivial travelling wave Φc produces a P -martingale of the form∏

u∈Nt
Φc(Ξu(t)+ ct)which has an almost sure and L1(P ) limit (see, for example, [14]). However this martingale

is bounded above by Φc(Lt + ct) which tends to zero on account of the previous remark and that, per definition,
Φc(−∞) = 0. Thus we reach a contradiction leading to the conclusion that no (bounded) travelling wave exists.

3. Martingales on stopping lines, asymptotics and uniqueness at supercriticality

We remain in the regime cλ > c, λ ∈ [0,λ ) and E(X log+ X) < ∞. On the space-time half plane {(y, t): y ∈
R, t ∈ R+}, consider the barrier Γ (x,cλ) described by the line y + cλt = x for x > 0. By arresting lines of descent
the first time they hit this barrier we produce a random collection of individuals,C(x, cλ), which is a stopping line.
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That is to say they have the fundamental property of a general stopping line L that u ∈ L if and only if v /∈ L for
all v < u. What is important to note for our purposes are the following known facts.

(i) On account of the fact that W(λ ) = 0 it follows by looking at the largest summand of Wt(λ ) that
limt↑∞ Lt + ct = ∞ and hence limt↑∞ Lt + cλt = ∞ in the regime λ ∈ [0,λ ]. An elementary argument
by contradiction now shows that all lines of descent from the initial ancestor will hit Γ (x,cλ) with probability
one for all x > 0; in this sense we call the sequence {C(x, cλ): x ! 0} dissecting.

(ii) We have limx↑∞ inf{|u|: u ∈ C(x, cλ)} = ∞. This follows from the fact that the number of individuals in the
nth generation are almost surely finite, their life lengths are almost surely finite and hence the space-time point
of the right most extreme reached by any individual in the nth generation must also be almost surely finite.
This means that for each n, one can choose x sufficiently large so that inf{|u|: u ∈ C(x, cλ)} > n. In this sense
we say that the sequence {C(x, cλ): x ! 0} is tending to infinity as x tends to infinity.

(iii) The cardinality process {|C(x, cλ)|: x ! 0} forms a (supercritical) continuous time branching process (x plays
the role of time). This result is due to Neveu [39]. The observation follows from the StrongMarkov Branching
Property, found, for example, in [14]. For our purposes, the Strong Markov Branching Property says that if
{σu: u ∈ C(x, cλ)} are the times at which individuals in C(x, cλ) meet the barrier hit Γ (x,cλ) and FC(x,cλ)

(x ! 0) is the natural filtration generated by ancestral and spatial paths receding from individuals at the
moment that they hit Γ (x,cλ) then givenFC(x,cλ) each of the trees relative to and rooted at the space time points{(

Ξu(σu),σu

) ∈ R × R+: u ∈ C(x, cλ)
}

are independent copies of the original branching process.

For further information on general stopping lines and properties, one should consult [14,27]. It should also be
mentioned that for superdiffusions and branching Markov diffusions similar constructions to the one above are
known as exit measures; see [19].
From the afore mentioned references, it is known that when λ ∈ [0,λ ) and z > 0 and Φcλ is any travelling wave

at speed cλ,

Mx(z, cλ) :=
∏

u∈C(x,cλ)

Φcλ

(
z +Ξu(σu) + cλσu

)
=Φcλ(z + x)|C(x,cλ)| (16)

is a P -martingale with respect to {FC(x,cλ): x ! 0} having expectation Φcλ(z) that converges almost surely and in
mean (due to boundedness). It follows that

lim
x↑∞

−
∣∣C(x, cλ)

∣∣ logΦcλ(x)

exists and the limit is strictly positive with positive probability.
Define for x > 0

WC(x,cλ)(λ) =
∑

u∈C(x,cλ)

e−λ(Ξu(σu)+cλσu) = e−λx∣∣C(x, cλ)
∣∣.

