Yaglom limits for general non-local Branching Markov processes

Based on papers with:
Isaac Gonzalez (University of Bath)
Emma Horton (INRIA, Bordeaux)
Simon Harris (University of Auckland)
Minmin Wang (University of Sussex)

(Manchester edition)

MAD-CHESTER

MATHS TOWER

Classical Bienaymè-Galton-Watson Yaglom limit

- $\left(Z_{n}, n \geq 0\right)$ is a BGW process i.e.

$$
Z_{n+1}=\sum_{i=1}^{Z_{n}} A_{i}, \quad A_{i} \sim^{\text {iid }} A \quad \text { (copies of family offspring numbers) }
$$

- Assume $\mathbb{E}\left[A^{2}\right]<\infty$ and define $\sigma^{2}=\mathbb{E}\left[A^{2}\right]-\mathbb{E}[A]^{2}$.
- Assume criticality $\mathbb{E}[A]=1$, recalling that $\zeta=\inf \left\{n>0: Z_{n}=0\right\}$ is almost surely finite.
- Kolmogorov limit:

$$
\lim _{n \rightarrow \infty} n \mathbb{P}(\zeta>n)=\frac{2}{\sigma^{2}}
$$

- Yaglom limit:

$$
\mathbb{E}\left[\left.\exp \left(-\theta \frac{Z_{n}}{n}\right) \right\rvert\, \zeta>n\right]=\frac{1}{1+\theta \sigma^{2} / 2}
$$

i.e. the QSD limit of Z_{n} / n conditional on survival is exponential with parameter $2 / \sigma^{2}$.

(P, G)-Branching Markov Process

- Particles will live in E a Lusin space (e.g. a Polish space would be enough)
- Let $\mathrm{P}=\left(\mathrm{P}_{t}, t \geq 0\right)$ be a semigroup on E.
- Write $B^{+}(E)$ for non-negative bounded measurable functions on E
- Particles evolve independently according to a P-Markov process.
- In an event which we refer to as 'branching', particles positioned at x die at rate $\beta \in B^{+}(E)$ and instantaneously, new particles are created in E according to a point process.
- The configurations of these offspring are described by the random counting measure

$$
\mathcal{Z}(A)=\sum_{i=1}^{N} \delta_{x_{i}}(A)
$$

with probabilities \mathcal{P}_{x}, where $x \in E$ is the position of death of the parent.

- Without loss of generality we can assume that $\mathcal{P}_{x}(N=1)=0$. On the other hand, we do allow for the possibility that $\mathcal{P}_{x}(N=0)>0$ for some or all $x \in E$.
- Henceforth we refer to this spatial branching process as a (P, G)-branching Markov process.

(P, G)-Branching Markov Process

- Define the so-called branching mechanism

$$
\mathrm{G}[f](x):=\beta(x) \mathcal{E}_{x}\left[\prod_{i=1}^{N} f\left(x_{i}\right)-f(x)\right], \quad x \in E,
$$

where we recall $f \in B_{1}^{+}(E):=\left\{f \in B^{+}(E): \sup _{x \in E} f(x) \leq 1\right\}$.

- Configuration of particles at time t is denoted by $\left\{x_{1}(t), \ldots, x_{N_{t}}(t)\right\}$ and, on the event that the process has not become extinct or exploded,

$$
X_{t}(\cdot)=\sum_{i=1}^{N_{t}} \delta_{x_{i}(t)}(\cdot), \quad t \geq 0
$$

is Markovian in $N(E)$, the space of integer atomic measures.

- Its probabilities will be denoted $\mathbb{P}:=\left(\mathbb{P}_{\mu}, \mu \in N(E)\right)$.
- Define,

$$
\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[\prod_{i=1}^{N_{t}} f\left(x_{i}(t)\right)\right], \quad f \in B_{1}^{+}(E), t \geq 0
$$

- Non-linear evolution semigroup

$$
\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}[f](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) \mathrm{d} s, \quad t \geq 0 .
$$

k-TH MOMENT

- Our main results concern understanding the growth of the k-th moment functional in time

$$
\mathrm{T}_{t}^{(k)}[f](x):=\mathbb{E}_{\delta_{x}}\left[\left\langle f, X_{t}\right\rangle^{k}\right], \quad x \in E, f \in B^{+}(E), k \geq 1, t \geq 0 .
$$

- Notational convenience: Write T_{t} in place of $\mathrm{T}_{t}^{(1)}$
- Related historical work: A number of papers have opened the topic of moments for branching particle systems and superprocesses, including e.g. :
- E. Dumonteil and A. Mazzolo. Residence times of branching diffusion processes.

