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CLASSICAL BIENAYMÈ-GALTON-WATSON YAGLOM LIMIT

• (Zn, n ≥ 0) is a BGW process i.e.

Zn+1 =

Zn∑
i=1

Ai, Ai ∼iid A (copies of family offspring numbers)

• Assume E[A2] <∞ and define σ2 = E[A2]− E[A]2.

• Assume criticality E[A] = 1, recalling that ζ = inf{n > 0 : Zn = 0} is almost
surely finite.

• Kolmogorov limit:

lim
n→∞

nP(ζ > n) =
2
σ2
.

• Yaglom limit:

E
[

exp

(
−θ

Zn

n

)∣∣∣∣ ζ > n
]

=
1

1 + θσ2/2
,

i.e. the QSD limit of Zn/n conditional on survival is exponential with parameter
2/σ2.
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(P,G)-BRANCHING MARKOV PROCESS

• Particles will live in E a Lusin space (e.g. a Polish space would be enough)

• Let P = (Pt, t ≥ 0) be a semigroup on E.

• Write B+(E) for non-negative bounded measurable functions on E

• Particles evolve independently according to a P-Markov process.

• In an event which we refer to as ‘branching’, particles positioned at x die at rate
β ∈ B+(E) and instantaneously, new particles are created in E according to a point
process.

• The configurations of these offspring are described by the random counting
measure

Z(A) =
N∑

i=1

δxi (A),

with probabilities Px, where x ∈ E is the position of death of the parent.

• Without loss of generality we can assume that Px(N = 1) = 0. On the other hand,
we do allow for the possibility that Px(N = 0) > 0 for some or all x ∈ E.

• Henceforth we refer to this spatial branching process as a (P,G)-branching
Markov process.
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(P,G)-BRANCHING MARKOV PROCESS
• Define the so-called branching mechanism

G[f ](x) := β(x)Ex

[ N∏
i=1

f (xi)− f (x)

]
, x ∈ E,

where we recall f ∈ B+
1 (E) := {f ∈ B+(E) : supx∈E f (x) ≤ 1}.

• Configuration of particles at time t is denoted by {x1(t), . . . , xNt (t)} and, on the
event that the process has not become extinct or exploded,

Xt(·) =

Nt∑
i=1

δxi(t)(·), t ≥ 0.

is Markovian in N(E), the space of integer atomic measures.
• Its probabilities will be denoted P := (Pµ, µ ∈ N(E)).
• Define,

vt[f ](x) = Eδx

 Nt∏
i=1

f (xi(t))

 , f ∈ B+
1 (E), t ≥ 0.

• Non-linear evolution semigroup

vt[f ](x) = P̂t[f ](x) +

∫ t

0
Ps [G[vt−s[f ]]] (x)ds, t ≥ 0.
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k-TH MOMENT

• Our main results concern understanding the growth of the k-th moment
functional in time

T
(k)
t [f ](x) := Eδx [〈f ,Xt〉k], x ∈ E, f ∈ B+(E), k ≥ 1, t ≥ 0.

• Notational convenience: Write Tt in place of T(1)
t

• Related historical work: A number of papers have opened the topic of moments
for branching particle systems and superprocesses, including e.g. :

◦ E. Dumonteil and A. Mazzolo. Residence times of branching diffusion processes.
Phys. Rev. E, 94:012131, 2016.

◦ J. Fleischman. Limiting distributions for branching random fields.
Trans. Amer. Math. Soc., 239:353–389, 1978.

◦ I. Iscoe. On the supports of measure-valued critical branching Brownian motion.
Ann. Probab., 16(1):200–221, 1988.

◦ A. Klenke. Multiple scale analysis of clusters in spatial branching models.

Ann. Probab., 25(4):1670–1711, 1997.

• Our objective: to show that for k ≥ 2 and any positive bounded measurable
function f on E,

lim
t→∞

gk(t)Eδx [〈f ,Xt〉k] = Ck(x, f )

where the constant Ck(x, f ) can be identified explicitly.

• We need two fundamental assumptions.



8/ 27

ASSUMPTION (H1): ASMUSSEN-HERING CLASS

There exists an eigenvalue λ ∈ R and a corresponding right eigenfunction ϕ ∈ B+(E)
and finite left eigenmeasure ϕ̃ such that, for f ∈ B+(E),

〈Tt[ϕ], µ〉 = eλt〈ϕ, µ〉 and 〈Tt[f ], ϕ̃〉 = eλt〈f , ϕ̃〉,

for all µ ∈ N(E) if (X,P) is a branching Markov process (resp. a superprocess). Further
let us define

∆t = sup
x∈E,||f ||≤1

|ϕ(x)−1e−λtTt[f ](x)− 〈ϕ̃, f 〉|, t ≥ 0.