Theorem 8. The sequence {WC(x,cλ)(λ): x ! 0} is a P -martingale with respect to filtration {FC(x,cλ): x ! 0} that
converges almost surely and in L1(P ) to W(λ) when |λ| ∈ [0,λ ) and E(X log+ X) < ∞.

Proof. Let

Ct(x, cλ) = {
u ∈ C(x, cλ): σu " t

}
(17)

be the set of individuals who reached C(x, cλ) up to time t and

At

(
C(x, cλ)

)
=

{
u ∈ Nt : v /∈ Ct (x, cλ) ∀v " u

}
(18)
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be the set of particles in Nt whose ancestral lines have not yet met C(x, cλ) and define

Wt∧C(x,cλ)(λ) =
∑

u∈At (C(x,cλ))

e−λ(Ξu(t)+cλt ) + e−λx∣∣Ct (x, cλ)
∣∣.

By decomposing members of Nt in accordance with their ancestors (if at all) in Ct (x, cλ), much as in (14), a
straightforward calculation shows that

E
(
Wt(λ)|FC(x,cλ)

) = Wt∧C(x,cλ)(λ).

As C(x, cλ) is a dissecting stopping line,

lim
t↑∞

∣∣At

(
C(x, cλ)

)∣∣ = 0 and lim
t↑∞

∣∣C(x, cλ)\Ct (x, cλ)
∣∣ = 0 a.s.

When λ ∈ [0,λ ) and E(X log+ X) < ∞, Wt(λ) has an L1(P ) limit equal to W(λ) and hence E(Wt(λ)|FC(x,cλ))
has an L1(P ) limit equal to E(W(λ)|FC(x,cλ)). With the previous remarks we now have

lim
t↑∞

E
(
Wt(λ)|FC(x,cλ)

) = E
(
W(λ)|FC(x,cλ)

) = WC(x,cλ)(λ) (19)

almost surely showing thatWC(x,cλ)(λ) is an FC(x,cλ)-martingale.
As the sequence C(x, cλ) is tending to infinity, then limx↑∞ At(C(x, cλ)) = Nt and limx↑∞ |Ct(x, cλ)| = 0

almost surely. Taking the limit in (19) with respect to x instead thus gives us,

E
(
Wt(λ)|F∞

)
= Wt(λ)

for all t > 0 where F∞ = σ (
⋃

x!0FC(x,cλ)). This implies that Wt(λ) is F∞-measurable for each t > 0 and thus
so is its limit W(λ). In conclusion limx↑∞ WC(x,cλ)(λ) = W(λ). The theorem is proved. !

The theorem also confirms that λ is the Malthusian parameter of the branching process {|C(x, cλ)|: x ! 0}.

3.1. Asymptotics and uniqueness at supercriticality

Assume now the conditions of Theorem 8. Since we have shown that W(λ) strictly positive with positive
probability, we now have two sequences of (Seneta–Heyde) norming constants for the branching process
{|C(x, cλ)|: x ! 0}. Consequently, these two norming sequences must be asymptotically equivalent on the event
{W(λ) > 0}. That is to say,

lim
x↑∞

− logΦcλ(x)

e−λx = lim
x↑∞

1−Φcλ(x)

e−λx = k

where the second equality follows since Φcλ(∞) = 1 and k is a positive constant. We have thus constructed
an alternative proof of the asymptotic (4). Uniqueness (up to a multiplicative constant in the argument) is now
immediate since

Φcλ(z) = E
(
lim
x↑∞

Mx(z, cλ)
)

= E

(
lim
x↑∞

exp
{
−e−λ(z+x)

∣∣C(x, cλ)
∣∣− logΦcλ(z + x)

e−λ(z+x)

})

= E
(
exp

{
−ke−λzW(λ)

})
.

4. Branching Brownian motion with a barrier

Define the space-time barrier

Γ (−x,λ) :=
{
(y, t) ∈ R × R+: y + λt = −x

}
.



