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E-mail: wniem@mat.uni.torun.pl

We address the problem of upper bounding the mean square error of MCMC estimators. Our
analysis is non-asymptotic. We first establish a general result valid for essentially all ergodic
Markov chains encountered in Bayesian computation and a possibly unbounded target function
f. The bound is sharp in the sense that the leading term is exactly σ2

as(P, f)/n, where σ2
as(P, f)

is the CLT asymptotic variance. Next, we proceed to specific additional assumptions and give
explicit computable bounds for geometrically and polynomially ergodic Markov chains under
quantitative drift conditions. As a corollary we provide results on confidence estimation.

AMS 2000 subject classifications: Primary 60J05, 65C05; secondary 62F15.
Keywords: Mean square error, Computable bounds, Geometric ergodicity, Polynomial ergodicity,
Drift conditions, Regeneration, Asymptotic variance, Confidence estimation.

∗Work partially supported by Polish Ministry of Science and Higher Education Grants No. N
N201387234 and N N201 608740. K L was also partially supported by EPSRC.
†Corresponding author.

1
imsart-bj ver. 2007/12/10 file: LaMiaNie_examp_11_final.tex date: March 26, 2012

http://isi.cbs.nl/bernoulli/
mailto:latuch@gmail.com
http://www.warwick.ac.uk/go/klatuszynski
mailto:bmia@mimuw.edu.pl
mailto:wniem@mat.uni.torun.pl


2 K.  Latuszyński et al.

1. Introduction

Let π be a probability distribution on a Polish space X and f : X → R be a Borel
function. The objective is to compute (estimate) the quantity

θ := π(f) =

∫
X
π(dx)f(x).

Typically X is a high dimensional space, f need not be bounded and the density of π is
known up to a normalizing constant. Such problems arise in Bayesian inference and are
often solved using Markov chain Monte Carlo (MCMC) methods. The idea is to simulate
a Markov chain (Xn) with transition kernel P such that πP = π, that is π is stationary
with respect to P . Then averages along the trajectory of the chain,

θ̂n :=
1

n

n−1∑
i=0

f(Xi)

are used to estimate θ. It is essential to have explicit and reliable bounds which provide
information about how long the algorithms must be run to achieve a prescribed level of
accuracy (c.f. [Ros95a, JH01, JHCN06]). The aim of our paper is to derive non-asymptotic
and explicit bounds on the mean square error,

(1.1) MSE := E(θ̂n − θ)2.

To upper bound (1.1), we begin with a general inequality valid for all ergodic Markov
chains that admit a one step small set condition. Our bound is sharp in the sense that
the leading term is exactly σ2

as(P, f)/n, where σ2
as(P, f) is the asymptotic variance in the

central limit theorem. The proof relies on the regeneration technique, methods of renewal
theory and statistical sequential analysis.

To obtain explicit bounds we subsequently consider geometrically and polynomially
ergodic Markov chains. We assume appropriate drift conditions that give quantitative
information about the transition kernel P. The upper bounds on MSE are then stated in
terms of the drift parameters.

We note that most MCMC algorithms implemented in Bayesian inference are geomet-
rically or polynomially ergodic (however establishing the quantitative drift conditions
we utilize may be prohibitively difficult for complicated models). Uniform ergodicity is
stronger then geometrical ergodicity considered here and is often discussed in literature.
However few MCMC algorithms used in practice are uniformly ergodic. MSE and confi-
dence estimation for uniformly ergodic chains are discussed in our accompanying paper
[ LMN11].

The Subgeometric condition, considered in e.g. [DGM08], is more general than poly-
nomial ergodicity considered here. We note that with some additional effort, the results
for polynomially ergodic chains (Section 5) can be reformulated for subgeometric Markov
chains. Motivated by applications, we avoid these technical difficulties.
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Nonasymptotic estimation error of MCMC 3

Upper bounding the mean square error (1.1) leads immediately to confidence estima-
tion by applying the Chebyshev inequality. One can also apply the more sophisticated
median trick of [JVV86], further developed in [NP09]. The median trick leads to an ex-
ponential inequality for the MCMC estimate whenever the MSE can be upper bounded,
in particular in the setting of geometrically and polynomially ergodic chains.

We illustrate our results with benchmark examples. The first, which is related to a
simplified hierarchical Bayesian model and similar to [JH01, Example 2], allows to com-
pare the bounds provided in our paper with actual MCMC errors. Next, we demonstrate
how to apply our results in the Poisson-Gamma model of [GS90]. Finally, the contracting
normals toy-example allows for a numerical comparison with our earlier work [ LN11].

The paper is organised as follows: in Section 2 we give background on the regeneration
technique and introduce notation. The general MSE upper bound is derived in Section 3.
Geometrically and polynomially ergodic Markov chains are considered in Sections 4 and 5
respectively. The applicability of our results is discussed in Section 6, where also numerical
examples are presented. Technical proofs are deferred to Sections 7 and 8.

1.1. Related nonasymptotic results

A vast literature on nonasymptotic analysis of Markov chains is available in various
settings. To place our results in this context we give a brief account.

In the case of finite state space, an approach based on the spectral decomposition was
used in [Ald87, Gil98, LP04, NP09] to derive results of related type.

For bounded functionals of uniformly ergodic chains on a general state space, expo-
nential inequalities with explicit constants such as those in [GO02, KLMM05] can be
applied to derive confidence bounds. In the accompanying paper [ LMN11] we compare
the simulation cost of confidence estimation based on our approach (MSE bounds with
the median trick) to exponential inequalities and conclude that while exponential inequal-
ities have sharper constants, our approach gives in this setting the optimal dependence
on the regeneration rate β and therefore will turn out more efficient in many practical
examples.

Related results come also from studying concentration of measure phenomenon for
dependent random variables. For the large body of work in this area see e.g. [Mar96],
[Sam00] and [KR08] (and references therein), where transportation inequalities or mar-
tingale approach have been used. These results, motivated in a more general setting,
are valid for Lipschitz functions with respect to the Hamming metric. They also include
expressions supx,y∈X ‖P i(x, ·) − P i(y, ·)‖tv and when applied to our setting, they are
well suited for bounded functionals of uniformly ergodic Markov chains, but can not be
applied to geometrically ergodic chains. For details we refer to the original papers and
the discussion in Section 3.5 of [Ada08].

For lazy reversible Markov chains, nonasymptotic mean square error bounds have been
obtained for bounded target functions in [Rud09] in a setting where explicit bounds on
conductance are available. These results have been applied to approximating integrals
over balls in Rd under some regularity conditions for the stationary measure, see [Rud09]
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4 K.  Latuszyński et al.

for details. The Markov chains considered there are in fact uniformly ergodic, however
in their setting the regeneration rate β, can be verified for Ph, h > 1 rather then for P
and turns out to be exponentially small in dimension. Hence conductance seems to be
the natural approach to make the problem tractable in high dimensions.

Tail inequalities for bounded functionals of Markov chains that are not uniformly er-
godic were considered in [Clé01], [Ada08] and [DGM08] using regeneration techniques.
These results apply e.g. to geometrically or subgeometrically ergodic Markov chains, how-
ever they also involve non-explicit constants or require tractability of moment conditions
of random tours between regenerations. Computing explicit bounds from these results
may be possible with additional work, but we do not pursue it here.

Nonasymptotic analysis of unbounded functionals of Markov chains is scarce. In partic-
ular tail inequalities for unbounded target function f that can be applied to geometrically
ergodic Markov chains have been established by Bertail and Clémençon in [BC10] by re-
generative approach and using truncation arguments. However they involve non-explicit
constants and can not be directly applied to confidence estimation. Nonasymptotic and
explicit MSE bounds for geometrically ergodic MCMC samplers have been obtained in
[ LN11] under a geometric drift condition by exploiting computable convergence rates.
Our present paper improves these results in a fundamental way. Firstly, the generic
Theorem 3.1 allows to extend the approach to different classes of Markov chains, e.g.
polynomially ergodic in Section 5. Secondly, rather then resting on computable conver-
gence rates, the present approach relies on upper-bounding the CLT asymptotic variance
which, somewhat surprisingly, appears to be more accurate and consequently the MSE
bound is much sharper, as demonstrated by numerical examples in Section 6.

Recent work [JO10] address error estimates for MCMC algorithms under positive cur-
vature condition. The positive curvature implies geometric ergodicity in the Wasserstein
distance and bivariate drift conditions (c.f. [RR01]). Their approach appears to be ap-
plicable in different settings to ours and also rests on different notions, e.g. employs the
coarse diffusion constant instead of the exact asymptotic variance. Moreover, the tar-
get function f is assumed to be Lipschitz which is problematic in Bayesian inference.
Therefore our results and [JO10] appear to be complementary.