We suppose that
sup
t≥0

∆t <∞ and lim
t→∞

∆t = 0.

NOTE: This assumption allows us to talk about criticality of the (P,G)-BMP:

λ = 0 (critical) |λ > 0 (supercritical) |λ < 0 (subcritical)
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WHO LIVES IN THE ASMUSSEN-HERING CLASS?

• Branching Brownian Motion in a bounded domain

• Neutron Branching process in a Bounded domain

• Multi-type (cts-time) Bienaymé-Galton-Watson process

(ri(t), υi(t))

(r
(i)
j (s), υ

(i)
j (s))

D
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ASSUMPTION (H2)k

sup
x∈E
Ex(〈1,Z〉k) <∞.
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THEOREM: THE CRITICAL CASE (λ = 0)

Suppose that (H1) holds along with (H2)k for some k ≥ 2 and λ = 0. Define

∆
(`)
t = sup

x∈E,||f ||≤1

∣∣∣t−(`−1)ϕ(x)−1T
(`)
t [f ](x)− 2−(`−1)`! 〈f , ϕ̃〉`〈V[ϕ], ϕ̃〉`−1

∣∣∣ ,
where

V[ϕ](x) = β(x)Ex

(
〈ϕ,Z〉2 − 〈ϕ2,Z〉

)
.

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

In short, subject to (H1) at criticality and (H2)k, we have, for f ∈ B+
1 (E),

lim
t→∞

t−(k−1)Eδx

[
〈f ,Xt〉k

]
= 2−(k−1)k! 〈f , ϕ̃〉k〈V[ϕ], ϕ̃〉k−1ϕ(x)

"At criticality the k-th moment scales like tk−1"
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IDEAS FROM THE PROOF

• The obvious starting point:

T
(k)
t [f ](x) = (−1)k ∂

k

∂θk Eδx [e−θ〈f ,Xt〉]

∣∣∣∣∣
θ=0

• Recall that

vt[f ](x) = Eδx

 Nt∏
i=1

f (xi(t))

 , f ∈ B+
1 (E), t ≥ 0.

• Non-linear evolution semigroup

vt[f ](x) = P̂t[f ](x) +

∫ t

0
Ps [G[vt−s[f ]]] (x)ds, t ≥ 0.

• Hence
vt[e−θf ](x) = Eδx [e−θ〈f ,Xt〉]

• We need a new representation of the non-linear semigroup (vt, t ≥ 0) which
connects us to the assumption (H1).
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LINEAR TO NON-LINEAR SEMIGROUP

• Recall

Tt[f ](x) = T
(1)
t [f ](x) = Eδx [〈f ,Xt〉], t ≥ 0, f ∈ B+

1 (E), x ∈ E.

• For f ∈ B+(E), it is well known that the mean semigroup evolution satisfies

Tt[f ](x) = Pt[f ] +

∫ t

0
Ps [FTt−s[f ]] (x)ds t ≥ 0, x ∈ E, (1)

where

F[f ](x) = β(x)Ex

[ N∑
i=1

f (xi)− f (x)

]
, x ∈ E.
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LINEAR TO NON-LINEAR SEMIGROUP
We now define a variant of the non-linear evolution semigroup equation

ut[f ](x) = Eδx

1−
Nt∏

i=1

f (xi(t))

 , t ≥ 0, x ∈ E, f ∈ B+
1 (E).

For f ∈ B+
1 (E), define

A[f ](x) = β(x)Ex

[ N∏
i=1

(1− f (xi))− 1 +
N∑

i=1

f (xi)

]
, x ∈ E.

vt[f ](x) = P̂t[f ](x)+

∫ t

0
Ps [G[vt−s[f ]]] (x)ds and Tt[f ](x) = Pt[f ]+

∫ t

0
Ps [FTt−s[f ]] (x)ds

gives us.....

Lemma
For all g ∈ B+

1 (E), x ∈ E and t ≥ 0, the non-linear semigroup ut[g](x) satisfies

ut[g](x) = Tt[1− g](x)−
∫ t

0
Ts [A[ut−s[g]]] (x)ds.
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NONLINEAR TO K-TH MOMENT EVOLUTION EQUATION
In terms of our new semigroup equation:

T
(k)
t [f ](x) = (−1)k+1 ∂

k

∂θk ut[e−θf ](x)

∣∣∣∣
θ=0

.

