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Abstract

This paper proposes a novel approach to linear dimension reduc-

tion for regression using nonparametric estimation with positive def-

inite kernels or reproducing kernel Hilbert spaces. The purpose of

the dimension reduction is to find such directions in the explanatory

variables that explain the response sufficiently: this is called sufficient

dimension reduction. The proposed method is based on an estimator

for the gradient of regression function considered for the feature vec-

tors mapped into reproducing kernel Hilbert spaces. It is proved that

the method is able to estimate the directions that achieve sufficient

dimension reduction. In comparison with other existing methods, the

proposed one has wide applicability without strong assumptions on the
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distributions or the type of variables, and needs only eigendecompo-

sition for estimating the projection matrix. The theoretical analysis

shows that the estimator is consistent with certain rate under some con-

ditions. Experimental results demonstrate that the proposed method

successfully finds effective directions with efficient computation even

for high dimensional explanatory variables.

1 Introduction

Recent data analysis often handles high dimensional data, which may be

given by images, texts, genomic expressions, and so on. Dimension reduc-

tion is almost always involved in such data analysis for avoiding various

problems caused by the high dimensionality; they are known as curse of

dimensionality. The purpose of dimension reduction thus includes prepro-

cessing for another data analysis aiming at less expensive computation in

later processing, noise reduction by suppressing noninformative directions,

and construction of readable low dimensional expressions such as visualiza-

tion.

This paper discusses dimension reduction for regression, where X is an

explanatory variable in Rm and Y is a response variable. The domain of Y is

arbitrary, either continuous or discrete. The purpose of dimension reduction

in this setting is to find such features of X that explain Y as effectively as

possible. This paper focuses on linear dimension reduction, in which linear

combinations of the components of X are used to make effective features.

Beyond the classical approaches such as reduced rank regression and

canonical correlation analysis, which can be used for extracting linear fea-

tures straightforwardly, a modern approach to this problem is based on
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the sufficient dimension reduction (Cook, 1994, 1998), which formulates the

problem by conditional independence. More precisely, assuming

p(Y |X) = p̃(Y |BTX) or equivalently Y⊥⊥X |BTX (1)

for the distribution, where p(Y |X) and p̃(Y |BTX) are respective conditional

probability density functions, and B is a projection matrix (BTB = Id,

where Id is the unit matrix) onto a d-dimensional subspace (d < m) in

Rm, we wish to estimate B with a finite sample from that distribution.

The subspace spanned by the column vectors of B is called the effective

dimension reduction (EDR) space (Li, 1991). We consider nonparametric

methods of estimating B without assuming any specific parametric models

for p(y|x).

The first method that aims at finding the EDR space is the sliced in-

verse regression (SIR, Li, 1991), which employs the fact that the inverse

regression E[X|Y ] distributes in the EDR space under some assumptions.

Many methods have been proposed in this vein of inverse regression such

as SAVE (Cook and Weisberg, 1991), directional regression (Li and Wang,

2007) and contour regression (Li et al., 2005), which use statistics such as

mean and variance in each slice or contour of Y . While many inverse re-

gression methods are computationally simple, they often need some strong

assumptions on the distribution of X such as elliptic symmetry. Addition-

ally, many methods such as slice-based methods assume that Y is a real

valued random variable, and thus are not suitable for multidimensional or

discrete responses.

Other interesting approaches to the linear dimension reduction include

the minimum average variance estimation (MAVE, Xia et al., 2002), in
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which the conditional variance of the regression in the direction of BTX,

E[(Y −E[Y |BTX])2|BTX], is minimized with the conditional variance esti-

mated by the local linear kernel smoothing method. The kernel smoothing

method requires, however, careful choice of the bandwidth parameter in the

kernel, and it is usually difficult to apply if the dimensionality is very high.

Additionally, the iterative computation of MAVE is expensive for large data

set. Another recent approach uses support vector machines for linear and

nonlinear dimension reduction, which estimates the EDR directions by the

normal direction of classifiers for the classification problems given by slicing

the response variable (Li et al., 2011).

The most relevant to this paper is the methods based on the gradient

of regressor φ(x) = E[Y |X = x] (Samarov, 1993, Hristache et al., 2001).

As detailed in Section 2.1, under Eq. (1) the gradient of φ(x) is contained

in the EDR space at each x. One can thus estimate B by nonparametric

estimation of the gradients. There are, however, some limitations in this

method: the nonparametric estimation of the gradient in high-dimensional

spaces is challenging as in MAVE, and if the conditional variance of Y is

dependent on X, the method is not able to extract that direction.

This paper proposes a novel approach to sufficient dimension reduction

with positive definite kernels. Positive definite kernels or reproducing kernel

Hilbert spaces have been widely used for data analysis (Wahba, 1990), es-

pecially since the success of the support vector machine (Boser et al., 1992,

Hofmann et al., 2008). The methods, in short, extract nonlinear features or

higher-order moments of data by transforming them into reproducing kernel

Hilbert spaces (RKHSs) defined by positive definite kernels. Various meth-

ods for nonparametric inference also have been recently developed in this
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discipline (Gretton et al., 2005b, 2008, 2009, Fukumizu et al., 2008).

A method for linear dimension reduction based on positive definite ker-

nels has been already proposed to overcome various limitations of existing

methods. The kernel dimension reduction (KDR, Fukumizu et al., 2004,

2009) uses conditional covariance on RKHSs to characterize the conditional

independence relation in Eq. (1). The KDR is a general method applicable

to a wide class of problems without requiring any strong assumptions on the

distributions or types of the variable X or Y . The involved computation,

however, requires the numerical optimization for the nonconvex objective

function of the projection matrix B, and uses the gradient descent method

which needs many inversions of Gram matrices. While KDR shows good

estimation accuracy for small data sets, the difficulty in the optimization

prohibits applications of KDR to very high-dimensional or large-size data.

Another relevant method using RKHS is the kernel sliced inverse regression

(Wu, 2008). This method, however, considers nonlinear extension of SIR

with the feature map, and differs from linear dimension reduction, which is

the focus of the current paper. Additionally, with RKHSs, Hsing and Ren

(2009) discuss an extension of inverse regression from finite-dimensional to

infinite-dimensional problems.

The method proposed in this paper uses the approach by the gradient

of regression function. Unlike the existing ones (Samarov, 1993, Hristache

et al., 2001), the gradient is estimated nonparametrically by the covariance

operators on RKHS, which is based on the recent development in the kernel

method (Fukumizu et al., 2009, Song et al., 2009). The proposed method

solves the problems of existing ones: by virtue of the kernel method the

sufficient dimension reduction is realized without any strong assumption
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on the regressor and probability distributions, the response Y can be of

arbitrary type, and the kernel estimation of the gradient is stable without

elaborate tuning of bandwidth. It solves also the computational problem in

the KDR: the estimator is given by the solution of an eigenproblem with no

need of numerical optimization. The method is thus applicable to large and

high-dimensional data, as we will demonstrate with numerical examples.

This paper is organized as follows. In Section 2, after giving a review on

the gradient-based method for dimension reduction and a brief explanation

of the statistical method with positive definite kernels, we will introduce the

kernel method for gradient-based dimension reduction. Some discussions

and theoretical results are also shown. Section 3 demonstrates the perfor-

mance of the method with some artificial and real world data sets. Section

4 concludes this paper. The technical proofs of the theoretical results are

shown in Appendix.

2 Gradient-based kernel dimension reduction

In this paper, it is assumed that all Hilbert spaces are separable. The range

of an operator A is denoted by R(A), and the Frobenius norm of a matrix

M by ∥M∥F .