Nonasymptotic rates of convergence of geometrically, polynomially and subgeomet-
rically ergodic Markov chains to their stationary distributions have been investigated
in many papers [MT94, Ros95b, RT99, Ros02, JH04, For03, DMR04, Bax05, FM03b,
DMS07, RR11] under assumptions similar to our Section 4 and 5, together with an ape-
riodicity condition that is not needed for our purposes. Such results, although of utmost
theoretical importance, do not directly translate into bounds on accuracy of estimation,
as they allow to control only the bias of estimates and the so-called burn-in time.

2. Regeneration Construction and Notation

Assume P has invariant distribution π on X , is π-irreducible and Harris recurrent. The
following one step small set Assumption 2.1 is verifiable for virtually all Markov chains
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Nonasymptotic estimation error of MCMC 5

targeting Bayesian posterior distributions. It allows for the regeneration/split construc-
tion of Nummelin [Num78] and Athreya and Ney [AN78].

2.1 Assumption (Small Set). There exist a Borel set J ⊆ X of positive π measure, a
number β > 0 and a probability measure ν such that

P (x, ·) ≥ βI(x ∈ J)ν(·).

Under Assumption 2.1 we can define a bivariate Markov chain (Xn,Γn) on the space
X × {0, 1} in the following way. Bell variable Γn−1 depends only on Xn−1 via

(2.2) P(Γn−1 = 1|Xn−1 = x) = βI(x ∈ J).

The rule of transition from (Xn−1,Γn−1) to Xn is given by

P(Xn ∈ A|Γn−1 = 1, Xn−1 = x) = ν(A),

P(Xn ∈ A|Γn−1 = 0, Xn−1 = x) = Q(x,A),

where Q is the normalized “residual” kernel given by

Q(x, ·) :=
P (x, ·)− βI(x ∈ J)ν(·)

1− βI(x ∈ J)
.

Whenever Γn−1 = 1, the chain regenerates at moment n. The regeneration epochs are

T := T1 := min{n ≥ 1 : Γn−1 = 1},
Tk := min{n ≥ Tk−1 : Γn−1 = 1}.

Write τk := Tk − Tk−1 for k = 2, 3, . . . and τ1 := T . Random blocks

Ξ := Ξ1 := (X0, . . . , XT−1, T )

Ξk := (XTk−1
, . . . , XTk−1, τk)

for k = 1, 2, 3, . . . are independent.
We note that numbering of the bell variables Γn may differ between authors: in our

notation Γn−1 = 1 indicates regeneration at moment n, not n−1. Let symbols Pξ and Eξ
mean that X0 ∼ ξ. Note also that these symbols are unambiguous, because specifying the
distribution of X0 is equivalent to specifying the joint distribution of (X0,Γ0) via (2.2).

For k = 2, 3, . . ., every block Ξk under Pξ has the same distribution as Ξ under Pν .
However, the distribution of Ξ under Pξ is in general different. We will also use the
following notations for the block sums:

Ξ(f) :=

T−1∑
i=0

f(Xi), Ξk(f) :=

Tk−1∑
i=Tk−1

f(Xi).
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6 K.  Latuszyński et al.

3. A General Inequality for the MSE

We assume that X0 ∼ ξ and thus Xn ∼ ξPn. Write f̄ := f − π(f).

3.1 Theorem. If Assumption 2.1 holds then

(3.2)

√
Eξ (θ̂n − θ)2 ≤

σas(P, f)√
n

(
1 +

C0(P )

n

)
+
C1(P, f)

n
+
C2(P, f)

n
,

where

σ2
as(P, f) :=

Eν(Ξ(f̄))2

EνT
,(3.3)

C0(P ) := EπT −
1

2
(3.4)

C1(P, f) :=
√

Eξ(Ξ(|f̄ |))2,(3.5)

C2(P, f) = C2(P, f, n) :=

√√√√√Eξ

I(T1 < n)

TR(n)−1∑
i=n

|f̄ |(Xi)

2

,(3.6)

R(n) := min{r ≥ 1 : Tr > n}.(3.7)

3.8 REMARK. The bound in Theorem 3.1 is meaningful only if σ2
as(P, f) < ∞,

C0(P ) < ∞, C1(P, f) < ∞ and C2(P, f) < ∞. Under Assumption 2.1 we always have
EνT < ∞ but not necessarily EνT 2 < ∞. On the other hand, finiteness of Eν(Ξ(f̄))2

is a sufficient and necessary condition for the CLT to hold for Markov chain Xn and
function f . This fact is proved in [B LL08] in a more general setting. For our purposes
it is important to note that σ2

as(P, f) in Theorem 3.1 is indeed the asymptotic variance
which appears in the CLT, that is

√
n
(
θ̂n − θ

)
→d N(0, σ2

as(P, f)).

Moreover,

lim
n→∞

nEξ
(
θ̂n − θ

)2
= σ2

as(P, f).

In this sense the leading term σas(P, f)/
√
n in Theorem 3.1 is “asymptotically correct”

and cannot be improved.

3.9 REMARK. Under additional assumptions of geometric and polynomial ergod-
icity, in Sections 4 and 5 respectively,we will derive bounds for σ2

as(P, f) and C0(P ),
C1(P, f), C2(P, f) in terms of some explicitly computable quantities.
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3.10 REMARK. In our related work [ LMN11], we discuss a special case of the setting
considered here, namely when regeneration times Tk are identifiable. These leads to
X0 ∼ ν and an regenerative estimator of the form

θ̂TR(n)
:=

1

TR(n)

R(n)∑
i=1

Ξi(f) =
1

TR(n)

TR(n)−1∑
i=0

f(Xi).(3.11)

The estimator θ̂TR(n)
is somewhat easier to analyze. We refer to [ LMN11] for details.

Proof of Theorem 3.1. Recall R(n) defined in (3.7) and let

∆(n) := TR(n) − n.

In words: R(n) is the first moment of regeneration past n and ∆(n) is the overshoot or
excess over n. Let us express the estimation error as follows.

θ̂n − θ =
1

n

n−1∑
i=0

f̄(Xi) =
1

n

TR(n)−1∑
i=T1

f̄(Xi) +

T1−1∑
i=0

f̄(Xi)−
TR(n)−1∑
i=n

f̄(Xi)


=:

1

n
(Z +O1 −O2) ,

with the convention that
∑u
l = 0 whenever l > u. The triangle inequality entails

(3.12)

√
Eξ
(
θ̂n − θ

)2
≤ 1

n

(√
EξZ2 +

√
Eξ(O1 −O2)2

)
.

Denote C(P, f) :=
√
Eξ(O1 −O2)2 and compute

C(P, f) =

(
Eξ

{( T−1∑
i=0

f̄(Xi)−
TR(n)−1∑
i=n

f̄(Xi)

)
I(T ≥ n)

+

( T−1∑
i=0

f̄(Xi)−
TR(n)−1∑
i=n

f̄(Xi)

)
I(T < n)

}2) 1
2

≤

Eξ

T−1∑
i=0

|f̄(Xi)|+
TR(n)−1∑
i=n

|f̄(Xi)|I(T < n)

2


1
2

≤

√√√√Eξ

(
T−1∑
i=0

|f̄(Xi)|

)2

+

√√√√√Eξ

TR(n)−1∑
i=n

|f̄(Xi)|I(T < n)

2

= C1(P, f) + C2(P, f).(3.13)
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8 K.  Latuszyński et al.

It remains to bound the middle term, EξZ2, which clearly corresponds to the most
significant portion of the estimation error. The crucial step in our proof is to show the
following inequality:

(3.14) Eν

TR(n)−1∑
i=0

f̄(Xi)

2

≤ σ2
as(P, f) (n+ 2C0(P )) .

Once this is proved, it is easy to see that

EξZ2 =

n∑
j=1

Eξ
(
Z2
∣∣T1 = j

)
Pξ(T1 = j) =

n∑
j=1

Eν

TR(n−j)−1∑
i=0

f̄(Xi)

2

Pξ(T1 = j)

≤
n∑
j=1

σ2
as(P, f) (n− j + 2C0(P ))Pξ(T1 = j) ≤ σ2

as(P, f) (n+ 2C0(P )) ,

concequently
√
EξZ2 ≤

√
nσas(P, f)(1 + C0(P )/n) and the conclusion will follow by

recalling (3.12) and (3.13).
We are therefore left with the task of proving (3.14). This is essentially a statement

about sums of i.i.d. random variables. Indeed,

(3.15)

TR(n)−1∑
i=0

f̄(Xi) =

R(n)∑
k=1

Ξk(f̄)

and all the blocks Ξk (including Ξ = Ξ1) are i.i.d. under Pν . By the general version of
the Kac Theorem ([MT93] Thm 10.0.1 or [Num02] equation (3.3.7)) we have

EνΞ(f) = π(f)EνT,

(and 1/EνT = βπ(J)), so EνΞ(f̄) = 0 and VarνΞ(f̄) = σ2
as(P, f)EνT . Now we will exploit

the fact that R(n) is a stopping time with respect to Gk = σ((Ξ1(f̄), τ1), . . . , (Ξk(f̄), τk)),
a filtration generated by i.i.d. pairs. We are in a position to apply the two Wald’s
identities. The second identity yields

Eν

R(n)∑
k=1

Ξk(f̄)

2

= VarνΞ(f̄)EνR(n) = σ2
as(P, f)EνT EνR(n).