Phys. Rev. E, 94:012131, 2016.

- J. Fleischman. Limiting distributions for branching random fields.

Trans. Amer. Math. Soc., 239:353-389, 1978.

- I. Iscoe. On the supports of measure-valued critical branching Brownian motion.

Ann. Probab., 16(1):200-221, 1988.

- A. Klenke. Multiple scale analysis of clusters in spatial branching models.

Ann. Probab., 25(4):1670-1711, 1997.

- Our objective: to show that for $k \geq 2$ and any positive bounded measurable function f on E,

$$
\lim _{t \rightarrow \infty} g_{k}(t) \mathbb{E}_{\delta_{x}}\left[\left\langle f, X_{t}\right\rangle^{k}\right]=C_{k}(x, f)
$$

where the constant $C_{k}(x, f)$ can be identified explicitly.

- We need two fundamental assumptions.

Assumption (H1): Asmussen-HERing Class

There exists an eigenvalue $\lambda \in \mathbb{R}$ and a corresponding right eigenfunction $\varphi \in B^{+}(E)$ and finite left eigenmeasure $\tilde{\varphi}$ such that, for $f \in B^{+}(E)$,

$$
\left\langle\mathrm{T}_{t}[\varphi], \mu\right\rangle=\mathrm{e}^{\lambda t}\langle\varphi, \mu\rangle \text { and }\left\langle\mathrm{T}_{t}[f], \tilde{\varphi}\right\rangle=\mathrm{e}^{\lambda t}\langle f, \tilde{\varphi}\rangle,
$$

for all $\mu \in N(E)$ if (X, \mathbb{P}) is a branching Markov process (resp. a superprocess). Further let us define

$$
\Delta_{t}=\sup _{x \in E,\|f \mid\| \leq 1}\left|\varphi(x)^{-1} \mathrm{e}^{-\lambda t} \mathrm{~T}_{t}[f](x)-\langle\tilde{\varphi}, f\rangle\right|, \quad t \geq 0 .
$$

We suppose that

$$
\sup _{t \geq 0} \Delta_{t}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}=0
$$

NOTE: This assumption allows us to talk about criticality of the (P, G)-BMP:

$$
\lambda=0 \text { (critical) } \mid \lambda>0 \text { (supercritical) } \mid \lambda<0 \text { (subcritical) }
$$

Who lives in the Asmussen-Hering class?

- Branching Brownian Motion in a bounded domain
- Neutron Branching process in a Bounded domain
- Multi-type (cts-time) Bienaymé-Galton-Watson process

ASSUMPTION (H2) k

$$
\sup _{x \in E} \mathcal{E}_{x}\left(\langle 1, \mathcal{Z}\rangle^{k}\right)<\infty
$$

Theorem: The critical case $(\lambda=0)$

Suppose that (H1) holds along with (H2) ${ }_{k}$ for some $k \geq 2$ and $\lambda=0$. Define

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E,||f|| \leq 1}\left|t^{-(\ell-1)} \varphi(x)^{-1} \mathrm{~T}_{t}^{(\ell)}[f](x)-2^{-(\ell-1)} \ell!\langle f, \tilde{\varphi}\rangle^{\ell}\langle\mathbb{V}[\varphi], \tilde{\varphi}\rangle^{\ell-1}\right|,
$$

where

$$
\mathbb{V}[\varphi](x)=\beta(x) \mathcal{E}_{x}\left(\langle\varphi, \mathcal{Z}\rangle^{2}-\left\langle\varphi^{2}, \mathcal{Z}\right\rangle\right) .
$$