2.1 Gradient of regression function and dimension reduction

We first review the basic idea of the gradient-based method for dimension

reduction in regression, which has been used in Samarov (1993) and Hris-

tache et al. (2001). Suppose Y is a real-valued random variable such that

the regression function E[Y |X = x] is differentiable with respect to x. We
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assume that Eq. (1) holds, and wish to estimate the projection matrix B

using i.i.d. sample (X1, Y1), . . . , (Xn, Yn). Under Eq. (1), it is easy to see

∂

∂x
E[Y |X = x] =

∂

∂x

∫
yp(y|x)dy

=

∫
y
∂p̃(y|BTx)

∂x
dy = B

∫
y
∂p̃(y|z)

∂z

∣∣∣∣
z=BT x

dy,

where exchangeability of the differentiation and integration is assumed. The

above equation implies that the gradient ∂E[Y |X = x]/∂x at any x is con-

tained in the EDR space. Based on this necessary condition, the average

derivative estimates (ADE, Samarov, 1993) has been proposed to use the

average of the gradients at Xi for estimating B.

In the more recent method (Hristache et al., 2001), the EDR space is

estimated by the principal component analysis for the gradient estimates,

which are given by the standard local linear least squares with a smooth-

ing kernel (Fan and Gijbels, 1996). Additionally, the contribution of the

estimated projector is gradually increased in the iterative procedure so that

the dimensionality of data is continuously reduced to a desired one. This

iterative procedure is expected to alleviate the difficulty of estimating the

gradients in a high dimensional space. We call the method in Hristache et al.

(2001) the iterative average derivative estimates (IADE) in the sequel.

Note that the methods based on the gradient of the regression function

E[Y |X = x] use only a necessary condition of Eq. (1), and not sufficient

in general. In fact, if the variables X = (X1, . . . , Xm) and Y follow Y =

f(X1)+N(0, σ(X2)2), where f(x1) and σ(x2) are some fixed functions, the

conditional probability p(y|x) depends on x1 and x2, while the regression

E[Y |X] depends only on x1. The existing gradient-based methods fail to

find the direction x2. In contrast, the method proposed in this paper avoids
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this obvious limitation of the gradient-based methods by virtue of nonlinear

feature mapping given by positive definite kernels, while keeping tractable

computational cost.

2.2 Kernel method for conditional mean

Positive definite kernels or reproducing kernel Hilbert spaces have been ex-

tensively applied to data analysis especially since the success of the sup-

port vector machine in classification problems (Wahba, 1990, Schölkopf and

Smola, 2002, Hofmann et al., 2008). More recently, it has been revealed that

kernel methods can be applied to statistical problems through representing

distributions in the form of means and covariances in RKHS (Fukumizu

et al., 2004, 2009, Song et al., 2009), which is briefly reviewed below.

For a set Ω, a (R-valued) positive definite kernel k on Ω is a symmetric

kernel k : Ω × Ω → R such that
∑n

i,j=1 cicjk(xi, xj) ≥ 0 for any x1, . . . , xn

in Ω and c1, . . . , cn ∈ R. It is known (Aronszajn, 1950) that a positive

definite kernel on Ω is uniquely associated with a Hilbert space H consisting

of functions on Ω such that (i) k(·, x) is in H, (ii) the linear hull of {k(·, x) |

x ∈ Ω} is dense in H, and (iii) for any x ∈ Ω and f ∈ H, ⟨f, k(·, x)⟩H =

f(x), where ⟨·, ·⟩H is the inner product of H. The property (iii) is called

reproducing property, and the Hilbert space H the reproducing kernel Hilbert

space (RKHS) associated with k.

Let (X ,BX , µX ) and (Y,BY , µY) be measure spaces, and (X,Y ) be a ran-

dom variable on X × Y with probability distribution P . Let kX and kY be

measurable positive definite kernels on X and Y, respectively, with respec-

tive RKHS HX and HY . It is assumed that E[kX (X,X)] and E[kY(Y, Y )]

are finite. The (uncentered) cross-covariance operator CY X : HX → HY is
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defined as the operator such that

⟨g, CY Xf⟩HY = E[f(X)g(Y )] = E
[
⟨f,ΦX (X)⟩HX ⟨ΦY(Y ), g⟩HY

]
(2)

holds for all f ∈ HX , g ∈ HY , where ΦX : X → HX and ΦY : Y → HY

are defined by x 7→ kX (·, x) and y 7→ kY(·, y), respectively. Similarly, CXX

denotes the operator on HX that satisfies ⟨f2, CXXf1⟩ = E[f2(X)f1(X)] for

any f1, f2 ∈ HX . These definitions are straightforward extensions of the

ordinary covariance matrices on Euclidean spaces, as CY X is the covariance

of the random vectors ΦX (X) and ΦY(Y ) on RKHSs. Although CY X and

CXX depend on the kernels, we omit the dependence in the notation for

simplicity.

With g = kY(·, y) in Eq. (2), the reproducing property derives

(CY Xf)(y) =

∫
kY(y, ỹ)f(x̃)dP (x̃, ỹ)

and

(CXXf)(x) =

∫
kX (x, x̃)f(x̃)dPX(x̃),

where PX is the marginal distribution of X. These equations show the

explicit expressions of CY X and CXX as integral operators.

An important notion in statistical inference with positive definite kernels

is the characteristic property. A bounded measurable positive definite kernel

k (with RKHS H) on a measurable space (Ω,B) is called characteristic if the

mapping from a probability Q on (Ω,B) to the mean EX∼Q[k(·, X)] ∈ H of

the H-valued random variable Φ(X) = k(·, X) is injective (Fukumizu et al.,

2004, 2009, Sriperumbudur et al., 2010). This is equivalent to assuming that

EX∼P [k(·, X)] = EX′∼Q[k(·, X ′)] implies P = Q, that is, probabilities are

uniquely determined by their means on the associated RKHS. Intuitively,
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with a characteristic kernel, the nonlinear function x 7→ E[k(x,X)] repre-

sents a variety of moments enough to determine the underlying probability.

Popular examples of characteristic kernel on an Euclidean space are the

Gaussian RBF kernel k(x, y) = exp(−∥x − y∥2/(2σ2)) and Laplace kernel

k(x, y) = exp(−α
∑m

i=1 |xi − yi|). It is also known (Fukumizu et al., 2009)

that a positive definite kernel on a measurable space (Ω,B) with corre-

sponding RKHS H is characteristic if and only if H+R is dense in the space

of square integrable functions L2(P ) for arbitrary probability P on (Ω,B),

where H+ R is the direct sum of two RKHSs H and R (Aronszajn, 1950).

An advantage of using positive definite kernels is that many quantities

can be estimated easily with finite sample by virtue of the reproducing prop-

erty. Given i.i.d. sample (X1, Y1), . . . , (Xn, Yn) with law P , the covariance

operator is estimated by the empirical covariance operator

Ĉ
(n)
Y Xf =

1

n

n∑
i=1

kY(·, Yi)⟨kX (·, Xi), f⟩HX =
1

n

n∑
i=1

f(Xi)kY(·, Yi). (3)

The estimator Ĉ
(n)
XX is given similarly. It is known that these estimators are

√
n-consistent in the Hilbert-Schmidt norm (Gretton et al., 2005a).

The fundamental result in discussing conditional probabilities with pos-

itive definite kernels is the following fact.

Theorem 1 (Fukumizu et al. (2004)). If E[g(Y )|X = ·] ∈ HX holds for

g ∈ HY , then

CXXE[g(Y )|X = ·] = CXY g.