But in this expression we can replace EνTEνR(n) by EνTR(n) because of the first Wald’s
identity:

EνTR(n) = Eν
R(n)∑
k=1

τk = EνTEνR(n).
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It follows that

(3.16) Eν

R(n)∑
k=1

Ξk(f̄)

2

= σ2
as(P, f)EνTR(n) = σ2

as(P, f) (n+ Eν∆(n)) .

We now focus attention on bounding the “mean overshoot” Eν∆(n). Under Pν , the
cumulative sums T = T1 < T2 < . . . < Tk < . . . form a (non-delayed) renewal process in
discrete time. Let us invoke the following elegant theorem of Lorden ([Lor70], Thm 1):

(3.17) Eν∆(n) ≤ EνT 2

EνT
.

By Lemma 7.3 with g ≡ 1 from section 7 we obtain:

(3.18) Eν∆(n) ≤ 2EπT − 1

Hence substituting (3.18) into (3.16) and taking into account (3.15) we obtain (3.14) and
complete the proof.

4. Geometrically Ergodic Chains

In this section we upper bound constants σ2
as(P, f), C0(P ), C1(P, f), C2(P, f), appear-

ing in Theorem 3.1, for geometrically ergodic Markov chains under a quantitative drift
assumption. Proofs are deferred to Sections 7 and 8.

Using drift conditions is a standard approach for establishing geometric ergodicity. We
refer to [RR04] or [MT93] for definitions and further details. The assumption below is the
same as in [Bax05]. Specifically, let J be the small set which appears in Assumption 2.1.

4.1 Assumption (Geometric Drift). There exist a function V : X → [1,∞[, constants
λ < 1 and K <∞ such that

PV (x) :=

∫
X
P (x,dy)V (y) ≤

{
λV (x) for x 6∈ J,
K for x ∈ J,

In many papers conditions similar to Assumption 4.1 have been established for realistic
MCMC algorithms in statistical models of practical relevance [HG98, FM00, FMRR03,
JH04, JJ10, RH10]. This opens the possibility of computing nonasymptotic upper bounds
on MSE or nonasymptotic confidence intervals in these models.

In this Section we bound quantities appearing in Theorem 3.1 by expressions involving
λ, β and K. The main result in this section is the following theorem.

4.2 Theorem. If Assumptions 2.1 and 4.1 hold and f is such that

‖f̄‖
V

1
2

:= sup
x
|f̄(x)|/V 1

2 (x) <∞,
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10 K.  Latuszyński et al.

then

(i) C0(P ) ≤ λ

1− λ
π(V ) +

K − λ− β
β(1− λ)

+
1

2
,

(ii)
σ2
as(P, f)

‖f̄‖2
V

1
2

≤ 1 + λ
1
2

1− λ 1
2

π(V ) +
2(K

1
2 − λ 1

2 − β)

β(1− λ 1
2 )

π(V
1
2 ),

C1(P, f)2

‖f̄‖2
V

1
2

≤ 1

(1− λ 1
2 )2

ξ(V ) +
2(K

1
2 − λ 1

2 − β)

β(1− λ 1
2 )2

ξ(V
1
2 )(iii)

+
β(K − λ− β) + 2(K

1
2 − λ 1

2 − β)2

β2(1− λ 1
2 )2

.

(iv) C2(P, f)2 satisfies an inequality analogous to (iii) with ξ replaced by ξPn.

4.3 REMARK. Combining Theorem 4.2 with Theorem 3.1 yields the MSE bound
of interest. Note that the leading term is of order n−1β−1(1 − λ)−1. A related result is

Proposition 2 of [FM03a] where the p−th moment of θ̂n for p ≥ 2 is controlled under
similar assumptions. Specialised to p = 2 the leading term of the moment bound of
[FM03a] is of order n−1β−3(1− λ)−4.

4.4 REMARK. An alternative form of the first bound in Theorem 4.2 is

(i′) C0(P ) ≤ λ
1
2

1− λ 1
2

π(V
1
2 ) +

K
1
2 − λ 1

2 − β
β(1− λ 1

2 )
+

1

2
.

Theorem 4.2 still involves some quantities which can be difficult to compute, such as
π(V

1
2 ) and π(V ), not to mention ξPn(V

1
2 ) and ξPn(V ). The following Proposition gives

some simple complementary bounds.
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4.5 Proposition. Under Assumptions 2.1 and 4.1,

π(V
1
2 ) ≤ π(J)

K
1
2 − λ 1

2

1− λ 1
2

≤ K
1
2 − λ 1

2

1− λ 1
2

,(i)

π(V ) ≤ π(J)
K − λ
1− λ

≤ K − λ
1− λ

,(ii)

if ξ(V
1
2 ) ≤ K

1
2

1− λ 1
2

then ξPn(V
1
2 ) ≤ K

1
2

1− λ 1
2

,(iii)

if ξ(V ) ≤ K

1− λ
then ξPn(V ) ≤ K

1− λ
,(iv)

‖f̄‖
V

1
2

can be related to ‖f‖
V

1
2

by(v)

‖f̄‖
V

1
2
≤ ‖f‖

V
1
2

[
1 +

π(J)(K
1
2 − λ 1

2 )

(1− λ 1
2 ) infx∈X V

1
2 (x)

]
≤ ‖f‖

V
1
2

[
1 +

K
1
2 − λ 1

2

1− λ 1
2

]
.

4.6 REMARK. In MCMC practice almost always the initial state is deterministically
chosen, ξ = δx for some x ∈ X . In this case in (ii) and (iii) we just have to choose x such

that V
1
2 (x) ≤ K

1
2 /(1 − λ 1

2 ) and V (x) ≤ K/(1 − λ), respectively (note that the latter
inequality implies the former). It might be interesting to note that our bounds would
not be improved if we added a burn-in time t > 0 at the beginning of simulation. The
standard practice in MCMC computations is to discard the initial part of trajectory and
use the estimator

θ̂t,n :=
1

n

n+t−1∑
i=t

f(Xi).

Heuristic justification is that the closer ξP t is to the equilibrium distribution π, the
better. However, for technical reasons, our upper bounds on error are the tightest if the
initial point has the smallest value of V , and not if its distribution is close to π.

4.7 REMARK. In many specific examples one can obtain (with some additional ef-
fort) sharper inequalities than those in Proposition 4.5 or at least bound π(J) away
from 1. However in general we assume that such bounds are not available.

5. Polynomially ergodic Markov chains

In this section we upper bound constants σ2
as(P, f), C0(P ), C1(P, f), C2(P, f), appear-

ing in Theorem 3.1, for polynomially ergodic Markov chains under a quantitative drift
assumption. Proofs are deferred to Sections 7 and 8.

The following drift condition is a counterpart of Drift in Assumption 4.1, and is used
to establish polynomial ergodicity of Markov chains [JR02, DFMS04, DGM08, MT93].
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12 K.  Latuszyński et al.

5.1 Assumption (Polynomial Drift). There exist a function V : X → [1,∞[, constants
λ < 1, α ≤ 1 and K <∞ such that

PV (x) ≤

{
V (x)− (1− λ)V (x)α for x 6∈ J,
K for x ∈ J,

We note that Assumption 5.1 or closely related drift conditions have been established
for MCMC samplers in specific models used in Bayesian inference, including independence
samplers, random-walk Metropolis algorithms, Langevin algorithms and Gibbs samplers,
see e.g. [FM00, JT03, JR07].

In this Section we bound quantities appearing in Theorem 3.1 by expressions involving
λ, β, α and K. The main result in this section is the following theorem.

5.2 Theorem. If Assumptions 2.1 and 5.1 hold with α > 2
3 and f is such that

‖f̄‖
V

3
2
α−1 := supx |f̄(x)|/V 3

2α−1(x) <∞, then

(i) C0(P ) ≤ 1

α(1− λ)
π(V α) +

Kα − 1− β
βα(1− λ)

+
1

β
− 1

2
,

(ii)
σ2
as(P, f)

‖f̄‖2
V

3
2
α−1

≤ π(V 3α−2)+
4π(V 2α−1)

α(1− λ)
+2

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β
− 1

)
π(V

3
2α−1),

(iii)
C1(P, f)2

‖f̄‖2
V

3
2
α−1

≤ 1

(2α− 1)(1− λ)
ξ(V 2α−1) +

4

α2(1− λ)2
ξ(V α)

+

(
8K

α
2 − 8− 8β

α2β(1− λ)2
+

4− 4β

αβ(1− λ)

)
ξ(V

α
2 ) +

α(1− λ) + 4

αβ(1− λ)
+

K2α−1 − 1− β
(2α− 1)β(1− λ)

+
4(Kα − 1− β)

α2β(1− λ)2
+ 2

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β

)2

− 2

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β

)
.