Then, for all $\ell \leq k$

$$
\sup _{t \geq 0} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

In short, subject to (H1) at criticality and $(\mathrm{H} 2)_{k}$, we have, for $f \in B_{1}^{+}(E)$,

$$
\lim _{t \rightarrow \infty} t^{-(k-1)} \mathbb{E}_{\delta_{x}}\left[\left\langle f, X_{t}\right\rangle^{k}\right]=2^{-(k-1)} k!\langle f, \tilde{\varphi}\rangle^{k}\langle\mathbb{V}[\varphi], \tilde{\varphi}\rangle^{k-1} \varphi(x)
$$

"At criticality the k-th moment scales like $t^{k-1 "}$

IDEAS FROM THE PROOF

- The obvious starting point:

$$
\mathrm{T}_{t}^{(k)}[f](x)=\left.(-1)^{k} \frac{\partial^{k}}{\partial \theta^{k}} \mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta\left\langle f, X_{t}\right\rangle}\right]\right|_{\theta=0}
$$

- Recall that

$$
\mathrm{v}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[\prod_{i=1}^{N_{t}} f\left(x_{i}(t)\right)\right], \quad f \in B_{1}^{+}(E), t \geq 0
$$

- Non-linear evolution semigroup

$$
\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}[f](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) \mathrm{d} s, \quad t \geq 0
$$

- Hence

$$
\mathrm{v}_{t}\left[\mathrm{e}^{-\theta f}\right](x)=\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\theta\left\langle f, X_{t}\right\rangle}\right]
$$

- We need a new representation of the non-linear semigroup $\left(\mathrm{v}_{t}, t \geq 0\right)$ which connects us to the assumption (H1).

LINEAR TO NON-LINEAR SEMIGROUP

- Recall

$$
\mathrm{T}_{t}[f](x)=\mathrm{T}_{t}^{(1)}[f](x)=\mathbb{E}_{\delta_{x}}\left[\left\langle f, X_{t}\right\rangle\right], \quad t \geq 0, f \in B_{1}^{+}(E), x \in E .
$$

- For $f \in B^{+}(E)$, it is well known that the mean semigroup evolution satisfies

$$
\begin{equation*}
\mathrm{T}_{t}[f](x)=\mathrm{P}_{t}[f]+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{FT}_{t-s}[f]\right](x) \mathrm{d} s \quad t \geq 0, x \in E, \tag{1}
\end{equation*}
$$

where

$$
\mathrm{F}[f](x)=\beta(x) \mathcal{E}_{x}\left[\sum_{i=1}^{N} f\left(x_{i}\right)-f(x)\right], \quad x \in E .
$$

Linear To non-Linear SEMIGROUP

We now define a variant of the non-linear evolution semigroup equation

$$
\mathrm{u}_{t}[f](x)=\mathbb{E}_{\delta_{x}}\left[1-\prod_{i=1}^{N_{t}} f\left(x_{i}(t)\right)\right], \quad t \geq 0, x \in E, f \in B_{1}^{+}(E) .
$$

For $f \in B_{1}^{+}(E)$, define

$$
\mathbb{A}[f](x)=\beta(x) \mathcal{E}_{x}\left[\prod_{i=1}^{N}\left(1-f\left(x_{i}\right)\right)-1+\sum_{i=1}^{N} f\left(x_{i}\right)\right], \quad x \in E .
$$

$\mathrm{v}_{t}[f](x)=\hat{\mathrm{P}}_{t}[f](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f]\right]\right](x) \mathrm{d} s$ and $\mathrm{T}_{t}[f](x)=\mathrm{P}_{t}[f]+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{FT}_{t-s}[f]\right](x) \mathrm{d} s$ gives us.....