Theorem
Fix k ≥ 2. Assuming (H1) and (H2)k, with the additional assumption that

sup
x∈E,s≤t

T
(`)
s [f ](x) <∞, ` ≤ k− 1, f ∈ B+(E), t ≥ 0, (2)

it holds that

T
(k)
t [f ](x) = Tt[f k](x) +

∫ t

0
Ts

[
βη

(k−1)
t−s [f ]

]
(x) ds, t ≥ 0, (3)

where

η
(k−1)
t−s [f ](x) = Ex

 ∑
[k1,...,kN]2k

( k
k1, . . . , kN

) N∏
j=1

T
(kj)

t−s [f ](xj)

 ,
and [k1, . . . , kN]2k is the set of all non-negative N-tuples (k1, . . . , kN) such that

∑N
i=1 ki = k

and at least two of the ki are strictly positive.
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INDUCTION: k 7→ k + 1

• Suppose the result is true for the first k moments.

• Recall Tt[f ](x)→ 〈f , ϕ̃〉ϕ(x) so that, for k ≥ 2,

lim
t→∞

t−kTt[f k+1](x)→ 0

• Hence:

lim
t→∞

t−kT
(k+1)
t [f ](x)

= lim
t→∞

t−k
∫ t

0
Ts

E·
 ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) N∏
j=1

T
(kj)

t−s [f ](xj)


 (x)ds

= lim
t→∞

t−(k−1)
∫ 1

0
Tut

E·
 ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) N∏
j=1

T
(kj)

t(1−u)[f ](xj)


 (x)du

= lim
t→∞

∫ 1

0
Tut

E·
 ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) (t(1− u))k+1−#{j:kj>0}

tk−1

N∏
j=1

T
(kj)

t(1−u)[f ](xj)

(t(1− u))kj−1


 (x)du
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ROUGH OUTLINE OF THE INDUCTION: k 7→ k + 1
• From the last slide:

lim
t→∞

t−kT
(k+1)
t [f ](x)

= lim
t→∞

∫ 1

0
Tut

[
E·

[ ∑
[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

) (t(1− u))k+1−#{j:kj>0}

tk−1

N∏
j=1

T
(kj)

t(1−u)[f ](xj)

(t(1− u))kj−1

]]
(x)du

• Largest terms in blue correspond to those summands for which #{j : kj > 0} = 2

• The induction hypothesis plus
∑N

i=1 kj = k + 1 ensures that the product term is
asymptotically a constant
• The simple identity ∑

[k1,...,kN]2k+1

( k + 1
k1, . . . , kN

)
≤ Nk+1

shows us where the need for the hypothesis (H2) comes in.
• We need an ergodic limit theorem that reads (roughly): If

F(x, u) := lim
t→∞

F(x, u, t), x ∈ E, u ∈ [0, 1],

"uniformly" for (u, x) ∈ [0, 1]× E, then

lim
t→∞

∫ 1

0
Tut[F(·, u, t)](x)du =

∫ 1

0
〈ϕ̃, F(·, u)〉du

"uniformly" for x ∈ E.
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WHAT ABOUT THE OCCUPATION MEASURE?

• Let us define the running occupation of the branching particle system via∫ t

0
Xs(·)ds, t ≥ 0.

• What can we say about its moments?

M
(k)
t [g](x) := Eδx

[(∫ t

0
〈g,Xs〉ds

)k
]
, x ∈ E, g ∈ B+(E), k ≥ 1, t ≥ 0.

• We know that the pair (
Xt,

∫ t

0
Xsds

)
is Markovian and that its semigroup

vt[f , g] = Eδx

[
e−〈f ,Xt〉−

∫ t
0 〈g,Xs〉 d s

]
, t ≥ 0, x ∈ E, f , g ∈ B+(E),

solves

vt[f , g](x) = P̂t[e−f ](x) +

∫ t

0
Ps [G[vt−s[f , g])− gvt−s[f , g]] (x)ds.
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PLAYING THE SAME GAME AS BEFORE

Define a variant of the non-linear evolution equation associated with (Xt,
∫ s

0 Xsds) via

ut[f , g](x) = Eδx

[
1− e−〈f ,Xt〉−

∫ t
0 〈g,Xs〉 d s

]
, t ≥ 0, x ∈ E, ||f || <∞, ||g|| <∞.

For f ∈ B+
1 (E), define

A[f ](x) = β(x)Ex

[ N∏
i=1

(1− f (xi))− 1 +
N∑

i=1

f (xi)

]
, x ∈ E.

A re-arrangement of the joint semigroup of (Xt,
∫ t

0 Xsds) is captured by:

Lemma
For all f , g ∈ B+(E), x ∈ E and t ≥ 0, the non-linear semigroup ut[f , g](x) satisfies

ut[f , g](x) = Tt[1− e−f ](x)−
∫ t

0
Ts [A[ut−s[f , g]]− g(1− ut−s[f , g])] (x)ds.
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THEOREM: CRITICAL CASE (λ = 0)

Suppose that (H1) holds along with (H2) for k ≥ 2 and λ = 0. Define

∆
(`)
t = sup

x∈E,||g||≤1

∣∣∣t−(2`−1)ϕ(x)−1M
(`)
t [g](x)− 2−(`−1)`! 〈g, ϕ̃〉`〈V[ϕ], ϕ̃〉`−1L`

∣∣∣ ,
where L1 = 1 and Lk is defined through the recursion Lk = (

∑k−1
i=1 LiLk−i)/(2k− 1).