64 A.E. Kyprianou / Ann. I. H. Poincaré – PR 40 (2004) 53–72

Suppose for each t > 0 in the branching Brownian motion we define a subset of Nt , say Ñt , consisting of all
individuals alive at time t having ancestry (including themselves) whose spatial paths have not met Γ (−x,λ) by
time t . The surviving individuals and their spatial paths up to and including the moment they meet the barrier
Γ (−x,λ) we refer to as branching Brownian motion with a barrier. It is the ‘branching process generalization’ of a
single Brownian motion killed at Γ (−x,λ).
Define

V x
t (λ) =

∑

u∈Ñt

x +Ξu(t) + λt

x
e−λ(Ξu(t)+cλt ).

Theorem 9. The sequence {V x
t (λ): t ! 0} is a mean 1 P -martingale with respect to {Ft : t ! 0} for all λ ∈ R.

Proof. Using notation and concepts from Section 3 consider the stopping line

L(t) =
{
u ∈ C(−x,λ): σu " t

}
∪ Ñt .

Let FL(t) be the natural filtration generated by the ancestral and spatial paths receding from individuals at the
moment they enter L(t). A straightforward computation using the Strong Markov Branching Property shows that
for all 0" s " t

E
(
∂Wt(λ) + xWt(λ)|FL(t)

)
= xV x

t (λ)

thus showing that E(V x
t (λ)) = 1 for all x, t ! 0. Using again the Strong Markov Branching Property, we have for

0" s " t ,

E
(
V x

t (λ)|Fs

) =
∑

u∈Ñs

x +Ξu(s) + λs

x
e−λ(Ξu(s)+cλs)E

(
V

(x+Ξu(s)+λs)
t−s (λ, u)|Fs

)
,

where V
(·)
t−s(λ, u) are independent copies of V (·)

t−s(λ). Since EV x
t (λ) = 1 for all x, t > 0 the proof is complete. !

The following corollary shows why this martingale has significance with respect to establishing the convergence
of the derivative martingale.

Corollary 10. Suppose that λ ! λ. Then ∂W(λ) = limt↑∞ ∂Wt(λ) exists almost surely in [0,∞). Further,
P(∂W(λ) = 0) = 0 or 1.

Proof. Note that V x
t (λ) is always positive and therefore has a limit almost surely. Further, we can identify xV x

t (λ)
as contributing to the positive part of the martingale ∂Wt(λ) + xWt (λ) and thus serves as an approximation to
it. In fact, on the event (which we shall call γ (−x,λ)) that the branching Brownian motion remains entirely to
the right of Γ (−x,λ), the truncated process and the original process are the same. It follows that on γ (−x,λ) the
limt↑∞ ∂Wt(λ) + xWt(λ) exists and equals limt↑∞ xV x

t (λ) ! 0. Since for λ! λ the martingale limit W(λ) ≡ 0 it
follows that on γ (−x,λ) we have

lim
t↑∞

xV x
t (λ) = lim

t↑∞
∂Wt(λ). (20)

Recall that limt↑∞ Lt + ct = ∞ and hence inft!0{Lt + λt} > −∞ almost surely for all λ! λ. Consequently

P
(
γ (−x,λ)

)
= P

(
inf
t!0

{Lt + λt} > −x
)

↑ 1 as x ↑ ∞. (21)

Thus we have established the existence of an almost sure limit for the derivative martingale with all its mass in
[0,∞). Note also from (20) that when λ ! λ, ∂Wt(λ) cannot converge in mean even when it converges almost
surely.
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The following argument, modified from [26], shows that in fact in this regime of λ, ∂W(λ) = limt↑∞ ∂Wt(λ)

is either strictly positive or zero with probability one. Let q = P(∂W(λ ) = 0). It is very easy if not a little messy
(see, for example, [26]) to decompose ∂Wt(λ ) into contributions derived from the population at time s ∈ (0, t) as
was done in (14). We have

∂Wt(λ )
d=

∑

u∈Ns

e−λ(Ξu(s)+λs)∂Wt−s(λ, u) +
∑

u∈Ns

(
Ξu(s) + λs

)
e−λ(Ξu(s)+λs)Wt−s (λ, u), (22)

where, for each u ∈ Ns , ∂Wt−s(λ, u) and Wt−s(λ, u) are independent copies of ∂Wt−s(λ ) and Wt−s (λ )

respectively. Using obvious notation, as t tends to infinity we thus recover the identity

∂W(λ )
d=

∑

u∈Ns

e−λ(Ξu(s)+λs)∂W(λ, u) (23)

which holds for all s > 0. It is immediate from this decomposition that

q = E
(
qZt(R)

)
.