Lemma

For all $g \in B_{1}^{+}(E), x \in E$ and $t \geq 0$, the non-linear semigroup $u_{t}[g](x)$ satisfies

$$
\mathrm{u}_{t}[g](x)=\mathrm{T}_{t}[1-g](x)-\int_{0}^{t} \mathrm{~T}_{s}\left[\mathrm{~A}\left[\mathrm{u}_{t-s}[g]\right]\right](x) \mathrm{d} s
$$

NONLINEAR TO K-TH MOMENT EVOLUTION EQUATION

In terms of our new semigroup equation:

$$
\mathrm{T}_{t}^{(k)}[f](x)=\left.(-1)^{k+1} \frac{\partial^{k}}{\partial \theta^{k}} \mathrm{u}_{t}\left[\mathrm{e}^{-\theta f}\right](x)\right|_{\theta=0}
$$

Theorem

Fix $k \geq$ 2. Assuming (H1) and (H2) ${ }_{k}$, with the additional assumption that

$$
\begin{equation*}
\sup _{x \in E, s \leq t} \mathrm{~T}_{s}^{(\ell)}[f](x)<\infty, \quad \ell \leq k-1, f \in B^{+}(E), t \geq 0 \tag{2}
\end{equation*}
$$

it holds that

$$
\begin{equation*}
\mathrm{T}_{t}^{(k)}[f](x)=\mathrm{T}_{t}\left[f^{k}\right](x)+\int_{0}^{t} \mathrm{~T}_{s}\left[\beta \eta_{t-s}^{(k-1)}[f]\right](x) \mathrm{d} s, \quad t \geq 0 \tag{3}
\end{equation*}
$$

where

$$
\eta_{t-s}^{(k-1)}[f](x)=\mathcal{E}_{x}\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k}^{2}}\binom{k}{k_{1}, \ldots, k_{N}} \prod_{j=1}^{N} \mathrm{~T}_{t-s}^{\left(k_{j}\right)}[f]\left(x_{j}\right)\right]
$$

and $\left[k_{1}, \ldots, k_{N}\right]_{k}^{2}$ is the set of all non-negative N-tuples $\left(k_{1}, \ldots, k_{N}\right)$ such that $\sum_{i=1}^{N} k_{i}=k$ and at least two of the k_{i} are strictly positive.

INDUCTION: $k \mapsto k+1$

- Suppose the result is true for the first k moments.
- Recall $\mathrm{T}_{t}[f](x) \rightarrow\langle f, \tilde{\varphi}\rangle \varphi(x)$ so that, for $k \geq 2$,

$$
\lim _{t \rightarrow \infty} t^{-k} \mathrm{~T}_{t}\left[f^{k+1}\right](x) \rightarrow 0
$$

- Hence:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} t^{-k} \mathrm{~T}_{t}^{(k+1)}[f](x) \\
& =\lim _{t \rightarrow \infty} t^{-k} \int_{0}^{t} \mathrm{~T}_{s}\left[\mathcal{E} .\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \prod_{j=1}^{N} \mathrm{~T}_{t-s}^{\left(k_{j}\right)}[f]\left(x_{j}\right)\right]\right](x) \mathrm{d} s \\
& =\lim _{t \rightarrow \infty} t^{-(k-1)} \int_{0}^{1} \mathrm{~T}_{u t}\left[\mathcal{E} \cdot\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \prod_{j=1}^{N} \mathrm{~T}_{t(1-u)}^{\left(k_{j}\right)}[f]\left(x_{j}\right)\right]\right](x) \mathrm{d} u
\end{aligned}
$$

$$
=\lim _{t \rightarrow \infty} \int_{0}^{1} \mathrm{~T}_{u t}\left[\mathcal{E} .\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \frac{(t(1-u))^{k+1-\#\left\{j: k_{j}>0\right\}}}{t^{k-1}} \prod_{j=1}^{N} \frac{\mathrm{~T}_{t(1-u)}^{\left(k_{j}\right)}[f]\left(x_{j}\right)}{(t(1-u))^{k_{j}-1}}\right]\right](x) \mathrm{d} u
$$

