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Abstract

The aim of this note is to relax assumptions and simplify proofs in
results given by Jones et al. in the recent paper ” Fixed-Width Output
Analysis for Markov Chain Monte Carlo.”
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In the sequel we refer to the setting and notation introduced in [5] where the

following lemma is stated and used repeatedly.

Lemma 1 (Lemma 1 of [5]). Let X be a Harris ergodic Markov chain on X

with invariant distribution ™ and suppose that g : X — R is a Borel function.
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Assume X 1is geometrically ergodic and the minorization condition holds, i.e.
there exists a function s : X — [0, 1], for which E,s > 0 and a probability

measure () such that
P(xz,A) > s(x)Q(A) for all x € X and A € B(X). (1)
Then for every integer p > 1,

a. If E|g]>" "+ < oo for some 0 < 6 < 1 then EqN? < 0o and EgS? <

Q.

b. If Eg|* ™ < oo for some 0 < & < 1 then EqN? < oo and EqSP™ <

o0,

where N, = 7. — T,_1, Sy = ZTT*I (Xi), and 0 =19 <1 < ... are the re-

1=Tp_1 g

generations times of the chain (see Section 2.1 of [5] for detailed definitions).

The lemma generalizes the main theoretical result of [4] and is also of

independent interest. However, the following stronger result holds true.

Lemma 2. Under the assumptions of Lemma 1, if E.|g[P™ < oo for some

p>0and d >0, then EgNY < 0o and EgSY < cc.

Proof. Tt is enough to show that E,S? < oo, since the remaining part of the
original proof is valid under the relaxed assumption. To this end first note
that

¢ = ((Elgtx) 7)< oa, @

For p > 1 we use first the triangle inequality in L?, then Holder inequality,



then (2) and finally Corollary A.1 of [5].
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For 0 < p < 1 we use the fact 2P is concave and then proceed similarly as in

(3) to obtain
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Remark. Without additional restrictions E,|g[’ < oo does not imply EgST <
o0, so Lemma 2 can not be improved. To see this note that Theorem 17.2.2 of
[6] combined with the presumption that in the setting of Lemma 1 E,|g|P <
oo implies EgST < oo yields the Central Limit Theorem for normalized sums
of g(X;) for geometrically ergodic Markov chains assuming only E,g¢* < oo.
This however is not enough for the CLT, Bradley in [2] and also Héggstrom

in [3] provide counterexamples. Hence to obtain the implication E|g|P <
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o0 = EpS? < oo, one needs stronger assumptions, e.g. uniform ergodicity

is enough, as proved in [1].

Lemma 2 allows us to restate results from section 3.2 of [5] with relaxed
assumptions. In particular in Lemma 2 and in Proposition 3 therein it is
enough to assume E,|g|**° < oo for some § > 0 and some & > 0, instead
of E.|g|*"? < oo for some § > 0. Modifications of the proofs in [5] are

straightforward. Hence we have

Lemma 3 (Part b of Lemma 2 of [5]). Let X be a Harris ergodic Markov
chain with invariant distribution w. If X is geometrically ergodic, (1) holds
and E|g|*"*¢ < oo for some § > 0 and some € > 0, then there exists a

constant 0 < o, < 00, and a sufficiently large probability space such that

Z 9(Xi) =nErg — 0,B(n)| = O(7(n))

with probability 1 as n — oo, where y(n) = n®logn, a« = 1/(2 + 0), and

B ={B(t),t > 0} denotes a standard Brownian motion.

Proposition 4 (Proposition 3 of [5]). Let X be a Harris ergodic Markov
chain with wmvariant distribution . Further, suppose X is geometrically er-

godic, (1) holds and E.|g|*T%*¢ < oo for some § > 0 and some ¢ > 0. If
1. a, — 00, as n — o0,
2. b, — o0 and b,/n — 0 as n — oo,
3. b n*[logn]® — 0 as n — oo, where a = 1/(2 + ),
4. there exists a constant ¢ > 1, such that Y~ (b,/n)® < oo,
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Then 63 — 0, w.p.1 as n — oo.



Concluding Remark. Compare the foregoing result with Proposition 1 of [5] to

see that both methods described by Jones et al., i.e. regenerative simulation

(RS) and batch means (CBM), provide strongly consistent estimators of o7

under the same assumption for the target function g.
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