(iv)
C2(P, f)2

‖f̄‖2
V

3
2
α−1

≤ 1

(2α− 1)β
2α−1
α (1− λ)

(
K − λ
1− λ

) 4α−2
α

+
4(K − λ)2

α2β(1− λ)4

+

(
8K

α
2 − 8− 8β

α2β(1− λ)2
+

4− 4β

αβ(1− λ)

)
K − λ√
β(1− λ)

+
α(1− λ) + 4

αβ(1− λ)
+

K2α−1 − 1− β
(2α− 1)β(1− λ)

+
4(Kα − 1− β)

α2β(1− λ)2
+ 2

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β

)2

− 2

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β

)
.
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Nonasymptotic estimation error of MCMC 13

5.3 REMARK. A counterpart of Theorem 5.2 parts (i − iii) for 1
2 < α ≤ 2

3 and
functions s.t. ‖f‖

V α− 1
2
< ∞ can be also established, using respectively modified but

analogous calculations as in the proof of the above. For part (iv) however, an additional
assumption π(V ) <∞ is necessary.

Theorem 5.2 still involves some quantities depending on π which can be difficult to
compute, such as π(V η) for η ≤ α. The following Proposition gives some simple comple-
mentary bounds.

5.4 Proposition. Under Assumptions 2.1 and 5.1,

(i) For η ≤ α we have

π(V η) ≤
(
K − λ
1− λ

) η
α

,

(ii) If η ≤ α then ‖f̄‖V η can be related to ‖f‖V η by

‖f̄‖V η ≤ ‖f‖V η
[

1 +

(
K − λ
1− λ

) η
α

]
.

6. Applicability in Bayesian Inference and Examples

To apply current results for computing MSE of estimates arising in Bayesian inference
one needs drift and small set conditions with explicit constants. The quality of these
constants will affect the tightness of the overall MSE bound. In this Section we present
three numerical examples. In Subsection 6.1, a simplified hierarchical model similar as
[JH01, Example 2] is designed to compare the bounds with actual values and asses their
quality. Next, in Subsection 6.2, we upperbound the MSE in the extensively discussed in
literature Poisson-Gamma hierarchical model. Finally, in Subsection 6.3, we present the
contracting normals toy-example to demonstrate numerical improvements over [ LN11].

In realistic statistical models the explicit drift conditions required for our analysis
are very difficult to establish. Nevertheless, they have been recently obtained for a wide
range of complex models of practical interest. Particular examples include: Gibbs sam-
pling for hierarchical random effects models in [JH04]; van Dyk and Meng’s algorithm for
multivariate Student’s t model [MH04]; Gibbs sampling for a family of Bayesian hierar-
chical general linear models in [JJ07] (c.f. also [JJ10]); block Gibbs sampling for Bayesian
random effects models with improper priors [TH09]; Data Augmentation algorithm for
Bayesian multivariate regression models with Student’s t regression errors [RH10]. More-
over, a large body of related work has been devoted to establishing a drift condition
together with a small set to enable regenerative simulation for classes of statistical mod-
els. This kind of results, pursued in a number of papers mainly by James P. Hobert,
Galin L. Jones and their coauthors, cannot be used directly for our purposes, but may
provide substantial help in establishing quantitative drift and regeneration required here.
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14 K.  Latuszyński et al.

In settings where existence of drift conditions can be established, but explicit constants
can not be computed (c.f. e.g. [FMRR03, PR08]), our results do not apply and one
must validate MCMC by asymptotic arguments. This is not surprising since qualitative
existence results are not well suited for deriving quantitative finite sample conclusions.

6.1. A Simplified Hierarchical Model

The simulation experiments described below are designed to compare the bounds proved
in this paper with actual errors of MCMC estimation. We use a simple example similar
as [JH01, Example 2]. Assume that y = (y1, . . . , yt) is an i.i.d. sample from the normal
distribution N(µ, κ−1), where κ denotes the reciprocal of the variance. Thus we have

p(y|µ, κ) = p(y1, . . . , yt|µ, κ) ∝ κt/2 exp

−κ
2

t∑
j=1

(yj − µ)2

 .
The pair (µ, κ) plays the role of an unknown parameter. To make things simple, let us
use the Jeffrey’s non-informative (improper) prior p(µ, κ) = p(µ)p(κ) ∝ κ−1 (in [JH01]
a different prior is considered). The posterior density is

p(µ, κ|y) ∝ p(y|µ, κ)p(µ, κ) ∝ κt/2−1 exp

[
−κt

2

(
s2 + (ȳ − µ)2

)]
,

where

ȳ =
1

t

t∑
j=1

yj , s2 =
1

t

t∑
j=1

(yj − ȳ)2.

Note that ȳ and s2 only determine the location and scale of the posterior. We will be using
a Gibbs sampler, whose performance does not depend on scale and location, therefore
without loss of generality we can assume that ȳ = 0 and s2 = t. Since y = (y1, . . . , yt)
is kept fixed, let us slightly abuse notation by using symbols p(κ|µ), p(µ|κ) and p(µ)
for p(κ|µ, y), p(µ|κ, y) and p(µ|y), respectively. The Gibbs sampler alternates between
drawing samples from both conditionals. Start with some (µ0, κ0). Then, for i = 1, 2, . . .,

• κi ∼ Gamma
(
t/2, (t/2)(s2 + µ2

i−1)
)
,

• µi ∼ N (0, 1/(κit)).
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Nonasymptotic estimation error of MCMC 15

If we are chiefly interested in µ then it is convenient to consider the two small steps
µi−1 → κi → µi together. The transition density is

p(µi|µi−1) =

∫
p(µi|κ)p(κ|µi−1)dκ

∝
∫ ∞
0

κ1/2 exp

[
−κt

2
µ2
i

] (
s2 + µ2

i−1
)t/2

κt/2−1 exp

[
−κt

2

(
s2 + µ2

i−1
)]

dκ

=
(
s2 + µ2

i−1
)t/2 ∫ ∞

0

κ(t−1)/2 exp

[
−κt

2

(
s2 + µ2

i−1 + µ2
i

)]
dκ

∝
(
s2 + µ2

i−1
)t/2 (

s2 + µ2
i−1 + µ2

i

)−(t+1)/2
.

The proportionality constants concealed behind the ∝ sign depend only on t. Finally we
fix scale letting s2 = t and get

(6.1) p(µi|µi−1) ∝
(

1 +
µ2
i−1
t

)t/2(
1 +

µ2
i−1
t

+
µ2
i

t

)−(t+1)/2

.

If we consider the RHS of (6.1) as a function of µi only, we can regard the first factor as
constant and write

p(µi|µi−1) ∝

(
1 +

(
1 +

µ2
i−1
t

)−1
µ2
i

t

)−(t+1)/2

.

It is clear that the conditional distribution of random variable

(6.2) µi

(
1 +

µ2
i−1
t

)−1/2
is t-Student distribution with t degrees of freedom. Therefore, since the t-distribution
has the second moment equal to t/(t− 2) for t > 2, we infer that

E(µ2
i |µi−1) =

t+ µ2
i−1

t− 2
.

Similar computation shows that the posterior marginal density of µ satisfies

p(µ) ∝
(

1 +
t− 1

t

µ2

t− 1

)−t/2
.

Thus the stationary distribution of our Gibbs sampler is rescaled t-Student with t − 1
degrees of freedom. Consequently we have

Eπµ2 =
t

t− 3
.
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16 K.  Latuszyński et al.

6.3 Proposition (Drift). Assume that t ≥ 4. Let V (µ) := µ2 + 1 and J = [−a, a].
The transition kernel of the (2-step) Gibbs sampler satisfies

PV (µ) ≤

{
λV (µ) for |µ| > a;

K for |µ| ≤ a,
provided that a >

√
t/(t− 3).

The quantities λ, K and π(V ) are given by

λ =
1

t− 2

(
2t− 3

1 + a2
+ 1

)
, K = 2 +

a2 + 2

t− 2
and π(V ) =

2t− 3

t− 3
.

Proof. Since a >
√
t/t− 3 we obtain that λ =

1

t− 2

(
2t− 3

1 + a2
+ 1

)
<

1

t− 2
(t− 2) = 1.

Using the fact that

PV (µ) = E(µ2
i + 1|µi−1 = µ) =

t+ µ2

t− 2
+ 1

we obtain

λV (µ)− PV (µ) =
1

t− 2

(
2t− 3

1 + a2
+ 1

)
(µ2 + 1)− t+ µ2

t− 2
− 1

=
1

t− 2

(
2t− 3

1 + a2
µ2 +

2t− 3

1 + a2
− 2t+ 3

)
=

2t− 3

(t− 2)(1 + a2)

(
µ2 + 1− 1− a2

)
=

2t− 3

(t− 2)(1 + a2)
(µ2 − a2).