RoUGH OUTLINE OF THE INDUCTION: $k \mapsto k+1$

- From the last slide:
$\lim _{t \rightarrow \infty} t^{-k} \mathrm{~T}_{t}^{(k+1)}[f](x)$
$=\lim _{t \rightarrow \infty} \int_{0}^{1} \mathrm{~T}_{u t}\left[\mathcal{E} .\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \frac{(t(1-u))^{k+1-\#\left\{j: k_{j}>0\right\}}}{t^{k-1}} \prod_{j=1}^{N} \frac{\mathrm{~T}_{t(1-u)}^{\left(k_{j}\right)}[f]\left(x_{j}\right)}{(t(1-u))^{k_{j}-1}}\right]\right](x) \mathrm{d} u$
- Largest terms in blue correspond to those summands for which $\#\left\{j: k_{j}>0\right\}=2$
- The induction hypothesis plus $\sum_{i=1}^{N} k_{j}=k+1$ ensures that the product term is asymptotically a constant
- The simple identity

$$
\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k+1}^{2}}\binom{k+1}{k_{1}, \ldots, k_{N}} \leq N^{k+1}
$$

shows us where the need for the hypothesis (H2) comes in.

- We need an ergodic limit theorem that reads (roughly): If

$$
F(x, u):=\lim _{t \rightarrow \infty} F(x, u, t), \quad x \in E, u \in[0,1],
$$

"uniformly" for $(u, x) \in[0,1] \times E$, then

$$
\lim _{t \rightarrow \infty} \int_{0}^{1} \mathrm{~T}_{u t}[F(\cdot, u, t)](x) \mathrm{d} u=\int_{0}^{1}\langle\tilde{\varphi}, F(\cdot, u)\rangle \mathrm{d} u
$$

"uniformly" for $x \in E$.

What about the occupation measure?

- Let us define the running occupation of the branching particle system via

$$
\int_{0}^{t} X_{s}(\cdot) \mathrm{d} s, \quad t \geq 0
$$

- What can we say about its moments?

$$
\mathrm{M}_{t}^{(k)}[g](x):=\mathbb{E}_{\delta_{x}}\left[\left(\int_{0}^{t}\left\langle g, X_{s}\right\rangle \mathrm{d} s\right)^{k}\right], \quad x \in E, g \in B^{+}(E), k \geq 1, t \geq 0
$$

- We know that the pair

$$
\left(X_{t}, \int_{0}^{t} X_{s} \mathrm{~d} s\right)
$$

is Markovian and that its semigroup

$$
\mathrm{v}_{t}[f, g]=\mathbb{E}_{\delta_{x}}\left[\mathrm{e}^{-\left\langle f, X_{t}\right\rangle-\int_{0}^{t}\left\langle g, X_{s}\right\rangle \mathrm{d} s}\right], \quad t \geq 0, x \in E, f, g \in B^{+}(E)
$$

solves

$$
\mathrm{v}_{t}[f, g](x)=\hat{\mathrm{P}}_{t}\left[\mathrm{e}^{-f}\right](x)+\int_{0}^{t} \mathrm{P}_{s}\left[\mathrm{G}\left[\mathrm{v}_{t-s}[f, g]\right)-g \mathrm{v}_{t-s}[f, g]\right](x) \mathrm{d} s
$$

Playing the same game as before

Define a variant of the non-linear evolution equation associated with $\left(X_{t}, \int_{0}^{s} X_{s} \mathrm{~d} s\right)$ via

$$
\mathrm{u}_{t}[f, g](x)=\mathbb{E}_{\delta_{x}}\left[1-\mathrm{e}^{-\left\langle f, X_{t}\right\rangle-\int_{0}^{t}\left\langle g, X_{s}\right\rangle \mathrm{d} s}\right], \quad t \geq 0, x \in E,\|f\|<\infty,\|g\|<\infty
$$

For $f \in B_{1}^{+}(E)$, define

$$
\mathbb{A}[f](x)=\beta(x) \mathcal{E}_{x}\left[\prod_{i=1}^{N}\left(1-f\left(x_{i}\right)\right)-1+\sum_{i=1}^{N} f\left(x_{i}\right)\right], \quad x \in E .
$$

A re-arrangement of the joint semigroup of $\left(X_{t}, \int_{0}^{t} X_{s} \mathrm{~d} s\right)$ is captured by:

Lemma

For all $f, g \in B^{+}(E), x \in E$ and $t \geq 0$, the non-linear semigroup $u_{t}[f, g](x)$ satisfies

$$
\mathrm{u}_{t}[f, g](x)=\mathrm{T}_{t}\left[1-\mathrm{e}^{-f}\right](x)-\int_{0}^{t} \mathrm{~T}_{s}\left[\mathrm{~A}\left[\mathrm{u}_{t-s}[f, g]\right]-g\left(1-\mathrm{u}_{t-s}[f, g]\right)\right](x) \mathrm{d} s
$$