If CXX is injective, the above relation can be thus expressed as

E[g(Y )|X = ·] = CXX
−1CXY g. (4)
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Noting ⟨CXXf, f⟩ = E[f(X)2], it is easy to see that CXX is injective, if kX is

a continuous kernel on a topological space X , and PX is a Borel probability

measure such that P (U) > 0 for any open set U in X . The assumption

E[g(Y )|X = ·] ∈ HX , however, may not hold in general; we can easily make

counterexamples with Gaussian RBF kernel and Gaussian distributions. We

can nonetheless obtain a regularized empirical estimator of E[g(Y )|X = ·]

based on Eq. (4), namely,

(Ĉ
(n)
XX + εnI)

−1Ĉ
(n)
XY g, (5)

where εn is a regularization coefficient in Thikonov-type regularization. We

can prove that Eq. (5) is a consistent estimator of E[g(Y )|X = ·] in L2(PX)-

norm even if E[g(Y )|X = ·] is not in HX but in L2(PX), and under the

assumption E[g(Y )|X = ·] ∈ HX , it is consistent in HX norm. Furthermore,

if E[g(Y )|X = ·] ∈ R(Cν
XX) for ν > 0, it is consistent in HX norm of the

order O
(
n−min{ 1

4
, ν
2ν+2

}) with εn = n−max{ 1
4
, 1
2ν+2

}. These facts have been

proved in various contexts (e.g. Smale and Zhou, 2005, 2007, Caponnetto

and De Vito, 2007, Bauer et al., 2007), so the proof is omitted. Also, this

type of regularization has been recently used in combination with some

dimension reduction techniques (Zhong et al., 2005, Bernard-Michel et al.,

2008).

The estimator Eq. (5) is simply the same as the kernel ridge regres-

sion with g(Y ) as a response. Note, however, that the operator (Ĉ
(n)
XX +

εnI)
−1Ĉ

(n)
XY includes the information on the regression with various nonlin-

ear transform of Y simultaneously. With a characteristic kernel, this will

provide sufficient dimension reduction rigorously as we see in Section 2.3.3.

Beyond the estimation of regression functions, the dimension reduction
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method discussed in Section 2.1 requires to estimate the gradient of the

regression function. It is known (e.g., Steinwart and Christmann, 2008,

Section 4.3) that if a positive definite kernel k(x, y) on an open set in the

Euclidean space is continuously differentiable with respect to x and y, every

f in the corresponding RKHS is continuously differentiable, and if further

∂k(·, x)/∂x ∈ HX , the relation

∂f(x)

∂x
=

⟨
f,

∂

∂x
k(·, x)

⟩
HX

(6)

holds for any f ∈ HX . Namely, the derivative of any function in that RKHS

can be computed in the form of the inner product. This property combined

with the estimator Eq. (5) provides our method for dimension reduction.

2.3 Gradient-based kernel dimension reduction

2.3.1 Method

Let (X,Y ) be a random vector on Rm × Y, where Y is a measurable space

with measure µY . We prepare positive definite kernels kX and kY on Rm

and Y, respectively, with respective RKHS HX and HY . We assume that

Eq. (1) holds for some m × d matrix B with BTB = Id. It is then easy to

see that for any g ∈ HY there exists a function φg(z) on Rd such that

E[g(Y ) | X] = φg(B
TX). (7)

In fact, we can simply set φg(z) =
∫
g(y)p̃(y|z)dµY . Note that g 7→ φg(B

TX)

is a linear functional of HY for any value of X.

Recall we make the following assumptions

(i) HX and HY are separable.
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(ii) kX and kY are measurable, and E[kX (X,X)] < ∞, E[kY(Y, Y )] < ∞.

In deriving an estimator for B, we further make the following technical

assumptions.

(iii) kX (x̃, x) is continuously differentiable and ∂kX (·, x)/∂xi ∈ R(CXX)

for i = 1, . . . ,m.

(iv) E[kY(y, Y )|X = ·] ∈ HX for any y ∈ Y.

(v) φg(z) in Eq. (7) is differentiable with respect to z, and the linear

functional

g 7→ ∂φg(z)

∂za

is continuous for any z ∈ Rd and a = 1, . . . , d.

The assumption (iv) implies that E[g(Y )|X = ·] ∈ HX for any g ∈ HY . Un-

der Eq. (1), the assumption (v) is true if C :=
∫ √

kY(y, y)|∂p̃(y|z)/∂za|dµY(y)

is finite for any z and the differentiation and integration are exchangeable:

in fact, it is easy to see∣∣∣∂φg(z)

∂za

∣∣∣ ≤ ∫ ∣∣⟨g, kY(·, y)⟩∣∣∣∣∣∂p̃(y|z)
∂za

∣∣∣dµY(y) ≤ C∥g∥HY .

By Riesz’ theorem, the assumption (v) implies that there is Ψa(z) ∈ HX

such that for a = 1, . . . , d,

⟨g,Ψa(z)⟩HY =
∂φg(z)

∂za
.

We write ∇aφ(z) for Ψa(z), because it is the derivative of the HY -valued

function z 7→ E[kY(·, Y )|BTX = z]. The relation Eq. (7) then implies that

∂

∂xi
E[g(Y )|X = x] =

∂φg(B
Tx)

∂xi
=

d∑
a=1

Bia⟨g,∇aφ(B
Tx)⟩HY (8)
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holds for any g ∈ HY . On the other hand, letting C−1
XX

(
∂kX (·, x)/∂xi

)
denote the inverse element guaranteed by the assumption (iii), Theorem 1

and Eq. (6) show that for any g ∈ HY

∂

∂xi
E[g(Y )|X = x] =

⟨
CXY g, C

−1
XX

∂kX (·, x)
∂xi

⟩
=

⟨
g, CY XC−1

XX

∂kX (·, x)
∂xi

⟩
.

(9)

From Eqs. (8) and (9), we have CY XC−1
XX(kX (·, x)/∂xi) =

∑d
a=1Bia∇aφ(B

Tx)

and thus

⟨
CY XC−1

XX

∂kX (·, x)
∂xi

, CY XC−1
XX

∂kX (·, x)
∂xj

⟩
HY

=
d∑

a,b=1

BiaBjb⟨∇aφ(B
Tx),∇bφ(B

Tx)⟩HY

for i, j = 1, . . . ,m. This means that the eigenvectors for the non-trivial

eigenvalues of the m×m matrix M(x), which is defined by

Mij(x) =
⟨
CY XC−1

XX

∂kX (·, x)
∂xi

, CY XC−1
XX

∂kX (·, x)
∂xj

⟩
HY

, (10)

are contained in the EDR space.

Given i.i.d. sample (X1, Y1), . . . , (Xn, Yn) from the true distribution, the

estimator of M(x) is easily obtained based on Eq. (5):

M̂n(x) =
⟨∂kX (·, x)

∂x
,
(
Ĉ

(n)
XX + εnI

)−1
Ĉ

(n)
XY Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1∂kX (·, x)
∂x

⟩
= ∇kX(x)T (GX + nεnI)

−1GY (GX + nεnI)
−1∇kX(x), (11)

where GX and GY are Gram matrices (kX (Xi, Xj)) and (kY(Yi, Yj)), re-

spectively, and ∇kX(x) = (∂kX (X1, x)/∂x, · · · , ∂kX (Xn, x)/∂x)
T ∈ Rn×m.

In the case of Gaussian RBF kernel, for example, the j-th row of ∇kX(Xi)

is given by (1/σ2)(Xi − Xj) exp(−∥Xi − Xj∥2/(2σ2)), which is simply the
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Hadamard product between the Gram matrix GX and (Xa
i −Xa

j )
n
ij=1 (a =

1, . . . ,m).