By the Markov property, it follows that {qZt(R): t ! 0} is a positive bounded martingale. Unless q = 1 this
martingale will tend to zero and then its L1(P ) convergence forces q = 0. !

Remark 11. The idea of the approximation in the proof of the above corollary stems from a similar construction
used in [26] where the martingale ∂Wt(λ) + xWt(λ) is stopped at the first time the left most particle hits the space
time barrier Γ (−x,λ). Effectively we have replaced Harris’ use of stopping times by stopping lines.

Remark 12. In the previous discussion it is quite important that λ ! λ. When 0 < λ < λ, similar calculations to
those found in Remark 7 show that P(γ (−x,λ)) = 0 for all x > 0. The consequence of this is that xV x

t (λ) no longer
serves its purpose as a good approximation to ∂Wt(λ).

It is now clear that the positivity of ∂W(λ) can be established from the positivity of the limit of V x
t (λ). This

becomes the purpose of the next three sections.

5. Brownian motion and Bessel-3 processes

Let us now quote some results that show the intimate relationship between Brownian motion and Bessel-3
processes that will be of use later in this paper. Our main references are [37,45,41,4].
Recall it was assumed that with respect to the law P, B = {Bt : t ! 0} is a standard Brownian motion started

at 0 and if {Ht : t ! 0} is a filtration with respect to which B is adapted then write Pt for the restriction of P toHt .
Define

ρλ(x + B) = inf{t > 0: x + Bt + λt = 0},
the first time that B meets the barrier

Γ (−x,λ) :=
{
(y, t) ∈ R × R+: y + λt = −x

}
.

Now say Q(−x,λ) is the law under which the process {x + Bt + λt: t ! 0} is a standard Bessel-3 process started at
x > 0 and write

Λ
(−x,λ)
t (B) = x + Bt + λt

x
e−λ(Bt+λt/2)1(ρλ(x+B)>t).
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It can be easily checked from the fact thatQ(−x,0) is also the law of a Brownian motion started at 0 and conditioned
not to enter the half-line (−∞,−x] together with the Cameron–Martin–Girsanov theorem that

dQ
(−x,λ)
t

dPt
(B) =Λ

(−x,λ)
t (B). (24)

IndeedQ(−x,λ) is also the law of a Brownian motion started at 0 and conditioned not to meet the space-time barrier
Γ (−x,λ).

6. Change of measure inducing a conditioned spine

Having now seen that the density Λ(−x,λ)
t (B) can be used to condition a Brownian motion not to hit the space

time barrier Γ (−x,λ) (thus producing a Bessel-3 process with drift) it is natural to ask what the effect on the
branching Brownian motion is when using V x

t (λ) as a change of measure.
Using the same notation and conventions as in Section 2 consider now a new probability measureΠ∗

t on (T̃ , F̃t )

such that

dΠ∗
t (τ,B,η, ξ) = e−βmtΛ

(−x,λ)
t (Ξ) dP ∗

t (τ,B,η, ξ) =Λ
(−x,λ)
t (Ξ)e−βmt (m + 1)nt

×
∏

v<ξnt

(
Xv + 1
m + 1

)
1

Xv + 1dP ∗
t (τ,B,η, ξ)

= dQ
(−x,λ)
t (Ξ) dL

(β(m+1))
t (n)