Hence λV (µ)− PV (µ) > 0 for |µ| > a. For µ such that |µ| ≤ a we get that

PV (µ) =
t+ µ2

t− 2
+ 1 ≤ t+ a2

t− 2
+ 1 = 2 +

t+ a2 − t+ 2

t− 2
= 2 +

a2 + 2

t− 2
.

Finally

π(V ) = Eπµ2 + 1 =
t

t− 3
+ 1 =

2t− 3

t− 3
.

6.4 Proposition (Minorization). Let pmin be a subprobability density given by

pmin(µ) =

{
p(µ|a) for |µ| ≤ h(a);

p(µ|0) for |µ| > h(a),
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where p(·|·) is the transition density given by (6.1) and

h(a) =

a2
[(

1 +
a2

t

)t/(t+1)

− 1

]−1
− t


1/2

.

Then |µi−1| ≤ a implies p(µi|µi−1) ≥ pmin(µi). Consequently, if we take for ν the prob-
ability measure with the normalized density pmin/β then the small set Assumption 2.1
holds for J = [−a, a]. Constant β is given by

β = 1− P (|ϑ| ≤ h(a)) + P

(
|ϑ| ≤

(
1 +

a2

t

)−1/2
h(a)

)
,

where ϑ is a random variable with t-Student distribution with t degrees of freedom.

0 1 2 3 4 5

0.0
0.1

0.2
0.3

0.4

y

p(
y|x
)

Figure 0. Illustration of Proposition 6.4, with t = 50 and a = 10. Solid lines are grapshs of

p(µi|0) and p(µi|a). Bold line is the graph of pmin(µi). Gray dotted lines are graphs of

p(µi|µi−1) for some selected positive µi−1 ≤ a

Proof. The formula for pmin results from minimisation of p(µi|µi−1) with respect to
µi−1 ∈ [−a, a]. We use (6.1). First compute (∂/∂µi−1)p(µi|µi−1) to check that for every
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18 K.  Latuszyński et al.

µi the function µi−1 7→ p(µi|µi−1) has to attain minimum either at 0 or at a. Indeed,

∂

∂µi−1
p(µi|µi−1) = const ·

[ t
2

(s2 + µ2
i−1)t/2−1(s2 + µ2

i−1 + µ2
i )
−(t+1)/2 · 2µi−1

− t+ 1

2
(s2 + µ2

i−1)t/2(s2 + µ2
i−1 + µ2

i )
−(t+1)/2−1 · 2µi−1

]
= µi−1(s2 + µ2

i−1)t/2−1(s2 + µ2
i−1 + µ2

i )
−(t+1)/2−1

·
[
t(s2 + µ2

i−1 + µ2
i )− (t+ 1)(s2 + µ2

i−1 + µ2
i )
]
.

Assuming that µi−1 > 0, the first factor at the right hand side of the above equation is
positive, so (∂/∂µi−1)p(µi|µi−1) > 0 iff t(s2 + µ2

i−1 + µ2
i )− (t+ 1)(s2 + µ2

i−1 + µ2
i ) > 0,

that is iff

µ2
i−1 < tµ2

i − s2.

Consequently, if tµ2
i−s2 ≤ 0 then the function µi−1 7→ p(µi|µi−1) is decreasing for µi−1 >

0 and min0≤µi−1≤a p(µi|µi−1) = p(µi, a). If tµ2
i − s2 > 0 then this function first increases

and then decreases. In either case we have min0≤µi−1≤a p(µi|µi−1) = min[p(µi|a), p(µi|0)].
Thus using symmetry, p(µi|µi−1) = p(µi| − µi−1), we obtain

pmin(µi) = min
|µi−1|≤a

p(µi|µi−1) =

{
p(µi|a) if p(µi|a) ≤ p(µi|0);

p(µi|0) if p(µi|a) > p(µi|0).

Now it is enough to solve the inequality, say, p(µ|0) < p(µ|a), with respect to µ. The
following elementary computation shows that this inequality is fulfilled iff |µ| > h(a):

p(µ|0) =
(s2)t/2

(s2 + µ2)(t+1)/2
<

(s2 + a2)t/2

(s2 + a2 + µ2)(t+1)/2
= p(µ|a), iff(

s2 + a2 + µ2

s2 + µ2

)(t+1)/2

<

(
s2 + a2

s2

)t/2
, iff(

1 +
a2

s2 + µ2

)t+1

<

(
1 +

a2

s2

)t
, iff

a2

s2 + µ2
<

(
1 +

a2

s2

)t/(t+1)

− 1, iff

µ2 > a2

[(
1 +

a2

s2

)t/(t+1)

− 1

]−1
− s2.

It is enough to recall that s2 = t and thus the right hand side above is just h(a)2.
To obtain the formula for β, note that

β =

∫
pmin(µ)dµ =

∫
|µ|≤h(a)

p(µ|a)dµ+

∫
|µ|>h(a)

p(µ|0)dµ

and use (6.2).
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6.5 REMARK. It is interesting to compare the asymptotic behaviour of the constants
in Propositions 6.3 and 6.4 for a→∞. We can immediately see that λ2 → 1/(t− 2) and
K2 ∼ a2/(t − 2). Slightly more tedious computation reveals that h(a) ∼ const · a1/(t+1)

and consequently β ∼ const · a−t/(t+1).

The parameter of interest is the posterior mean (Bayes estimator of µ). Thus we let
f(µ) = µ and θ = Eπµ = 0. Note that our chain µ0, . . . , µi, . . . is a zero-mean martingale,
so f̄ = f and

σ2
as(P, f) = Eπ(f2) =

t

t− 3
.

The MSE of the estimator θ̂n =
∑n−1
i=0 µn can be also expressed analytically, namely

MSE = Eµ0 θ̂
2
n =

t

n(t− 3)
− t(t− 2)

n2(t− 3)2

[
1−

(
1

t− 2

)n]
+

t− 2

n2(t− 3)

[
1−

(
1

t− 2

)n]
µ2
0.

Obviously we have ‖f‖V 1/2 = 1.
We now proceed to examine the bounds proved in Section 4 under the geometric drift

condition, Assumption 4.1. Inequalities for the asymptotic variance play the crucial role
in our approach. Let us fix t = 50. Figure 1 shows how our bounds on σas(P, f) depend
on the choice of the small set J = [−a, a].

The gray solid line gives the bound of Theorem 4.2 (ii) which assumes the knowledge
of πV (and uses the obvious inequality π(V 1/2) ≤ (πV )1/2). The black dashed line
corresponds to a bound which involves only λ, K and β. It is obtained if values of πV
and πV 1/2 are replaced by their respective bounds given in Proposition 4.5 (i) and (ii).
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Bound for σas(P, f) in terms of K, λ and β
Bound using true value of π(V)
True value of σas(P, f) = 1.031

Figure 1. Bounds for the root asymptotic variance σas(P, f) as functions of a.

The best values of the bounds, equal to 2.68 and 2.38, correspond to a = 3.91 and a =
4.30, respectively. The actual value of the root asymptotic variance is σas(P, f) = 1.031.
In Table 1 below we summarise the analogous bounds for three values of t.

t σas(P, f) Bound with known πV Bound involving only λ, K, β

5 1.581 6.40 11.89

50 1.031 2.38 2.68

500 1.003 2.00 2.08

Table 1. Values of σas(P, f) vs. bounds of Theorem 4.2 (ii) combined with Proposition 4.5 (i)
and (ii) for different values of t.

The results obtained for different values of parameter t lead to qualitatively similar
conclusions. From now on we keep t = 50 fixed.

Table 2 is analogous to Table 1 but focuses on other constants introduced in Theorem
3.1. Apart from σas(P, f), we compare C0(P ), C1(P, f), C2(P, f) with the bounds given
in Theorem 4.2 and Proposition 4.5. The “actual values” of C0(P ), C1(P, f), C2(P, f)
are computed via a long Monte Carlo simulation (in which we identified regeneration
epochs). The bound for C1(P, f) in Theorem 4.2 (iii) depends on ξV , which is typically
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known, because usually simulation starts from a deterministic initial point, say x0 (in our
experiments we put x0 = 0). As for C2(P, f), its actual value varies with n. However, in
our experiments the dependence on n was negligible and has been ignored (the differences
were within the accuracy of the reported computations, provided that n ≥ 10).

Constant Actual value Bound Bound
with known πV involving only λ, K, β

C0(P ) 0.568 1.761 2.025

C1(P, f) 0.125 – 2.771

C2(P, f) 1.083 – 3.752

Table 2. Values of the constants appearing in Theorem 3.1 vs. bounds of Theorem 4.2
combined with Proposition 4.5.