As the eigenvectors of M(x) are contained in the EDR space for any x,

we propose to use the eigenvectors of the m×m symmetric matrix

M̃n :=
1

n

n∑
i=1

M̂n(Xi)

=
1

n

n∑
i=1

∇kX(Xi)
T (GX + nεnIn)

−1GY (GX + nεnIn)
−1∇kX(Xi), (12)

the average of M̂n(Xi) over all the data points Xi. The projection matrix

B in Eq. (1) is then estimated by the eigenvectors corresponding to the

d largest eigenvalues of the M̃n. We call this method the gradient-based

kernel dimension reduction (gKDR). As shown in Section 2.3.3, the empirical

average M̃n converges to the population mean E[M(X)] at some rate.

2.3.2 Discussions and extensions

As an advantage of the kernel methods, the gKDR method can handle any

type of variable for Y including multivariate or non-vectorial one in the same

way, once a kernel is defined on the space. Also, the nonparametric nature

of the kernel method avoids making strong assumptions on the distribution

of X, Y , or the conditional probability, which are often needed in many

famous dimension reduction methods such as SIR, pHd, contour regression,

and so on.

As shown in Introduction, the previous gradient-based methods ADE

and IADE are not necessarily able to find the EDR space, since they do not

consider the conditional probability but only regressor. In contrast, by in-

corporating various nonlinear functions given by the nonlinear feature map
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kY(ỹ, ·), the gKDR method is able to find the EDR space with a character-

istic kernel, as shown in Theorem 2 later.

The KDR method (Fukumizu et al., 2004, 2009) also provides a method

for sufficient dimension reduction with no strong assumptions on the dis-

tribution. The computation of KDR, however, requires a gradient method

with expensive matrix inversion, as discussed in Introduction. This makes

it infeasible to apply KDR to large dimensionality more than hundreds. In

contrast, the gKDR uses only the eigendecomposition after Gram matrix

manipulation. As we see in Section 3, the gKDR approach can be used for

data sets of ten thousand dimension.

The results of gKDR depend in practice on the choice of kernels and reg-

ularization coefficients as in all kernel methods. We use the cross-validation

(CV) for choosing kernels and parameters, combined with some regression

or classification method. In this paper, the simple k-nearest neighbor (kNN)

regression / classification is used in the CV; for each candidate of kernel or

parameter, we compute the CV error by the kNN method with the input

data projected on the subspace given by gKDR, and choose the one that

gives the least error.

The selection of appropriate dimensionality d is also an important issue.

While many methods have been developed for the choice of dimensionality

in respective dimension reduction methods (Schott, 1994, Ferré, 1998, Cook

and Lee, 1999, Bura and Cook, 2001, Yin and Seymour, 2005, Li and Wang,

2007, Li et al., 2011, to list some), they are derived from asymptotic analysis

of some test statistics, which may not be practical in situations of large

dimensionality and small samples encountered often in current data analysis.

In this paper, we do not discuss asymptotics of test statistics to select the
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dimensionality, but consider the cross-validation with kNN, as discussed for

parameter selection above, for estimating the optimum dimensionality.

The time complexity of the matrix inversions and the eigendecomposi-

tion required for gKDR are O(n3), which may be prohibitive for large data.

We can apply, however, low-rank approximation of Gram matrices, such

as incomplete Cholesky factorization (Fine and Scheinberg, 2001), which is

a standard method for reducing time complexity in handling Gram matri-

ces. It is known that the eigenspectrum of Gram matrices with Gaussian

kernel decays fast for some typical data distributions (Widom, 1963, 1964)

so that the low-rank approximation can give good approximation accuracy

with significant saving of the computational cost. The complexity of incom-

plete Cholesky factorization for a matrix of size n is O(nr2) in time and

O(nr) in space, where r is the rank. The space complexity may be also a

problem of gKDR, since (∇kX(Xi))
n
i=1 has n2 ×m dimension. In the case

of Gaussian RBF kernel, the necessary memory can be reduced by low rank

approximation of the Gram matrices. Recall that ∂kX (Xj , x)/∂x
a|x=Xi for

Gaussian RBF kernel is given by (1/σ2)(Xa
j −Xa

i ) exp(−∥Xj −Xi∥2/(2σ2))

(a = 1, . . . ,m). Let GX ≈ RRT and GY ≈ HHT be the low rank ap-

proximation with rx = rkR and ry = rkH (rx, ry < min{n,m}). With the

notation F := (GX + nεnIn)
−1H and Θas

i = (1/σ2)Xa
i Ris, we have

M̃n,ab ≈
n∑

i=1

ry∑
t=1

Γt
iaΓ

t
ib (1 ≤ a, b ≤ m),
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where

Γt
ia =

n∑
j=1

rx∑
s=1

1

σ2
(Xa

j −Xa
i )RjsRisFjt

=

rx∑
s=1

Ris

( n∑
j=1

Θas
j Fjt

)
−

rx∑
s=1

Θas
i

( n∑
j=1

RjsFjt

)
.

With this approximation, the complexity isO(nmr) in space andO(nm2r) in

time (r = max{rx, ry}), which is much more efficient in space than straight-

forward implementation.

We introduce two variants of gKDR. First, as discussed in Hristache et al.

(2001), accurate nonparametric estimation for the derivative of regression

function with high-dimensional X may not be easy in general. We propose

a method for decreasing the dimensionality iteratively in a similar idea to

IADE, but more directly. Using gKDR, we first find a projection matrix

B1 of a larger dimension d1 than the target dimensionality d, project data

Xi onto the subspace as Z
(1)
i = BT

1 Xi, and find the projection matrix B2

(d1 × d2 matrix) for Z
(1)
i onto a d2 (d2 < d1) dimensional subspace. After

repeating this process to the dimensionality d, the final result is given by

B̂ = B1B2 · · ·Bℓ. In this way, we can expect the later projector is more

accurate by the low dimensionality of the data Z
(s)
i . We call this method

gKDR-i.

The iterative approach taken in gKDR-i is much simper than the method

used by IADE, in which the data is projected by the matrix (I+ρ−2BBT )−1/2

where BBT is the projector estimated in the previous step and ρ is the pa-

rameter decreasing in the iteration. While IADE can continuously increase

the contribution of the projector in the iterative procedure, the choice of the

parameter ρ is arbitrary, and not easy to control.
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Second, we see from Eq. (12) that the rank of M̃n is at most that of GY .

This is a strong limitation of gKDR, since in classification problems, where

the L classes are encoded as L different points, the Gram matrix GY is of

rank L at most. Note that this problem is shared by some other linear di-

mension reduction methods including SIR and canonical correlation analysis

(CCA). To solve this problem, we propose to use the variants of M̂n(x) over

all points x = Xi instead of the average M̃n. After partitioning {1, . . . , n}

into T1, . . . , Tℓ, we compute the m × d matrices B̂[a] (a = 1, . . . , ℓ) given

by the eigenvectors of M̂[a] =
∑

i∈Ta
M̂(Xi), and make the final estimator

B̂ ∈ Rm×d by the eigenvectors corresponding to the largest d eigenvalues of

the matrix P̂ = 1
ℓ

∑ℓ
a=1 B̂[a]B̂

T
[a]. We call this method gKDR-v. While we

can use the same technique as the one in IADE, where orthonormal basis

functions with respect to (Xi)
n
i=1 are employed in making a larger dimen-

sional space than m, we take a simpler approach of partitioning the data

points.

2.3.3 Theoretical properties of gKDR

We have derived the gKDR method based on the necessary condition of

EDR space. The following theorem shows that the condition is sufficient

also, if kY is characteristic. In the sequel, Span(B) denotes the subspace

spanned by the column vectors of matrix B.

Theorem 2. In addition to the assumptions (i)-(v), assume that the kernel

kY is characteristic. If the eigenvectors of M(x) is contained in Span(B)

almost surely, then Y and X are conditionally independent given BTX.