Theorem: CRitical case $(\lambda=0)$

Suppose that (H1) holds along with (H2) for $k \geq 2$ and $\lambda=0$. Define

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E,\|g\| \leq 1}\left|t^{-(2 \ell-1)} \varphi(x)^{-1} \mathrm{M}_{t}^{(\ell)}[g](x)-2^{-(\ell-1)} \ell!\langle g, \tilde{\varphi}\rangle^{\ell}\langle\mathbb{V}[\varphi], \tilde{\varphi}\rangle^{\ell-1} L_{\ell}\right|,
$$

where $L_{1}=1$ and L_{k} is defined through the recursion $L_{k}=\left(\sum_{i=1}^{k-1} L_{i} L_{k-i}\right) /(2 k-1)$. Then, for all $\ell \leq k$

$$
\sup _{t \geq 0} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

YAGLOM LIMITS

Theorem

Suppose that

- (H1) holds (mean-semigroup ergodicity),
- the number of offspring is uniformly bounded by a constant $N_{\max }$,
- for all t sufficiently large

$$
\sup _{x \in E} \mathbb{P}_{\delta_{x}}(t<\zeta)<1
$$

- there exists a constant $C>0$ such that for all $g \in B^{+}(E)$,

$$
\langle\tilde{\varphi}, \beta \mathbb{V}[g]\rangle \geq \mathrm{C}\langle\tilde{\varphi}, g\rangle^{2}, \quad \text { where } \quad \mathbb{V}[g](x)=\beta(x) \mathcal{E}_{x}\left[\langle g, \mathcal{Z}\rangle^{2}-\left\langle g^{2}, \mathcal{Z}\right\rangle\right]
$$

Then

$$
\begin{aligned}
\lim _{t \rightarrow \infty} t \mathbb{P}_{\delta_{x}}(\zeta>t) & =\frac{2 \varphi(x)}{\langle\tilde{\varphi}, \beta \mathbb{V}[g]\rangle}, \\
\lim _{t \rightarrow \infty} \mathbb{E}_{\delta_{x}}\left[\left.\left(\frac{\left\langle f, X_{t}\right\rangle}{t}\right)^{k} \right\rvert\, \zeta>t\right] & =k!\langle f, \tilde{\varphi}\rangle^{k}\left(\frac{\langle\tilde{\varphi}, \beta \mathbb{V}[g]\rangle}{2}\right)^{k}
\end{aligned}
$$

and hence

$$
\operatorname{Law}\left(\left.\frac{\left\langle f, X_{t}\right\rangle}{t} \right\rvert\, \zeta>t\right) \rightarrow \exp \left(\frac{2}{\langle\tilde{\varphi}, \beta \mathbb{V}[g]\rangle\langle f, \tilde{\varphi}\rangle}\right)
$$

Thank you!

In case you asked the question about non-criticality

Theorem: Supercritical $(\lambda>0)$

Suppose that (H1) holds along with $(\mathrm{H} 2)_{k}$ for some $k \geq 2$ and $\lambda>0$. Redefine

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E,||f|| \leq 1}\left|\varphi(x)^{-1} \mathrm{e}^{-\ell \lambda t_{\mathrm{T}}}{ }_{t}^{(\ell)}[f](x)-\ell!\langle f, \tilde{\varphi}\rangle^{\ell} L_{\ell}(x)\right|
$$

where $L_{1}(x)=1$ and we define iteratively for $k \geq 2$,

$$
L_{k}(x)=\int_{0}^{\infty} \mathrm{e}^{-\lambda_{*} k s} \varphi(x)^{-1} \psi_{s}\left[\gamma \mathcal{E} \cdot\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k}^{2}} \prod_{\substack{j=1 \\ j: k_{j}>0}}^{N} \varphi\left(x_{j}\right) L_{k_{j}}\left(x_{j}\right)\right]\right](x) \mathrm{d} s
$$