∏

v<ξnt

(
Xv + 1
m + 1

)
pXv

1
Xv + 1

Xv∏

j=1
dPt−νv

(
(τ,B,η)vj

)

thus inducing a probability measure Π∗ on (T̃ , F̃). The fact that Π∗
t is a probability measure can again be

confirmed with the help of (7). Further, with calculations much along the lines of those in Section 2.1 one can
check by marginalizingΠ∗

t to (T ,Ft ) we find again a probability measure Πt satisfying

dΠt

dPt
= V x

t (λ) (25)

which in turn induces a measure on (T ,F) which we shall call Π . The effect of this change of measure on
{Zt : t ! 0} corresponds to the law of a non-homogeneous branching process with distinguished and randomized
spine having the following properties:

(i) the diffusion along the spine is such that {x +Ξ(t) + λt: t ! 0} is a Bessel-3 process on (0,∞) started at x
(that is to say the diffusion along the spine, Ξ , moves away from the barrier Γ (−x,λ) as a Bessel-3 processes
and therefore never meets it),

(ii) the points of fission along the spine form a Poisson process with accelerated rate (m + 1)β ,
(iii) the distribution of offspring numbers at each point of fission on the spine has tilted measure (p̃k = (k +

1)pk/(m + 1): k ! 0),
(iv) the spine is chosen randomly so that at each fission point, the next individual to represent the spine is chosen

with uniform probability from the offspring of the current representative,
(v) individuals which do not carry the spine evolve as P -branching Brownian motions.
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7. Proof of Theorem 3

Again pursuing the same line as Lyons [35] and Lyons et al. [36] we define for any x > 0, V x(λ) =
lim supt↑∞ V x

t (λ) (which is also equal to limt↑∞ V x
t (λ) P -a.s.) and check whether this limit has any P -mass

away from zero by using again the fundamental measure theoretic result

V x(λ) = ∞Π-a.s. ⇐⇒ V x(λ) = 0 P -a.s. (26)

V x(λ) < ∞Π-a.s. ⇐⇒
∫

V x(λ) dP = 1. (27)

Theorem 13. For x > 0, the almost sure limit V x(λ) has the following properties

(i) If λ> λ then V x(λ) = 0 P -a.s.
(ii) If λ = λ then V x(λ) = 0 P -a.s. or is an L1(P )-limit accordingly as E(X(log+ X)2−δ) = ∞ or

E(X(log+ X)2+δ) < ∞ for some δ > 0.
(iii) If λ ∈ [0,λ ) then V x(λ) = 0 P -a.s. or is an L1(P )-limit accordingly asE(X log+ X) = ∞ or E(X log+ X) <

∞.

Remark 14. Now note the proof of Theorem 3 is a direct result of parts (i)–(ii) of the above theorem and
Corollary 10.

Before proceeding to the proof of Theorem 13 we need to note a few things about the behaviour of Bessel-3
processes and also the asymptotics of a sequence {Xn: n ! 0} of independent copies ofX representing the numbers
of offspring of along the spine at each point of fission.
Firstly, from Theorem 3.2 of [42] it is easy to show that for any ε > 0, the path of a Bessel-3 process becomes

bounded by the curves t1/2+ε and t1/2−ε for all sufficiently large times Q(−x,0)-almost surely. Secondly a simple
calculation shows that when q > 0 E(X(log+ X)q) is (in)finite if and only if

∑

n!1
P̃r

(
logX > cn1/q

)

is (in)finite for any c > 0 where again P̃r is the probability measure under which X has distribution (p̃k: k ! 0).
Consequently, by the Borel–Cantelli lemma,

limsup
n↑∞

n−1/q logXn

is (infinite) zero according whether the given moment is (in)finite.