Proof. First note that, from Eqs. (9) and (10), the eigenvectors of M(x) is
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contained in Span(B) if and only if ∂E[g(Y )|X = x]/∂x ∈ Span(B) for any

g ∈ HY . Let C be an m × (m − d) matrix such that CTC = Im−d and

the column vectors of C are orthogonal to those of B, and write (U, V ) =

(BTX,CTX). Then, the condition ∂E[g(Y )|X = x]/∂x ∈ Span(B) is equiv-

alent to E[g(Y )|(U, V ) = (u, v)] = E[g(Y )|U = u] for any g ∈ HY . Since

kY is characteristic, this implies that the conditional probability of Y given

(U, V ) is equal to that of Y given U , which means the desired conditional

independence.

The above theorem implies that the gKDR method estimates the suffi-

cient dimension reduction space, which gives the conditional independence

of Y and X given BTX, assuming the existence of such a matrix B. While

there may not exist such a subspace rigorously in practice, the ratio of the

sum of the top d-eigenvalues
∑d

i=1 λi/
∑m

j=1 λj , where λ1 ≥ · · · ≥ λm ≥ 0 are

the eigenvalues of M̃n, may be used for quantifying the degree of conditional

independence. To see this possibility, we made a simple experiment using

Y = X1 + η cos(X2) + Z, where X = (X1, . . . , X5) ∼ Unif[−π, π]5 is five

dimensional explanatory variables and Z ∼ N(0, 10−2) is an independent

noise. With n = 400 and d = 1, we evaluated the ratio over 100 runs with

different samples, and observed that the means of the ratio decrease mono-

tonically (0.893, 0.830, 0.722, 0.654, 0.590, 0.521), as the deviation from the

conditional independence with d = 1 increases (η = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0).

This illustrates that the ratio can be a useful indicator for evaluating the

conditional independence assumption. More theoretical discussions on this

measure for conditional dependence will be an interesting and important

problem, but it is not within the scope of this paper.
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The next theorems show the consistency and its rate of gKDR estimator

under some conditions on the smoothness. Theorem 3 shows the consistency

with the total dimension m fixed, and Theorem 4 discusses the situation

where the dimensionality m grows as sample size n increases. While the

former is a corollary to the latter, for simplicity we show the result indepen-

dently. The proofs are shown in Appendix.

Theorem 3. Assume that ∂kX (·, x)/∂xa ∈ R(Cβ+1
XX ) (a = 1, . . . ,m) for

some β ≥ 0 and E[kY(y, Y )|X = ·] ∈ HX for every y ∈ Y. Then, for the

choice

εn = n
−max{ 1

3
, 1
2β+2

}
,

we have

M̂n(x)−M(x) = Op

(
n
−min{ 1

3
, 2β+1
4β+4

}
)

for every x ∈ X as n → ∞. If further E[∥M(X)∥2F ] < ∞ and ∂kX (·, x)/∂xa =

Cβ+1
XX hax for some hax ∈ HX with E∥haX∥HX < ∞ (a = 1, . . . ,m), then M̃n

converges in probability to E[M(X)] in the same order as above.

In considering dimension reduction for high dimensional X, it is impor-

tant to consider the case where the dimension m grows as sample size n

increases. In such cases, the positive definite kernel for X must be depen-

dent on m. We assume that the response variable Y is fixed, and use k(m) for

the positive definite kernel on Rm with the associated RKHS HX
(m). In dis-

cussing the convergence with the series of kernels, it is reasonable to assume

E[k(m)(X,X)2] = 1 for any m, which normalizes the scale of the kernels.

This is satisfied if the kernel has the form k(m)(x, x̃) = φ(∥x − x̃∥Rm) with

φ(0) = 0 such as Gaussian and Laplace kernel. In the following theorem

the dimension m depends on n so that m = mn. For notational simplicity,
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however, the dependence of m on n is not explicitly shown in the symbols

below.

As many quantities depend on the dimensionality m, we make the fol-

lowing assumptions in addition to (i)-(v).

(vi) For each m = mn there is βm ≥ 0 and Lm ≥ 0 such that some

h
(m)
a,x ∈ HX

(m) satisfies

∂k(m)(·, x)
∂xa

= Cβm+1
XX h(m)

a,x (a = 1, . . . ,m),

and ∥h(m)
a,x ∥HX

(m) ≤ Lm irrespective to a and x.

(vii) Let

αm := (E[k(m)(X,X)2]−E[k(m)(X, X̃)2])1/2,

where X̃ is an independent copy of X. Then,

αm√
n
→ 0 (n → ∞).

Theorem 4. Under the assumptions (i)-(vii), for the choice

εn =
(α2

m

n

)max{ 1
3
, 1
2βm+2

}
,

we have ∥∥∥M̂n(x)−M(x)
∥∥∥
F
= Op

(
mL2

m

(α2
m

n

)min{ 1
3
, 2βm+1
4βm+4

})
for every x ∈ X as n → ∞. If further mL2

m/
√
n → 0 (n → ∞), then M̃n

converges in probability to E[M(X)] of the order Op(mL2
m/

√
n+mL2

m(α
2
m
n )

min{ 1
3
, 2βm+1
4βm+4

}
)

in Frobenius norm.

Note that, assuming that the d-th largest eigenvalues ofM(x) or E[M(X)]

is strictly larger than (d+1)-th largest one, the convergence of the matrices in
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Theorems 3 and 4 implies the convergence of the corresponding eigenspaces

(e.g., Stewart and Sun, 1990, Sec. V.2). This means that the estimator

of gKDR is consistent to the subspace given by the top d eigenvectors of

E[M(X)]. From Theorems 2, 3, and 4, under the assumptions, the gKDR

gives a consistent method for sufficient dimension reduction.

To illustrate implications of Theorem 4, consider the case where k(m)(x, y) =

exp(xT y/(2σ2
m)) and X ∼ N(0, τ2mIm) with σm >

√
2τm. It is easy to

see that α2
m = 1/(1 − 2δ2m)m − 1/(1 − δ4m)m with δm = τm/σm. Suppose

δm → 0. Then, from (1 − 2δ2m)m = (1 − 2δ2m)(1/2δ
2
m)(2mδ2m) ≈ e−2mδ2m and

1−
(1−2δ2m

1−δ4m

)m
= 1− (1−γmδ2m)m ≈ 1−e−2mδ2m with γm = (2−δ2m)/(1−δ4m),

if mδ2m → β ∈ [0,∞] as m → ∞, we have α2
m → e2β − 1, and in the case

mδ2m → 0, we further obtain α2
m ≈ 2mδ2m. This shows τm/σm controls the

convergence rate. On the other hand, the choice of σm is related to the

assumption on Lm, for which the analysis is not straightforward. The above

example on the order of αm suggests that the convergence order may de-

pend much on the kernel or kernel parameter. More detailed analysis of the

high-dimensional kernel methods is an important future research direction.

The above consistency results assume the use of full Gram matrices, and

thus the low-rank approximation discussed in Section 2.3.2 is not incorpo-

rated. Some consistency results can be proved without difficulty, if we set the

rank sufficiently large, as sample size increases, so that the approximation

errors can be negligibly small. The computational cost is higher, however, if

the rank is larger. The method with low-rank approximation then has trade-

off between estimation accuracy and computational cost, and the optimal

choice is not straightforward.
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3 Numerical examples

In the kernel methods of this section, the Gaussian RBF kernel k(x, x̃) =

exp(−∥x− x̃∥2/(2σ2)) is always used even for discrete variables.