Finally, let us compare the actual values of the root mean square error, RMSE :=√
Eξ (θ̂n − θ)2, with the bounds given in Theorem 3.1. In column (a) we use the formula

(3.2) with “true” values of σas(P, f) and C0(P ), C1(P, f), C2(P, f) given by (3.3)-(3.6).
Column (b) is obtained by replacing those constants by their bounds given in Theorem
4.2 and using the true value of πV . Finally, the bounds involving only λ, K, β are in
column (c).

n
√
n RMSE Bound (3.2)

(a) (b) (c)

10 0.98 1.47 4.87 5.29

50 1.02 1.21 3.39 3.71

100 1.03 1.16 3.08 3.39

1000 1.03 1.07 2.60 2.89

5000 1.03 1.05 2.48 2.77

10000 1.03 1.04 2.45 2.75

50000 1.03 1.04 2.41 2.71

Table 3. RMSE, its bound in Theorem 3.1 and further bounds based Theorem 4.2 combined
with Proposition 4.5.

Table 3 clearly shows that the inequalities in Theorem 3.1 are quite sharp. The bounds
on RMSE in column (a) become almost exact for large n. However, the bounds on the
constants in terms of minorization/drift parameters are far from being tight. While con-
stants C0(P ), C1(P, f), C2(P, f) have relatively small influence, the problem of bounding
σas(P, f) is of primary importance.

This clearly identifies the bottleneck of the approach: the bounds on σas(P, f) under
drift condition in Theorem 4.2 and Proposition 4.5 can vary widely in their sharpness
in specific examples. We conjecture that this may be the case in general for any bounds
derived under drift conditions. Known bounds on the rate of convergence (e.g. in total
variation norm) obtained under drift conditions are typically very conservative, too (e.g.
[Bax05, RT99, JH04]). However, at present, drift conditions remain the main and most
universal tool for proving computable bounds for Markov chains on continuous spaces.
An alternative might be working with conductance but to the best of our knowledge,
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so far this approach has been applied successfully only to examples with compact state
spaces (see e.g. [Rud09, MN07] and references therein).

6.2. A Poisson-Gamma Model

Consider a hierarchical Bayesian model applied to a well-known pump failure data set
and analysed in several papers (e.g.[GS90, Tie94, MTY95, Ros95a]). Data are available
e.g. in [Dav03], R package “SMPracticals” or in the cited Tierney’s paper. They consist
of m = 10 pairs (yi, ti) where yi is the number of failures for ith pump, during ti observed
hours. The model assumes that:

yi ∼ Poiss(tiφi), conditionally independent for i = 1, . . .m,

φi ∼ Gamma(α, r), conditionally i.i.d. for i = 1, . . . ,m,

r ∼ Gamma(σ, γ).

The posterior distribution of parameters φ = (φ1, . . . , φm) and r is

p(φ, r|y) ∝

(
m∏
i=1

φyii e
−tiφi

)
·

(
m∏
i=1

rαφα−1i · e−rφi
)
· rσ−1e−γr,

where α, σ, γ are known hyperparameters. The Gibbs sampler updates cyclically r and
φ using the following conditional distributions:

r|φ, y ∼ Gamma
(
mα+ σ, γ +

∑
φi

)
φi|φ−i, r, y ∼ Gamma (yi + α, ti + r) .

In what follows, the numeric results correspond to the same hyperparameter values as
in the above cited papers: α = 1.802, σ = 0.01 and γ = 1. For these values, Rosenthal in
[Ros95a] constructed a small set J = {(φ, r) : 4 ≤

∑
φi ≤ 9} which satisfies the one-step

minorization condition (our Assumption 2.1) and established a geometric drift condition
towards J (our Assumption 4.1) with V (φ, r) = 1 + (

∑
φi− 6.5)2. The minorization and

drift constants were the following:

β = 0.14, λ = 0.46, K = 3.3.

Suppose we are to estimate the posterior expectation of a component φi. To get a bound
on the (root-) MSE of the MCMC estimate, we combine Theorem 3.1 with Proposition 4.2
and Proposition 4.5. Suppose we start simulations at a point with

∑
φi = 6.5 i.e. with

initial value of V equal to 1. To get a better bound on ||f̄ ||
V

1
2

via Proposition 4.5 (v),

we first reduce ||f ||
V

1
2

by a vertical shift, namely we put f(φ, r) = φi − b for b =

3.327 (expectation of φi can be immediately recovered from that of φi − b). Elementary
and easy calculations show that ||f ||

V
1
2
≤ 3.327. We also use the bound taken from

Proposition 4.5 (ii) for π(V ) and the inequality π(V
1
2 ) ≤ π(V )

1
2 . Finally we obtain the

following values of the constants:

σas(P, f) = 171.6 and C0(P ) = 27.5, C1(P, f) = 547.7, C2(P, f) = 676.1.
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6.3. Contracting Normals

As discussed in the Introduction the results of the present paper improve over earlier
MSE bounds of [ LN11] for geometrically ergodic chains in that they are much more gen-
erally applicable and also tighter. To illustrate the improvement in tightness we analyze
the MSE and confidence estimation for the contracting normals toy-example considered
in [ LN11].

For the Markov chain transition kenel

P (x, ·) = N(cx, 1− c2), with |c| < 1, on X = R,

with stationary distribution N(0, 1), consider estimating the mean, i.e. put f(x) = x.
Similarly as in [ LN11] we take a drift function V (x) = 1 + x2 resulting in ||f ||V 1/2 = 1.
With the small set J = [−d, d] with d > 1, the drift and regeneration parameters can be
identified as

λ = c2 +
1(1− c2)

1 + d2
< 1, K = 2 + c2(d2 − 1) β = 2[Φ(

(1 + |c|)d√
1− c2

)− Φ(
|c|d√
1− c2

)],

where Φ stands for the standard normal cdf. We refer to [ LN11, Bax05] for details on
these elementary calculations.

To compare with the results of [ LN11] we aim at confidence estimation of the mean.
First, we combine Theorem 3.1 with Proposition 4.2 and Proposition 4.5 to upperbound
the MSE of θ̂n and next we use the Chebyshev inequality. We derive the resulting minimal
simulation length n guaranteeing

P(|θ̂n − θ| < ε) > 1− α, with ε = α = 0.1.

This is equivalent to finding minimal n s.t.

MSE(θ̂n) ≤ ε2α.

Note that for small values of α a median trick can be applied resulting in an exponentially
tight bounds, see [NP09,  LN11,  LMN11] for details. The value of c is set to 0.5 and the
small set half width d has been optimised numerically for each method yielding d = 1.6226
for the bounds from [ LN11] and d = 1.7875 for the results based on our Section 4. The

chain is initiated at 0, i.e. ξ = δ0. Since in this setting the exact distribution of θ̂n can
be computed analytically, both bounds are compared to reality, which is the exact true
simulation effort required for the above confidence estimation.

As illustrated by Table 4, we obtain an improvement of 5 orders of magnitude com-
pared to [ LN11] and remain less then 2 orders of magnitude off the truth.

Bound involving only λ, K, β Bound with known πV Bound from [ LN11] Reality

77,285 43,783 6,460,000,000 811

Table 4. Comparison of the total simulation effort n required for nonasymptotic confidence
estimation P(|θ̂n − θ| < ε) > 1− α with ε = α = 0.1 and the target function f(x) = x.
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7. Preliminary Lemmas

Before we proceed to the proofs for Sections 4 and 5, we need some auxiliary results that
might be of independent interest.

We work under Assumptions 2.1 (small set) and 5.1 (the drift condition). Note that
4.1 is the special case of 5.1, with α = 1. Assumption (4.1) implies

(7.1) PV
1
2 (x) ≤

{
λ

1
2V

1
2 (x) for x 6∈ J,

K
1
2 for x ∈ J,

because by Jensen’s inequality PV
1
2 (x) ≤

√
PV (x). Whereas for α < 1, Lemma 3.5 of

[JR02] for all η ≤ 1 yields

(7.2) PV η(x) ≤

{
V η(x)− η(1− λ)V (x)η+α−1 for x 6∈ J,
Kη for x ∈ J.

The following lemma is a well-known fact which appears e.g. in [Num02] (for bounded
g). The proof for nonnegative function g is the same.

7.3 Lemma. If g ≥ 0 then

EνΞ(g)2 = EνT

(
Eπg(X0)2 + 2

∞∑
n=1

Eπg(X0)g(Xn)I(T > n)

)
.

We shall also use the generalised Kac Lemma, in the following form that follows as an
easy corollary from Theorem 10.0.1 of [MT93]

7.4 Lemma. If π(|f |) <∞, then

π(f) =

∫
J

Ex
τ(J)∑
i=1

f(Xi)π(dx), where

τ(J) := min{n > 0 : Xn ∈ J}.(7.5)

The following Lemma is related to other calculations in the drift conditions setting,
e.g. [Bax05, LT96, DMR04, Ros02, For03, DGM08].