Then, for all $\ell \leq k$

$$
\sup _{t \geq 0} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

"At subcriticality the k-th moment scales like $\mathrm{e}^{\lambda k t}$ (i.e. the first moment to the power k)"

THEOREM: SUBCRITICAL $(\lambda<0)$

Suppose that (H1) holds along with (H2) for some $k \geq 2$ and $\lambda<0$. Redefine

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E,\|f\| \leq 1}\left|\varphi(x)^{-1} \mathrm{e}^{-\lambda t} \mathrm{~T}_{t}^{(\ell)}[f](x)-L_{\ell}\right|
$$

where we define iteratively $L_{1}=\langle f, \tilde{\varphi}\rangle$ and for $k \geq 2$,

$$
L_{k}=\tilde{\varphi}\left[f^{k}\right]+\int_{0}^{\infty} \mathrm{e}^{-\lambda_{*} s} \tilde{\varphi}\left[\gamma \mathcal{E} \cdot\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k}^{2}}\binom{k}{k_{1}, \ldots, k_{N}} \prod_{\substack{j=1 \\ j: k_{j}>0}}^{N} \psi_{s}^{\left(k_{j}\right)}[f]\left(x_{j}\right)\right]\right] \mathrm{d} s .
$$

Then, for all $\ell \leq k$

$$
\sup _{t \geq 0} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

"At subcriticality the k-th moment scales like $\mathrm{e}^{\lambda t}$ (i.e. like the first moment)"

THEOREM: SUPERCRITICAL CASE $(\lambda>0)$

Suppose that (H1) holds along with (H2) for some $k \geq 2$ and $\lambda>0$. Redefine

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E,\|g\| \leq 1}\left|\varphi(x)^{-1} \mathrm{e}^{-\ell \lambda t} \mathrm{M}_{t}^{(\ell)}[g](x)-\ell!\langle g, \tilde{\varphi}\rangle^{\ell} L_{\ell}(x)\right|,
$$

where $L_{1}=1 / \lambda$ and for $k \geq 2$ we define iteratively,

$$
L_{k}(x)=\int_{0}^{\infty} \mathrm{e}^{-\lambda_{*} k s} \varphi(x)^{-1} \psi_{s}\left[\gamma \mathcal{E} \cdot\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k_{2}^{2}}} \prod_{j: k_{j}>0}^{N} \varphi\left(x_{j}\right) L_{k_{j}}\left(x_{j}\right)\right]\right](x) \mathrm{d} s
$$

Then, for all $\ell \leq k$

$$
\sup _{t \geq 0} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

THEOREM: Subcritical case $(\lambda<0)$

Suppose that (H1) holds along with (H2) for some $k \geq 2$ and $\lambda<0$. Redefine

$$
\Delta_{t}^{(\ell)}=\sup _{x \in E,\|g\| \leq 1}\left|\varphi(x)^{-1} \mathrm{M}_{t}^{(\ell)}[g](x)-\ell!\langle g, \tilde{\varphi}\rangle^{\ell} L_{\ell}(x)\right|,
$$

where $\|g\|<\infty, L_{1}=1 /|\lambda|$ and for $k \geq 2$, the constants L_{k} are defined recursively via

$$
\begin{gathered}
L_{k}(x)=\int_{0}^{\infty} \varphi(x)^{-1} \psi_{s}\left[\gamma \mathcal{E} .\left[\sum_{\left[k_{1}, \ldots, k_{N}\right]_{k}^{2}}\binom{k}{k_{1}, \ldots, k_{N}} \prod_{\substack{j=1 \\
j: k_{j}>0}}^{N} \varphi\left(x_{j}\right) L_{k_{j}}\left(x_{j}\right)\right]\right](x) \mathrm{d} s \\
-k \int_{0}^{\infty} \varphi(x)^{-1} \psi_{s}\left[g \varphi L_{k-1}\right](x) \mathrm{d} s .
\end{gathered}
$$

Then, for all $\ell \leq k$

$$
\sup _{t \geq 0} \Delta_{t}^{(\ell)}<\infty \text { and } \lim _{t \rightarrow \infty} \Delta_{t}^{(\ell)}=0
$$