3.1 Synthesized data

First we use the following four types of synthesized data to verify the basic

performance of gKDR and the two variants:

(A): Y = Z sin(Z) +W, Z = 1√
5
(X1 + 2X2),

X ∼ Unif[−1, 1]10, W ∼ N(0, 10−2),

(B): Y = (Z3
1 + Z2)(Z1 − Z3

2 ) +W,

Z1 =
1√
2
(X1 +X2), Z2 =

1√
2
(X1 −X2),

X ∼ Unif[−1, 1]10, W ∼ Γ(1, 2).

(C): Y = (X1 − a)4E,

X ∼ (N(0, 1/4) ∗ I[−1,1])
10, E ∼ N(0, 1).

(D): Y =

5∑
j=1

(Z3
2j−1 + Z2j)(Z2j−1 − Z3

2j) +W,

Z2j−1 =
1√
2
(X2j−1 +X2j), Z2j =

1√
2
(X2j−1 −X2j),

X ∼ Unif[−1, 1]50, W ∼ Laplace(2).

The model (A) includes the additive Gaussian noise, while (B) has a skewed

noise, which follows the Gamma distribution. The model (C) has multi-

plicative noise. In (A), (B) and (C), X is 10 dimensional, while (D) uses 50

24



dimensional X. Except (C), X is uniformly distributed, while in (C) X is

generated by the truncated normal distribution. The model (A) is the same

as the ones used in Hristache et al. (2001). The sample size is n = 100, 200

for (A)(B), n = 200, 400 for (C), and n = 1000, 2000 for (D). The discrep-

ancy between the estimator B and the true projector B0 is measured by

∥B0B
T
0 (Im −BBT )∥F /

√
d. For choosing the parameter σ in Gaussian RBF

kernel and the regularization parameter εn, the CV in Section 2.3.2 with

kNN (k = 5) is used with 8 different values given by cσmed (0.5 ≤ c ≤ 10),

where σmed is the median of pairwise distances of data (Gretton et al., 2008),

and ℓ = 4, 5, 6, 7 for εn = 10−ℓ (a similar strategy is used for the CV in all

the experiments below). For gKDR-i, the dimensionality is reduced one by

one in the case of (A)–(C), and 10 dimensions are reduced at one iteration

for (D). For gKDR-v, the data is partitioned into 50 groups.

We compare the results with those of IADE, SIR II (Li, 1991), MAVE,

and KDR. In IADE there are seven parameters: h1 and ρ1 for the initial

value of the bandwidth hk in the smoothing kernel K(x/hk) and the coef-

ficient in the projection matrix (I + BkBk/ρ
2
k)

1/2, respectively; ah and aρ

for the increase / decay rate of hk and ρk, respectively; hmax and ρmin for

the maximum / minimum values for the parameters; Cw for the threshold

of the minimum eigenvalue of the weighted covariance matrix. We use the

following setting:

h1 = γhn
−1/max (4,m), hmax = 2

√
d, ah = e1/2max (4,m),

ρ1 = 1, ρmin = γρn
−1/3, aρ = e−1/6, Cw = 1/4

and optimize γh, γρ manually for each data set so that we can obtain opti-

mum results. Although Hristache et al. (2001) use γh = γρ = 1, we observed
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gKDR gKDR-i gKDR-v IADE SIR II MAVE KDR
gKDR
+KDR

(A) n = 100 0.1989 0.1639 0.2002 0.1372 0.2986 0.0748 0.2807 0.0883

(0.0553) (0.0479) (0.0555) (0.0552) (0.1021) (0.0934) (0.3364) (0.1473)

(A) n = 200 0.1264 0.0995 0.1287 0.0857 0.2077 0.0410 0.1175 0.0501

(0.0321) (0.0352) (0.0351) (0.0258) (0.0554) (0.0108) (0.2184) (0.0964)

(B) n = 200 0.2999 0.2743 0.3040 0.3972 0.3627 0.3306 0.3418 0.2643

(0.1047) (0.0796) (0.0930) (0.1319) (0.0781) (0.1332) (0.2004) (0.1105)

(B) n = 400 0.1763 0.1725 0.1833 0.2382 0.2361 0.1939 0.2587 0.1606

(0.0373) (0.0426) (0.0369) (0.0646) (0.0457) (0.0681) (0.2228) (0.0348)

(C-a) n = 200 0.1919 0.2322 0.1930 0.7724 0.7326 0.6216 0.1479 0.1285

(0.0791) (0.1512) (0.0763) (0.1665) (0.0153) (0.2402) (0.1307) (0.0483)

(C-a) n = 400 0.1346 0.1372 0.1369 0.7863 0.7167 0.4951 0.0897 0.0893

(0.0472) (0.0644) (0.0499) (0.1846) (0.0470) (0.2578) (0.0294) (0.0294)

(C-b) n = 200 0.2819 0.2949 0.2942 0.8212 0.9476 0.6222 0.1925 0.1897

(0.1158) (0.1722) (0.1383) (0.1369) (0.0459) (0.2206) (0.0686) (0.0632)

(C-b) n = 400 0.1794 0.1903 0.1849 0.8169 0.9094 0.5273 0.1216 0.1241

(0.0728) (0.1380) (0.0844) (0.1654) (0.0729) (0.1998) (0.0372) (0.0373)

(D) n = 1000 0.4321 0.4485 0.4366 −− 0.6236 0.5269 0.9638 0.3126

(0.0292) (0.0367) (0.0317) (0.0255) (0.0364) (0.0117) (0.0385)

(D) n = 2000 0.2323 0.2291 0.2327 −− 0.4250 0.2517 0.9532 0.1830

(0.0097) (0.0121) (0.00976) (0.0159) (0.0457) (0.0057) (0.0088)

Table 1: Results for the synthesized data. Means and standard errors (in

brackets) over 100 samples are shown. (C-a) and (C-b) use a = 0 and 0.5,

respectively.
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this setting may not necessarily give good results in our simulations. For

the smoothing kernel in IADE, the biweight kernel K(z) = (1 − |Z|2)2+ is

used as in Hristache et al. (2001). The choice of these parameters in IADE

is not easy: if hk is too small, only a small number of Xi lie in the support of

the biweight kernel, which makes the weighted variance used in the method

unstable. For SIR II, we tried several numbers of slices, and chose the one

that gave the best result. For MAVE, we used the rMAVE Matlab code

provided by Y. Xia (http://www.stat.nus.edu.sg/~staxyc/).

From Table 1, we see that gKDR, gKDR-i, and gKDR-v show much bet-

ter results than SIR II for all the cases. The IADE and MAVE work better

than these methods for the data (A); in particular, for additive Gaussian

noise (A), MAVE shows much better results than all the other methods. For

the multiplicative noise (C), IADE, SIR-II, and MAVE do not give meaning-

ful estimation. The gKDR and gKDR-v show similar errors in all cases, and

gKDR-i improves them for (A) and (B). The KDR method attains higher

accuracy for (C), but is less accurate for (A) and (B) with n = 100; the un-

desired results in (A) and (B) are caused by failure of optimization in some

cases, as the large standard deviations indicate. For the large dimensional

case (D), IADE did not end after 2 days so we omit experiments, and the

optimization of KDR does not seem to work well. We also use the results

of gKDR as the initial state for KDR. As we can see from the table, KDR

improves the accuracy significantly for all the cases with small standard er-

rors, showing best results among the compared methods except MAVE for

(A). Note again, however, that the data sets used here are very small in size

and dimensionality, and it is not feasible to apply the KDR method to large

data sets used in the following subsection.