7.6 Lemma. If Assumptions 2.1 and 5.1 hold, then for all η ≤ 1

Ex
T−1∑
n=1

V α+η−1(Xn) ≤ V η(x)− 1 + η(1− λ)− η(1− λ)V α+η−1(x)

η(1− λ)
I(x 6∈ J)

+
Kη − 1

βη(1− λ)
+

1

β
− 1

≤ V η(x)

η(1− λ)
+
Kη − 1− β
βη(1− λ)

+
1

β
− 1 (if additionally α+ η ≥ 1).
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7.7 Corollary. For Ex
∑T−1
n=0 V

α+η−1(Xn) we need to add the term V α+η−1(x). Hence

Ex
T−1∑
n=0

V α+η−1(Xn) ≤ V η(x)− 1 + η(1− λ)− η(1− λ)V α+η−1(x)

η(1− λ)

+
Kη − 1

βη(1− λ)
+

1

β
− 1 + V α+η−1(x)

=
V η(x)

η(1− λ)
+
Kη − 1− β
βη(1− λ)

+
1

β
.

In the case of geometric drift, the second inequality in Lemma 7.6 can be replaced
by a slightly better bound. For α = η = 1, the first inequality in Lemma 7.6 entails the
following.

7.8 Corollary. If Assumptions 2.1 and 4.1 hold then

Ex
T−1∑
n=1

V (Xn) ≤ λV (x)

1− λ
+
K − λ− β
β(1− λ)

.

Proof of Lemma 7.6. The proof is given for η = 1, because for η < 1 it is identical
and the constants can be obtained from (7.2).

Let S := S0 := min{n ≥ 0 : Xn ∈ J} and Sj := min{n > Sj−1 : Xn ∈ J} for
j = 1, 2, . . .. Moreover set

H(x) := Ex
S∑
n=0

V α(Xn),

H̃ := sup
x∈J

Ex

(
S1∑
n=1

V α(Xn)
∣∣∣Γ0 = 0

)
= sup

x∈J

∫
Q(x, dy)H(y).

Note that H(x) = V α(x) for x ∈ J and recall that Q denotes the normalized “residual
kernel” defined in Section 2.

We will first show that

(7.9) H(x) ≤ V (x)− λ
1− λ

for x ∈ X .

Let Fn = σ(X0, . . . , Xn) and remembering that η = 1, rewrite (7.2) as

(7.10) V (Xn)αI(Xn 6∈ J) ≤ 1

1− λ
[V (Xn)− E(V (Xn+1)|Fn)] I(Xn 6∈ J).
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Fix x 6∈ J . Since {Xn 6∈ J} ⊇ {S > n} ∈ Fn we can apply (7.10) and write

Ex
(S−1)∧m∑
n=0

V α(Xn) = Ex
m∑
n=0

V α(Xn)I(S > n)

≤ 1

1− λ

m∑
n=0

Ex [V (Xn)− E(V (Xn+1)|Fn)] I(S > n)

=
1

1− λ

m∑
n=0

[
ExV (Xn)I(S > n)− ExE(V (Xn+1)I(S > n)|Fn)

]

=
1

1− λ

m∑
n=0

[
ExV (Xn)I(S > n)− ExV (Xn+1)I(S > n+ 1)

− ExV (Xn+1)I(S = n+ 1)

]
≤ 1

1− λ

[
V (x)− ExV (Xm+1)I(S > m+ 1)−

m∑
n=0

ExV (Xn+1)I(S = n+ 1)

]

=
V (x)− ExV (XS∧(m+1))

1− λ
,

so

Ex
S∧(m+1)∑
n=0

V α(Xn) = Ex
(S−1)∧m∑
n=0

V α(Xn) + ExV α(XS∧(m+1))

≤
V (x)− ExV (XS∧(m+1))

1− λ
+ ExV (XS∧(m+1))

=
V (x)− λExV (XS∧(m+1))

1− λ
≤ V (x)− λ

1− λ
.

Letting m→∞ yields equation (7.9) for x 6∈ J . For x ∈ J , (7.9) is obvious.
Next, from Assumption 5.1 we obtain PV (x) = (1− β)QV (x) + βνV ≤ K for x ∈ J ,

so QV (x) ≤ (K − β)/(1− β) and, taking into account (7.9),

(7.11) H̃ ≤ (K − β)/(1− β)− λ
1− λ

=
K − λ− β(1− λ)

(1− λ)(1− β)
.
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Recall that T := min{n ≥ 1 : Γn−1 = 1}. For x ∈ J we thus have

Ex
T−1∑
n=1

V α(Xn) = Ex
∞∑
j=1

Sj∑
n=Sj−1+1

V α(Xn)I(ΓS0
= · · · = ΓSj−1

= 0)

=

∞∑
j=1

Ex

 Sj∑
n=Sj−1+1

V α(Xn)

∣∣∣∣∣ΓS0
= · · · = ΓSj−1

= 0

 (1− β)j

≤
∞∑
j=1

H̃(1− β)j ≤ K − λ
β(1− λ)

− 1,

by (7.11). For x 6∈ J we have to add one more term and note that the above calculation
also applies.

Ex
T−1∑
n=1

V α(Xn) = Ex
S0∑
n=1

V α(Xn) + Ex
∞∑
j=1

Sj∑
n=Sj−1+1

V α(Xn)I(ΓS0
= · · · = ΓSj−1

= 0).

The extra term is equal to H(x)−V α(x) and we use (7.9) to bound it. Finally we obtain

(7.12) Ex
T−1∑
n=1

V α(Xn) ≤ V (x)− λ− (1− λ)V α(x)

1− λ
I(x 6∈ J) +

K − λ
β(1− λ)

− 1.

7.13 Lemma. If Assumptions 2.1 and 5.1 hold, then

(i) for all η ≤ α

π(V η) ≤
(
K − λ
1− λ

) η
α

,

(ii)

π(J) ≥ 1− λ
K − λ

,

(iii) for all n ≥ 0 and η ≤ α

EνV η(Xn) ≤ 1

β
η
α

(
K − λ
1− λ

)2 ηα

.

Proof. It is enough to prove (i) and (iii) for η = α and apply the Jensen inequality for

η < α. We shall need an upper bound on Ex
∑τ(J)
n=1 V

α(Xn) for x ∈ J , where τ(J) is
defined in (7.5). From the proof of Lemma 7.6

Ex
τ(J)∑
n=1

V α(Xn) = PH(x) ≤ K − λ
1− λ

, x ∈ J.
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And by Lemma 7.4 we obtain

1 ≤ πV α =

∫
J

Ex
τ(J)∑
n=1

V α(Xn)π(dx) ≤ π(J)
K − λ
1− λ

,

which implies (i) and (ii).
By integrating the small set Assumption 2.1 with respect to π and from (ii) of the

current lemma, we obtain

dν

dπ
≤ 1

βπ(J)
≤ K − λ

β(1− λ)
.

Consequently

EνV α(Xn) =

∫
X
PnV α(x)

dν

dπ
π(dx) ≤ K − λ

β(1− λ)

∫
X
PnV α(x)π(dx)

=
K − λ
β(1− λ)

π(V α),

and (iii) results from (i).

8. Proofs for Section 4 and 5

In the proofs for Section 4 we work under Assumption 4.1 and repeatedly use Corol-
lary 7.8.

Proof of Theorem 4.2. (i) Recall that C0(P ) = EπT − 1
2 , write

EπT ≤ 1 + Eπ
T−1∑
n=1

V (Xn)

and use Corollary 7.8. The proof of the alternative statement (i’) uses first (7.1) and then
is the same.

(ii) Without loss of generality assume that ‖f̄‖
V

1
2

= 1. By Lemma 7.3 we then have

σ2
as(P, f) = Eν(Ξ(f̄))2/EνT ≤ Eν(Ξ(V

1
2 ))2/EνT

= EπV (X0) + 2Eπ
T−1∑
n=1

V
1
2 (X0)V

1
2 (Xn) =: I + II.

To bound the second term we will use Corollary 7.8 with V
1
2 in place of V , which is
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legitimate because of (7.1).

II/2 = Eπ
T−1∑
n=1

V
1
2 (X0)V

1
2 (Xn) = EπV

1
2 (X0)E(

T−1∑
n=1

V
1
2 (Xn)|X0)

≤ EπV
1
2 (X0)

(
λ

1
2

1− λ 1
2

V
1
2 (X0) +

K
1
2 − λ 1

2 − β
β(1− λ 1

2 )

)

=
λ

1
2

1− λ 1
2

π(V ) +
K

1
2 − λ 1

2 − β
β(1− λ 1

2 )
π(V

1
2 ).

Rearranging terms in I + II, we obtain

σ2
as(P, f) ≤ 1 + λ

1
2

1− λ 1
2

π(V ) +
2(K

1
2 − λ 1

2 − β)

β(1− λ 1
2 )

π(V
1
2 )

and the proof of (ii) is complete.
(iii) The proof is similar to that of (ii) but more delicate, because we now cannot use

Lemma 7.3. First write

Ex(Ξ(V
1
2 ))2 = Ex

(
T−1∑
n=0

V
1
2 (Xn)

)2

= Ex

( ∞∑
n=0

V
1
2 (Xn)I(n < T )

)2

= Ex
∞∑
n=0

V (Xn)I(n < T ) + 2Ex
∞∑
n=0

∞∑
j=n+1

V
1
2 (Xn)V

1
2 (Xj)I(j < T )

=: I + II.