Proof of Theorem 13. (i) Suppose that λ> λ. By construction we have the lower bound

V x
t (λ) ! x +Ξ(t) + λt

x
e−λ(Ξ(t)+cλt ). (28)

Recall that under Π∗, {x +Ξ(t) + λt}t>0 is a Bessel-3 process on (0,∞) started at x . It is known (cf. Theorem
3.2 of [42]) that this process eventually grows no faster than t1/2+ε for any ε > 0 and since for λ > λ, cλ < λ it
becomes clear from (28) that V x(λ) = ∞Π -almost surely and hence V x(λ) is identically zero P -almost surely by
(26).
(ii) Now suppose that λ= λ (so that cλ = c = λ ) and E(X(log+ X)2−δ) = ∞ for some δ > 0. Without loss of

generality we can assume that δ is small. We have the lower bound

V x
νξk

(λ ) ! Xξk

x +Ξ(νξk ) + λνξk
x

e−λ(Ξ(νξk )+λνξk ) (29)
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where ξ is the spine. By the law of large numbers, νk ∼ [β(m + 1)]−1k. We deduce that (x + Ξ(νξk ) + λνξk )

eventually grows no faster than O(k1/2+ε) for any ε > 0. Hence by choosing ε sufficiently small, (29) shows that
with the given moment condition, the term Xξk dominates the behaviour of the Bessel-3 process and V x(λ ) = ∞
Π -almost surely. Thus the result follows as before.
Suppose now that λ= λ (so that cλ = c = λ ) and E(X(log+ X)2+δ) < ∞ for some δ > 0. Let G be the sigma-

algebra generated by the diffusion of the spine ξ , the Poisson process n representing the times of reproduction and
{Xnt : t ! 0}. We have

EΠ∗
(
V x

t (λ )|G
)
=

nt∑

i=1
Xξi−1

x +Ξ(νξi−1) + λνξi−1
x

e−λ(Ξ(νξi−1 )+λνξi−1 )

+ x +Ξ(t) + λt

x
e−λ(Ξ(t)+λt ).

Taking advantage of the fact that a Bessel-3 process eventually grows no slower than t1/2−ε for any ε > 0, the
law of large numbers applied to n and the sequence (νi : i ! 1) plus the given moment condition implies that

lim sup
t↑∞

EΠ∗
(
V x

t (λ )|G)
< ∞ Π∗-a.s.

Fatou’s lemma implies that lim inft↑∞ V x
t (λ ) is also finiteΠ∗-almost surely. The Radon–Nikodym derivative (25)

tells us that V x
t (λ )−1 is Π -martingale and therefore has a limit Π -almost surely. It follows now that

lim supt↑∞ V x
t (λ ) = lim inft↑∞ V x

t (λ ) < ∞ Π -almost surely. From (27) we thus conclude that V x(λ ) is an
L1(P ) limit.
(iii) Let λ ∈ [0,λ ) and E(X log+ X) = ∞. Note now that cλ > λ. We have

V x
νξk

(λ) ! Xξk

x +Ξ(νξk ) + λνξk
x

e−λ(Ξ(νξk )+λνk)e−λ(cλ−λ)νξk .

Following similar reasoning to parts (i) and (ii) it can be seen that the leading order in the exponent can be
compensated by the term Xξk to show again that V x(λ) = ∞ Π -almost surely.
When λ ∈ [0,λ ) and E(X log+ X) < ∞ we can make again the familiar decomposition

EΠ∗
(
V x

t (λ)|G
)
=

nt∑

i=1
Xξi−1

x +Ξ(νξi−1) + λνξi−1
x

e−λ(Ξ(νξi−1 )+λνi )e−λ(cλ−λ)νξi−1

+ x +Ξ(t) + λt

x
e−λ(Ξ(t)+λt )e−λ(cλ−λ)t

and similar reasoning to part (ii) completes the proof. !

8. Existence, asymptotics and uniqueness at criticality

We are now ready to show existence and uniqueness of travelling wave solutions to the K-P-P equation at
the critical wave speed. To this end we assume that E(X(log+ X)2+δ) < ∞ for some δ > 0. Now that we are in
possession of the strictly positive limit ∂W(λ ) we can use similar martingale tricks to those used in Sections 2 and
3 to finish up.
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8.1. Existence at criticality

The identity (23) given in the proof of Corollary 10 can be also expressed in terms of Laplace transforms. That
is to say, if Φ(x) := E(exp{−e−λx∂W(λ )}), then Φ satisfies the functional equation

Φ(x) = E

[ ∏

u∈Ns

Φ
(
x +Ξu(s) + λs

)]
(30)

for all s > 0. Once again we appeal to the fact thatΦ solves the functional equation (30) if and only if is also solves
the travelling wave equation (2); cf. [38,13]. Boundedness, monotonicity and the limits of Φ at ±∞ are all easily
verified as before. Hence we have shown existence.