27



3.2 Real world data

One way of evaluating dimension reduction methods in regression is to eval-

uate the regression or classification accuracy after projecting data onto the

estimated subspaces. In this subsection, we use real world data sets for

classification tasks. We compare gKDR (-i, -v) method with KDR, SIR-II,

IADE, MAVE, CCA, and linear discriminant analysis (LDA), if they are ap-

plicable to the problems. Since IADE and MAVE assume one-dimensional

response, we use those two methods only for binary classification by encod-

ing the response 0 and 1. Except these cases, L classes are represented by

the binary vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Note that CCA and LDA

can find at most L − 1 dimensional subspaces, and thus we do not apply

them to binary classification. The wide applicability of the gKDR approach

contrast with these limitations of the previous methods. In the following ex-

amples, when applicable, the gKDR-i reduces the dimension 10 times with

almost equal amount, and the gKDR-v partitions data into 50 groups. For

SIR-II, the slices are always given by the class labels. The support vector

machine (SVM) with Gaussian RBF kernel is always used to evaluate the

classification accuracy with the projected data. The one-vs-one method is

applied for the multiclass cases, and the parameters in SVM (bandwidth in

the kernel and the trade-off parameter C) are chosen by 10-fold CV. The

experiments is performed with the standard package libsvm (Chang and

Lin, 2011).
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Dim. Train Test

heart-disease 13 149 148

ionosphere 34 151 200

breast-cancer 30 200 369

Table 2: Summary of data sets: dimensionality of X and the number of

data.

3.2.1 Small data sets

We first use three data sets for binary classification, heart-disease, iono-

sphere, and breast-cancer-Wisconsin. To evaluate the classification ability,

each data set is divided into a training set and test set: the former is used

to estimate an EDR space and make a classifier on that space, and the lat-

ter to test the classifier. This simple split method is adopted to reduce the

computational cost needed for some methods. The configuration of the data

sets are listed in Table 2. As explained in Section 2.3.2, the dimensionality

of the subspace that can be found by gKDR and gKDR-i is at most the

rank of the Gram matrix GY . Since the rank is at most two for binary clas-

sification, only gKDR-v is applied among the proposed methods. For the

CV of the parameters, only the variance parameter of the Gaussian RBF

kernel for X is changed at 9 values, and εn is fixed as 10−5. For KDR, the

number of iterations for optimization is 150, and the bandwidth parameters

are reduced during the iterations, as described in Fukumizu et al. (2009).

The bandwidth parameter for MAVE is chosen by CV among 8 values.

The classification rates of the SVM are shown in Table 3. We can see

that gKDR-v, KDR, and IADE show competitive results, and the classifi-
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cation rates are similar to the ones given by the original variables without

dimension reduction in most cases. This implies that those methods found

subspaces containing sufficient information for the classification tasks. The

results of the MAVE are slightly worse than those three methods in many

cases; this may be reasonable since MAVE assumes the additive noise model.

The SIR-II gives worse results than the others. In classification problems, it

is unlikely that the linearity or elliptic assumption required for the method

holds. Table 4 shows the computational time needed for each parameter

set in CV. The methods are implemented with MATLAB on Intel R⃝ Xeon R⃝

X5677 (3.47GHz). Since gKDR-v and SIR-II do not need iterative optimiza-

tion, the required computational cost is significantly smaller than the other

three methods. IADE sometimes shows very slow convergence with some

parameter setting.

3.2.2 Larger data sets

In this subsection, we use three multiclass classification data sets, which

are much larger in dimensionality and sample size than the ones used in

the previous subsection. Since the tasks are multiclass classification, MAVE

and IADE are not used for the experiments. Also, the optimization of KDR

is not feasible to this size of data. In addition to SIR-II, we use LDA and

CCA as baseline linear methods in comparison with the gKDR, gKDR-i,

and gKDR-v.

USPS2007. The first data set is USPS2007, which is 2007 images of

USPS handwritten digit data set used in Song et al. (2008). Each image has

256 gray-scale pixels used for X, and the class label for ten digits assigned

for Y . We divide the data set into two; 1000 data are used for estimating
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d = 3 d = 5 d = 7 d = 9 d = 11 All (13)

Heart-disease

gKDR-v 79.05 80.41 82.43 79.73 79.05 81.08

KDR 76.35 78.38 79.05 77.70 81.08

MAVE 77.70 73.65 72.97 74.32 79.05

SIR-II 61.49 63.51 60.14 68.24 63.51

IADE 79.73 78.38 78.38 78.38 78.38

d = 3 d = 5 d = 10 d = 15 d = 20 All (34)

Ionosphere

gKDR-v 75.50 87.50 88.00 86.00 89.00 89.00

KDR 86.50 87.50 85.00 92.00 94.00

MAVE 88.00 81.00 85.00 83.00 85.50

SIR-II 40.50 49.50 72.50 76.50 76.00

IADE 84.50 94.00 91.50 88.50 90.00

d = 3 d = 5 d = 10 d = 15 d = 20 All (30)

Breast-cancer

gKDR-v 90.79 93.77 91.87 92.14 92.41 92.14

KDR 90.79 91.33 91.33 91.33 95.12

MAVE 85.64 87.26 84.28 87.80 92.14

SIR-II 77.51 85.37 81.57 81.84 80.22

IADE 89.97 91.60 90.51 91.60 94.04

Table 3: Classification accuracy (%) for small binary classification data sets.

the subspace and training SVM, and the remaining 1007 for evaluating the

classification errors of the SVM.

From Table 5, the three gKDR methods give significantly better classifi-

cation performance than the other three methods. The SIR-II does not show

meaningful results, since it is likely that the distribution of the explanatory

variables does not satisfy the linearity or ellipticity condition required for

SIR-II. This unfavored results of SIR-II are seen in all the large multiclass

cases.

ISOLET. The second data set is ISOLET taken from UCI repository

(Frank and Asuncion, 2010). The task is to classify 26 alphabets from 617

dimensional continuous features of speech signals. In addition to 6238 train-
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gKDR-v KDR MAVE SIR-II IADE

Heart-disease (d = 11) 0.044 622 16.7 0.000817 3.78

Ionosphere (d = 20) 0.l03 84.8 47.6 0.00849 6.62

Breast-cancer (d = 20) 0.116 615 61.0 0.0115 1345

Table 4: Computational time in seconds for binary classification data sets.

ing data, 1559 test data are separately provided. Table 6 shows the clas-

sification errors of SVM with data projected on the estimated subspaces.

The classifier with gKDR (-i, -v) outperforms CCA, LDA, and SIR-II, if

the dimensionality is larger than 10. For this data set also, the SIR-II does

not provide meaningful results. From the information on the data at the

UCI repository, the best performance with neural networks and C4.5 with

ECOC are 3.27% and 6.61%, respectively. It is remarkable that the gKDR

and gKDR-i combined with SVM are competitive with the best known re-

sults only with 20-25 dimensional linear features, and gKDR-v + SVM with

50 dimensional features outperforms them. This implies that the gKDR

methods find very effective subspaces from the high dimensional variable for

the classification task.

Amazon Commerce Reviews. The next example uses the data set

for author identification of Amazon commerce reviews, which is taken from

UCI repository. The explanatory variable is 10000 dimensional, consisting

of authors’ linguistic style such as usage of digit, punctuation, word and

sentence length, usage frequency of words and so on. The total number

of authors is 50, and 30 reviews have been collected for each author; the

total size of data is thus 1500. we varied the used number of authors (L)

to make different levels of difficulty for the tasks. It is known that the task
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Dim. 3 5 7 9 15 20 25

gKDR 36.94 17.58 12.41 9.73 – – –

gKDR-i 40.42 23.54 17.18 10.63 – – –

gKDR-v 36.94 17.58 12.41 12.21 8.54 7.94 7.75

SIR-II 70.21 70.71 67.53 57.50 46.97 46.97 42.70

CCA 34.66 20.66 16.68 15.99 – – –

LDA 34.76 21.15 15.39 14.60 – – –

Table 5: USPS2007: classification errors (%) of SVM for test data.

