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Abstract

The aim of this note is to relax assumptions and simplify proofs in

results given by Jones et al. in the recent paper ”Fixed-Width Output

Analysis for Markov Chain Monte Carlo.”
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In the sequel we refer to the setting and notation introduced in [5] where the

following lemma is stated and used repeatedly.

Lemma 1 (Lemma 1 of [5]). Let X be a Harris ergodic Markov chain on X

with invariant distribution π and suppose that g : X → R is a Borel function.
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Assume X is geometrically ergodic and the minorization condition holds, i.e.

there exists a function s : X → [0, 1], for which Eπs > 0 and a probability

measure Q such that

P (x,A) ≥ s(x)Q(A) for all x ∈ X and A ∈ B(X). (1)

Then for every integer p ≥ 1,

a. If Eπ|g|2(p−1)+δ < ∞ for some 0 < δ < 1 then EQNp
1 < ∞ and EQSp

1 <

∞.

b. If Eπ|g|2p+δ < ∞ for some 0 < δ < 1 then EQNp
1 < ∞ and EQSp+δ

1 <

∞,

where Nr = τr − τr−1, Sr =
∑τr−1

i=τr−1
g(Xi), and 0 = τ0 < τ1 < . . . are the re-

generations times of the chain (see Section 2.1 of [5] for detailed definitions).

The lemma generalizes the main theoretical result of [4] and is also of

independent interest. However, the following stronger result holds true.

Lemma 2. Under the assumptions of Lemma 1, if Eπ|g|p+δ < ∞ for some

p > 0 and δ > 0, then EQNp
1 < ∞ and EQSp

1 < ∞.

Proof. It is enough to show that EπSp
1 < ∞, since the remaining part of the

original proof is valid under the relaxed assumption. To this end first note

that

C :=
((

Eπ|g(Xi)|p+δ
) p

p+δ

)1/p

< ∞. (2)

For p ≥ 1 we use first the triangle inequality in Lp, then Hölder inequality,
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then (2) and finally Corollary A.1 of [5].

(EπSp
1)

1/p ≤
[
Eπ

(
τ1−1∑
i=0

|g(Xi)|
)p]1/p

=

[
Eπ

( ∞∑
i=0

1(i ≤ τ1 − 1)|g(Xi)|
)p]1/p

≤
∞∑
i=0

[
Eπ1(i ≤ τ1 − 1)|g(Xi)|p

]1/p

≤
∞∑
i=0

[
(Eπ1(i ≤ τ1 − 1))

δ
p+δ

(
Eπ|g(Xi)|p+δ

) p
p+δ

]1/p

= C

∞∑
i=0

(Prπ(τ1 ≥ i + 1))
δ

p(p+δ) < ∞. (3)

For 0 < p < 1 we use the fact xp is concave and then proceed similarly as in

(3) to obtain

EπSp
1 ≤ Eπ

( ∞∑
i=0

1(i ≤ τ1 − 1)|g(Xi)|
)p

≤
∞∑
i=0

Eπ1(i ≤ τ1 − 1)|g(Xi)|p

≤ Cp

∞∑
i=0

(Prπ(τ1 ≥ i + 1))
δ

(p+δ) < ∞.

Remark. Without additional restrictions Eπ|g|p < ∞ does not imply EQSp
1 <

∞, so Lemma 2 can not be improved. To see this note that Theorem 17.2.2 of

[6] combined with the presumption that in the setting of Lemma 1 Eπ|g|p <

∞ implies EQSp
1 < ∞ yields the Central Limit Theorem for normalized sums

of g(Xi) for geometrically ergodic Markov chains assuming only Eπg2 < ∞.

This however is not enough for the CLT, Bradley in [2] and also Häggström

in [3] provide counterexamples. Hence to obtain the implication Eπ|g|p <
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∞ ⇒ EQSp
1 < ∞, one needs stronger assumptions, e.g. uniform ergodicity

is enough, as proved in [1].

Lemma 2 allows us to restate results from section 3.2 of [5] with relaxed

assumptions. In particular in Lemma 2 and in Proposition 3 therein it is

enough to assume Eπ|g|2+δ+ε < ∞ for some δ > 0 and some ε > 0, instead

of Eπ|g|4+δ < ∞ for some δ > 0. Modifications of the proofs in [5] are

straightforward. Hence we have

Lemma 3 (Part b of Lemma 2 of [5]). Let X be a Harris ergodic Markov

chain with invariant distribution π. If X is geometrically ergodic, (1) holds

and Eπ|g|2+δ+ε < ∞ for some δ > 0 and some ε > 0, then there exists a

constant 0 < σg < ∞, and a sufficiently large probability space such that
∣∣∣∣∣

n∑
i=1

g(Xi)− nEπg − σgB(n)

∣∣∣∣∣ = O(γ(n))

with probability 1 as n → ∞, where γ(n) = nα log n, α = 1/(2 + δ), and

B = {B(t), t ≥ 0} denotes a standard Brownian motion.

Proposition 4 (Proposition 3 of [5]). Let X be a Harris ergodic Markov

chain with invariant distribution π. Further, suppose X is geometrically er-

godic, (1) holds and Eπ|g|2+δ+ε < ∞ for some δ > 0 and some ε > 0. If

1. an →∞, as n →∞,

2. bn →∞ and bn/n → 0 as n →∞,

3. b−1
n n2α[log n]3 → 0 as n →∞, where α = 1/(2 + δ),

4. there exists a constant c ≥ 1, such that
∑∞

n=1(bn/n)c < ∞,

Then σ̂2
BM → σ2

g w.p.1 as n →∞.
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Concluding Remark. Compare the foregoing result with Proposition 1 of [5] to

see that both methods described by Jones et al., i.e. regenerative simulation

(RS) and batch means (CBM), provide strongly consistent estimators of σ2
g

under the same assumption for the target function g.
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