8.2. Asymptotics at criticality

Consider the barrier Γ (z,λ ) where z > 0. By arresting lines of decent the first time they hit this barrier we
again produce a sequence of stopping lines {C(z,λ ): z ! 0} which are dissecting and tending to infinity (refer to
Section 3). Now let {σu: u ∈ C(z,λ )} be the times at which individuals meet the barrier Γ (z,λ ). From [14,39], it is
known that for any travelling wave at the critical speed, Φc ,

∏

u∈C(z,λ )

Φc

(
Ξu(σu) + λσu

) =Φc(z)
|C(z,λ )|

is a martingale with a limit almost surely and in L1(P ) with mean Φc(0).
Suppose we turn our attention to the branching Brownian motion with a killing barrier at Γ (−x,λ ) (recall

Section 4). Define C̃(z,λ ) as the set of individuals in the process with killing at Γ (−x,λ ) that are stopped at the
barrier Γ (z,λ ) for z > 0. For the sake of clarity we remark that C̃(z,λ ) consists of particles whose lines of descent
(including themselves) have spatial paths that have met the barrier Γ (z,λ ) before meeting the barrier Γ (−x,λ ).
Recall that on the event γ (−x,λ ) the branching Brownian motion and the branching Brownian motion with the
barrier Γ (−x,λ ) are one and the same (γ (−x,λ ) corresponds to the event that no particle ever meets Γ (−x,λ )). Thus
we can say that

lim
z↑∞

−
∣∣C̃(z,λ )

∣∣ logΦc(z) (31)

exists almost surely and is in [0,∞) on γ (−x,λ ) because of the same statement being true for limz↑∞ −|C(z,λ )|×
logΦc(z). Further we claim that this limit is non-trivial in the sense that for all sufficiently large x > 0,
limz↑∞ −|C̃(z,λ )| logΦc(z) is valued in (0,∞) with positive probability on γ (−x,λ ). To see this, suppose that
the contrary were true. This is equivalent to supposing that the limz↑∞Φc(z)

|C(z,λ )| = 1 on γ (−x,λ ) for all x > 0;
that is to say that the given limit is equal to one everywhere except on {Lt + λt → −∞} which, as we have
seen in Section 4, is a P -null set. This provides us with a contradiction since otherwise we are forced by L1(P )-
martingale convergence to conclude that Φc(0) = 1 and hence by monotonicity of Φc and the fact that Φc(· + y)

is still a travelling wave for any y ∈ R it would follow that Φc ≡ 1. It therefore follows that (31) is strictly positive
with positive probability on γ (−x,λ ) for some and hence all sufficiently large x > 0.
Our goal now is to look for another normalization of the sequence {|C̃(z,λ )|: z ! 0} which will supply us with

the required asymptotic. To this end consider the process

V x
C̃(z,λ ) :=

∑

u∈C̃(z,λ )

x +Ξu(σu) + λσu

x
e−λ(Ξu(σu)+λσu) = x + z

x
e−λz∣∣C̃(z,λ )

∣∣.

Using ideas similar to those in the proof of Theorem 8 we can prove the following theorem.
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Theorem 15. Let {FC̃(z,λ ) : z ! 0} be the natural filtration describing everything in the truncated branching tree up
to the barrier Γ (z,λ ). If for some δ > 0, E(X(log+ X)2+δ) < ∞ then sequence V x

C̃(z,λ ) is an FC̃(z,λ ) martingale that
converges almost surely and in mean to V x(λ ) (defined in the previous section).