The first term can be bounded dirctly using Corollary 7.8 applied to V .

I = Ex
∞∑
n=0

V (Xn)I(n < T ) ≤ 1

1− λ
V (x) +

K − λ− β
β(1− λ)

.

To bound the second term, first condition on Xn and apply Corollary 7.8 to V
1
2 , then
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again apply this corollary to V and to V
1
2 .

II/2 = Ex
∞∑
n=0

V
1
2 (Xn)I(n < T )E

 ∞∑
j=n+1

V
1
2 (Xj)I(j < T )

∣∣∣∣Xn


≤ Ex

∞∑
n=0

V
1
2 (Xn)I(n < T )

(
λ

1
2

1− λ 1
2

V
1
2 (Xn) +

K
1
2 − λ 1

2 − β
β(1− λ 1

2 )

)

=
λ

1
2

1− λ 1
2

Ex
∞∑
n=0

V (Xn)I(n < T ) +
K

1
2 − λ 1

2 − β
β(1− λ 1

2 )
Ex

∞∑
n=0

V
1
2 (Xn)I(n < T )

≤ λ
1
2

1− λ 1
2

(
1

1− λ
V (x) +

K − λ− β
β(1− λ)

)
+
K

1
2 − λ 1

2 − β
β(1− λ 1

2 )

(
1

1− λ 1
2

V
1
2 (x) +

K
1
2 − λ 1

2 − β
β(1− λ 1

2 )

)
.

Finally, rearranging terms in I + II, we obtain

Ex(Ξ(V
1
2 ))2 ≤ 1

(1− λ 1
2 )2

V (x) +
2(K

1
2 − λ 1

2 − β)

β(1− λ 1
2 )2

V
1
2 (x)

+
β(K − λ− β) + 2(K

1
2 − λ 1

2 − β)2

β2(1− λ 1
2 )2

,

which is tantamount to the desired result.
(iv) The proof of (iii) applies the same way.

Proof of Proposition 4.5. For (i) and (ii) Assumption 4.1 or respectively drift con-
dition (7.1) implies that πV = πPV ≤ λ(πV − π(J)) + Kπ(J) and the result follows
immediately.

(iii) and (iv) by induction: ξPn+1V = ξPn(PV ) ≤ ξPn(λV +K) ≤ λK/(1−λ)+K =
K/(1− λ).

(v) We compute:

‖f̄‖V = sup
x∈X

|f(x)− πf |
V (x)

≤ sup
x∈X

|f(x)|+ |πf |
V (x)

≤ ‖f‖V + sup
x∈X

π( |f |V V )

V (x)

≤ sup
x∈X

(
‖f‖V

[
1 +

πV

V (x)

])
≤ ‖f‖V

[
1 +

π(J)(K − λ)

(1− λ) infx∈X V (x)

]
.

In the proofs for Section 5 we work under Assumption 5.1 and repeatedly use Lemma
7.6 or Corollary 7.7.
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Proof of Theorem 5.2. (i) Recall that C0(P ) = EπT − 1
2 and write

EπT ≤ 1 + Eπ
T−1∑
i=1

V 2α−1(Xn) = 1 +

∫
X
Ex

T−1∑
i=1

V 2α−1(Xn)π(dx).

From Lemma 7.6 with V , α and η = α we have

C0(P ) ≤ −1

2
+ 1 +

∫
X

(
V α(x)− 1

α(1− λ)
+

Kα − 1

βα(1− λ)
+

1

β
− 1

)
π(dx)

=
1

α(1− λ)
π(V α) +

Kα − 1− β
βα(1− λ)

+
1

β
− 1

2
.

(ii) Without loss of generality we can assume that ‖f̄‖
V

3
2
α−1 = 1. By Lemma 7.3 we have

σ2
as(P, f) = Eν(Ξ(f̄))2/EνT ≤ Eν(Ξ(V

3
2α−1))2/EνT

= EπV (X0)3α−2 + 2Eπ
T−1∑
n=1

V
3
2α−1(X0)V

3
2α−1(Xn) =: I + II.

To bound the second term we will use Lemma 7.6 with V , α and η = α
2 .

II/2 = Eπ
T−1∑
n=1

V
3
2α−1(X0)V

3
2α−1(Xn) = EπV

3
2α−1(X0)E(

T−1∑
n=1

V
3
2α−1(Xn)|X0)

≤ EπV
3
2α−1(X0)

(
V
α
2 (X0)− 1
α
2 (1− λ)

+
K

α
2 − 1

β α2 (1− λ)
+

1

β
− 1

)
=

2

α(1− λ)
π(V 2α−1) +

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β
− 1

)
π(V

3
2α−1).

The proof of (ii) is complete.
(iii) The proof is similar to that of (ii) but more delicate, because we now cannot use
Lemma 7.3. Write

Ex(Ξ(V
3
2α−1))2 = Ex

(
T−1∑
n=0

V
3
2α−1(Xn)

)2

= Ex

( ∞∑
n=0

V
3
2α−1(Xn)I(n < T )

)2

= Ex
∞∑
n=0

V 3α−2(Xn)I(n < T )

+ 2Ex
∞∑
n=0

∞∑
j=n+1

V
3
2α−1(Xn)V

3
2α−1(Xj)I(j < T )

=: I + II.

The first term can be bounded dirctly using Corollary 7.7 with η = 2α− 1

I = Ex
∞∑
n=0

V 3α−2(Xn)I(n < T ) ≤ V 2α−1(x)

(2α− 1)(1− λ)
+

K2α−1 − 1− β
(2α− 1)β(1− λ)

+
1

β
.
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To bound the second term, first condition on Xn and use Corollary 7.7 with η = α
2

then again use Corollary 7.7 with η = α and η = α
2 .

II/2 = Ex
∞∑
n=0

V
3
2α−1(Xn)I(n < T )E

 ∞∑
j=n+1

V
3
2α−1(Xj)I(j < T )

∣∣∣∣Xn


≤ Ex

∞∑
n=0

V
3
2α−1(Xn)I(n < T )

(
2V

α
2 (Xn)

α(1− λ)
+

2K
α
2 − 2− 2β

αβ(1− λ)
+

1

β
− 1

)

=
2

α(1− λ)
Ex

∞∑
n=0

V (Xn)2α−1I(n < T )

+

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β
− 1

)
Ex

∞∑
n=0

V
3
2α−1(Xn)I(n < T )

≤ 2

α(1− λ)

(
1

α(1− λ)
V α(x) +

Kα − 1− β
αβ(1− λ)

+
1

β

)
+

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β
− 1

)(
2V

α
2 (x)

α(1− λ)
+

2K
α
2 − 2− 2β

αβ(1− λ)
+

1

β

)
.

So after gathering the terms

Ex(Ξ(V
3
2α−1))2 ≤ 1

(2α− 1)(1− λ)
V 2α−1(x) +

4

α2(1− λ)2
V α(x) +

α(1− λ) + 4

αβ(1− λ)

+

(
8K

α
2 − 8− 8β

α2β(1− λ)2
+

4− 4β

αβ(1− λ)

)
V
α
2 (x) +

K2α−1 − 1− β
(2α− 1)β(1− λ)

(8.1)

+
4(Kα − 1− β)

α2β(1− λ)2
+ 2

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β

)2

− 2

(
2K

α
2 − 2− 2β

αβ(1− λ)
+

1

β

)
.

(iv) Recall that C2(P, f)2 = Eξ
(∑TR(n)−1

i=n |f̄(Xi)|I(T < n)
)2

and we have

(8.2)

Eξ

TR(n)−1∑
i=n

|f̄(Xi)|I(T < n)

2

=

=

n∑
j=1

Eξ


TR(n)−1∑

i=n

|f̄(Xi)|I(T < n)

2 ∣∣∣T = j

Pξ(T = j)

≤
n∑
j=1

Eν

TR(n−j)−1∑
i=n−j

|f̄(Xi)|

2

Pξ(T = j)

=

n∑
j=1

EνPn−j

(
T−1∑
i=0

|f̄(Xi)|

)2

Pξ(T = j).
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Since

EνPn−j

(
T−1∑
i=0

|f̄(Xi)|

)2

= νPn−j

Ex

(
T−1∑
i=0

|f̄(Xi)|

)2


and |f̄ | ≤ V 3
2α−1 we put (8.1) into (8.2) and apply Lemma 7.13 to complete the proof.

Proof of Proposition 5.4. For (i) see Lemma 7.13. For (ii) we compute:

‖f̄‖V η = sup
x∈X

|f(x)− πf |
V η(x)

≤ sup
x∈X

|f(x)|+ |πf |
V η(x)

≤ ‖f‖V η + sup
x∈X

π( |f |V η V
η)

V η(x)

≤ sup
x∈X

(
‖f‖V η

[
1 +

πV η

V η(x)

])
≤ ‖f‖V η (1 + π(V η)) .
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