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.
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YAGLOM LIMITS

Theorem
Suppose that

• (H1) holds (mean-semigroup ergodicity),

• the number of offspring is uniformly bounded by a constant Nmax,

• for all t sufficiently large
supx∈E Pδx (t < ζ) < 1,

• there exists a constant C > 0 such that for all g ∈ B+(E),

〈ϕ̃, βV[g]〉 ≥ C〈ϕ̃, g〉2, where V[g](x) = β(x)Ex

[
〈g,Z〉2 − 〈g2,Z〉

]
Then

lim
t→∞

tPδx (ζ > t) =
2ϕ(x)

〈ϕ̃, βV[g]〉
,

lim
t→∞

Eδx

[(
〈f ,Xt〉

t

)k
∣∣∣∣∣ ζ > t

]
= k! 〈f , ϕ̃〉k

(
〈ϕ̃, βV[g]〉

2

)k

and hence

Law

(
〈f ,Xt〉

t

∣∣∣∣ ζ > t
)
→ exp

(
2

〈ϕ̃, βV[g]〉〈f , ϕ̃〉

)
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Thank you!
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In case you asked the question about non-criticality
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THEOREM: SUPERCRITICAL (λ > 0)

Suppose that (H1) holds along with (H2)k for some k ≥ 2 and λ > 0. Redefine

∆
(`)
t = sup

x∈E,||f ||≤1

∣∣∣ϕ(x)−1e−`λtT
(`)
t [f ](x)− `!〈f , ϕ̃〉`L`(x)

∣∣∣ ,
where L1(x) = 1 and we define iteratively for k ≥ 2,

Lk(x) =

∫ ∞
0

e−λ∗ksϕ(x)−1ψs

[
γE·
[ ∑
[k1,...,kN]2k

N∏
j=1

j:kj>0

ϕ(xj)Lkj
(xj)

]]
(x)ds,

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

"At subcriticality the k-th moment scales like eλkt (i.e. the first moment to the power k)"
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THEOREM: SUBCRITICAL (λ < 0)

Suppose that (H1) holds along with (H2) for some k ≥ 2 and λ < 0. Redefine

∆
(`)
t = sup

x∈E,||f ||≤1

∣∣∣ϕ(x)−1e−λtT
(`)
t [f ](x)− L`

∣∣∣ ,
where we define iteratively L1 = 〈f , ϕ̃〉 and for k ≥ 2,

Lk = ϕ̃[f k] +

∫ ∞
0

e−λ∗sϕ̃

[
γE·
[ ∑
[k1,...,kN]2k

( k
k1, . . . , kN

) N∏
j=1

j:kj>0

ψ
(kj)
s [f ](xj)

]]
ds.

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.

"At subcriticality the k-th moment scales like eλt (i.e. like the first moment)"
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THEOREM: SUPERCRITICAL CASE (λ > 0)

Suppose that (H1) holds along with (H2) for some k ≥ 2 and λ > 0. Redefine

∆
(`)
t = sup

x∈E,||g||≤1

∣∣∣ϕ(x)−1e−`λtM
(`)
t [g](x)− `!〈g, ϕ̃〉`L`(x)

∣∣∣ ,
where L1 = 1/λ and for k ≥ 2 we define iteratively,

Lk(x) =

∫ ∞
0

e−λ∗ksϕ(x)−1ψs

[
γE·
[ ∑
[k1,...,kN]2k

N∏
j=1

j:kj>0

ϕ(xj)Lkj
(xj)

]]
(x)ds,

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.
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THEOREM: SUBCRITICAL CASE (λ < 0)

Suppose that (H1) holds along with (H2) for some k ≥ 2 and λ < 0. Redefine

∆
(`)
t = sup

x∈E,||g||≤1

∣∣∣ϕ(x)−1M
(`)
t [g](x)− `!〈g, ϕ̃〉`L`(x)

∣∣∣ ,
where ||g|| <∞, L1 = 1/|λ| and for k ≥ 2, the constants Lk are defined recursively via

Lk(x) =

∫ ∞
0

ϕ(x)−1ψs

[
γE·

[ ∑
[k1,...,kN]2k

( k
k1, . . . , kN

) N∏
j=1

j:kj>0

ϕ(xj)Lkj
(xj)

]]
(x) ds

− k
∫ ∞

0
ϕ(x)−1ψs

[
gϕLk−1

]
(x) ds.

Then, for all ` ≤ k
sup
t≥0

∆
(`)
t <∞ and lim

t→∞
∆

(`)
t = 0.