Proof. For t > 0, let

C̃
(z,λ )
t =

{
u ∈ C̃(z,λ ): σu " t

}

and
At

(
C̃(z,λ )

)
=

{
u ∈ Ñt : v /∈ C̃

(z,λ )
t ∀v " u

}

and define

V x
t∧C̃(z,λ ) =

∑

u∈At (C̃(z,λ ))

x +Ξu(t) + λt

x
e−λ(Ξu(t)+λt ) + (x + z)

x
e−λz∣∣C̃(z,λ )

t

∣∣.

By decomposing members of Ñt in accordance with their ancestors (if at all) in C̃(z,λ ), it is a straightforward
calculation, similar to (14), to show that

E
(
V x

t (λ )|FC̃(z,λ )

) = V x
t∧C̃(z,λ ) . (32)

Since C̃(z,λ ) is a dissecting stopping line tending to infinity, limt↑∞ |At(C̃
(z,λ ))| = 0 and limt↑∞ C̃

(z,λ )
t = C̃(z,λ ).

From the proof of Theorem 3, V x
t (λ ) converges in mean to V x(λ ) as t tends to infinity we thus have

lim
t↑∞

E
(
V x

t (λ )|FC̃(z,λ )

)
= E

(
V x(λ )|FC̃(z,λ )

)
= V x

C̃(z,λ ) .

The tower property of conditional expectation thus shows that V x
C̃(z,λ ) is an FC̃(z,λ ) -martingale. Taking the

limit in (32) with respect to z instead gives us similarly E(V x
t (λ )|F∞) = V x

t (λ ) for all t > 0 where now
F∞ = σ (

⋃
z!0FC̃(z,λ ) ). This implies that V x

λ is F∞-measurable and hence V x
C̃(z,λ ) has limit V x(λ ) as z tends

to infinity. !

We can now prove the asymptotic we are after. Recall that for some δ > 0, E(X(log+ X)2+δ) < ∞. We have
for each x > 0,

lim
z↑∞

− logΦc(z)

ze−λz = lim
z↑∞

(x + z)

xz

−|C̃(z,λ )| logΦλ(z)
x−1(x + z)e−λz|C̃(z,λ )|

where the (non-stochastic) limit on the left hand side exists because it exists on the right hand side (at least on
{V x(λ ) > 0} which is positive with positive probability). Note that this also implies that the limit on the right-hand
side must also be a constant in [0,∞). This limiting constant may also be zero since limz↑∞ −|C̃(z,λ )| logΦλ(z)
may also be zero valued. On the other hand, since this statement is valid for all x > 0, and for x sufficiently large we
know that limz↑∞ −|C̃(z,λ )| logΦλ(z) is positive with positive probability on γ (−x,λ ), we are forced to conclude
that

lim
z↑∞

− logΦc(z)

ze−λz = c

for some constant c ∈ (0,∞) and hence since Φλ(∞) = 1 the asymptotic (3) is proved.

8.3. Uniqueness at criticality

The argument we now offer for uniqueness is essentially the same as in [26]. Solutions to (30) can also be used
to construct L1(P )-convergent multiplicative martingales of the form

Mt(x) :=
∏

u∈Nt

Φc

(
x +Ξu(t) + λt

)
for t > 0.
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Using the asymptotic behaviour of Φc, since Lt + λt → ∞ a.s., we have that

− logMt(x) ∼
∑

u∈Nt

− logΦc

(
x +Ξu(t) + λt

)
∼

∑

u∈Nt

[
1−Φc

(
x +Ξu(t) + λt

)]

∼ k
∑

u∈Nt

(
x +Ξu(t) + λt

)
e−λ(x+Ξu(t)+λt ) = ke−λx(∂Wt(λ ) + xWt(λ )

)

as t tends to infinity where is a constant. Thus any solution to (2) at criticality must satisfy

Φc(x) = E
[
lim
t↑∞

Mt(x)
]

= E
(
exp

{
−ke−λx∂W(λ )

})

(sinceW(λ ) = 0 almost surely) and therefore uniquenesses (modulo an additive constant in the argument) follows.
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