Dim. 10 15 20 25 30 35 40 45 50

gKDR 14.43 7.50 5.00 4.75 – – – – –

gKDR-i 11.74 6.03 4.04 4.23 – – – – –

gKDR-v 16.87 7.57 4.75 4.30 3.85 3.85 3.59 3.53 3.08

SIR-II 74.41 69.53 66.07 60.81 57.47 51.31 48.88 46.18 42.53

CCA 13.09 8.66 6.54 6.09 – – – – –

LDA 13.21 8.15 6.61 6.67 – – – – –

Table 6: ISOLET: classification errors (%) of SVM for test data.

# Authors 10 20 30 40 50

gKDR 12.0 16.2 18.0 21.8 19.5

SIR-II 86.3 94.8 96.0 97.1 98.1

CCA 82.0 85.8 86.9 89.6 90.2

Corr (500) 15.7 30.2 29.2 35.4 41.1

Corr (2000) 8.3 18.0 24.0 25.0 29.0

Table 7: Amazon Commerce Reviews: 10-fold CV errors (%) of SVM.
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becomes much more difficult if the number of classes (authors) is larger.

The dimensionality of the projection given by gKDR is set to the same

as the number of authors, and the 10-fold CV classification errors of SVM

classifiers are evaluated with data projected on the estimated EDR space.

For computational reason, we apply only the gKDR method among the

proposed ones. Since the dimensionality is much larger than the sample size,

LDA does not work by the singularity of the covariance matrix, and CCA

provides very poor results by strong overfitting. Instead, we have applied the

squared sum of variable-wise Pearson correlations,
∑L

ℓ=1Corr[X
a, Y ℓ]2 (a =

1, . . . , 10000), to choose explanatory variables. This variable-wise method

with Pearson Correlation is popularly used to select effective variables among

a very high dimensional explanatory variables. The variables with top 500

and 2000 correlations are used to make SVM classifiers.

As we can see from Table 7, the gKDR gives much more effective sub-

spaces for regression than the Pearson correlation method, when the num-

ber of authors is large. The creator of the data set has also reported the

classification result with a neural network model (Liu et al., 2011); for 50

authors, the 10-fold cross-validation error with selected 2000 variables is

19.51%, which is similar to the gKDR result with the subspace of only 50

dimensions. This confirms again that the gKDR works well for finding an

informative subspace in the large dimensional explanatory variables.

4 Conclusion

This paper has proposed a new method for linear dimension reduction in

regression, using nonparametric estimation with positive definite kernels. By
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estimating the gradient of regression function considered for feature vectors

mapped into reproducing kernel Hilbert spaces, the proposed method is able

to find the directions that achieve sufficient dimension reduction, that is, the

directions to make the response and explanatory conditionally independent

given the projection on those directions.

The proposed gKDR methods have several advantages over existing lin-

ear dimension reduction methods. The first one is the wide applicability: no

strong assumptions on the distributions or the type of variables are needed.

They can be used to continuous or discrete response in the same manner,

and applicable to any noise model including multiplicative noise without

knowing the noise model. The experimental results show that the gKDR

methods achieve competitive results for additive noise models, and show

much better accuracy for multiplicative noise than the existing methods.

Second, their computational cost is inexpensive: they do not need iterative

optimization procedures but need only eigendecomposition for estimating

the projection matrix. Third, the methods have a theoretical guarantee

of the sufficient dimension reduction. This can not be realized in general

setting by many existing methods. Additionally, by virtue of the above

properties, the methods work preferably for large dimensional data. This

has been observed both theoretically and empirically; Theorem 4 shows the

consistency of the estimator under the condition that the dimensionality

of the explanatory variables may grow to infinity, and the experimental re-

sults indicate that the proposed methods successfully find effective directions

with efficient computation for data sets up to 10000 dimension, for which

many conventional sufficient dimension reduction methods have difficulty in

finding effective directions.
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There are many theoretical results on high-dimensional data in the liter-

atures, where the dimensionality is assumed to be at most exponential order

of the sample size. In the current work, as discussed after Theorem 4, the

conditions of the convergence in the kernel method is linked with the di-

mensionality of the space only implicitly. It is an interesting future work to

connect the conditions with more popular ones for other theoretical results

and to clarify connections with the diverging order of the dimensionality.

The Matlab codes implementing the algorithms are provided at the first

author’s home page (http://www.ism.ac.jp/~fukumizu/).

Acknowledgements

KF has been supported in part by JSPS KAKENHI (B) 22300098.

Appendix

A Proof of Theorems 3 and 4

Since Theorem 3 can be shown as a corollary to Theorem 4 by setting αm

and Lm as constants, we show only the proof of Theorem 4 below. For

notational simplicity, we omit the dependence on m in writing k(m) and

associated covariance operators.

Let ga = ∂kX (·, x)/∂xa (a = 1, . . . ,m) (we omit to write the dependence

on x). Since

Mab(x) =
⟨⟨

E[kY(∗, Y )|X = ·], ga⟩HX ,
⟨
E[kY(∗, Y )|X = ·], gb

⟩
HX

⟩
HY

=
⟨
E[kY(∗, Y )|ga(X)], E[kY(∗, Y )|gb(X)]

⟩
HY

(13)
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and

M̂n,ab(x) =
⟨
Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
ga, Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
gb
⟩
HY

,

we have

∣∣M̂n,ab(x)−Mab(x)
∣∣

≤
∣∣⟨Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
ga, Ĉ

(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
gb − E[kY(∗, Y )|gb(X)]

⟩
HY

∣∣
+

∣∣⟨Ĉ(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
ga − E[kY(∗, Y )|ga(X)], E[kY(∗, Y )|gb(X)]

⟩
HY

∣∣.
From Assumption (vii), ∥CXX∥2HS = ∥E[kX (·, X) ⊗ kX (·, X)]∥2HX⊗HX

=

E[kX (X, X̃)2] ≤ E[kX (X,X)2] = 1, where X̃ is an independent copy of X.

It also follows from Lemma 6 shown below that ∥
(
CXX − Ĉ

(n)
XX

)
(CXX +

εnI)
−1∥HS = Op(ε

−1
n αmn−1/2). Noting αmn−1/2ε−1

n → 0 by the choice of

εn and the assumption (vii), from the expression

(
Ĉ

(n)
XX + εnI

)−1
= (CXX + εnI)

−1
{
I −

(
CXX − Ĉ

(n)
XX

)
(CXX + εnI)

−1
}−1

,

we obtain ∥∥CXX

(
Ĉ

(n)
XX + εnI

)−1∥∥ = Op(1).

From ga = Cβm+1
XX ha, we have ∥Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
ga∥ = ∥Ĉ(n)

Y X

(
Ĉ

(n)
XX +

εnI
)−1

Cβm+1
XX ha∥ = Op(Lm). For the proof of the first assertion of Theorem

4, it is then sufficient to prove the following theorem.

Theorem 5. Under the assumptions (i)-(vii), where ga,x = ∂k(·, x)/∂xa and

ha,x in (vi) are replaced by g and h, respectively, for εn = (α2
m/n)max{1/3,1/2(βm+1)},

we have

∥∥Ĉ(n)
Y X

(
Ĉ

(n)
XX+εnIn

)−1
g−E[kY(·, Y )|g(X)]

∥∥
HY

= Op

(
Lm

(α2
m

n

)min{ 1
3
, 2βm+1
4βm+4

})
as n → ∞.
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Proof. It suffices to show

∥∥Ĉ(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
g−CY X

(
CXX + εnI

)−1
g
∥∥
HY

= Op

(
Lmε−1/2

n αmn−1/2
)

(14)

and

∥∥CY X

(
CXX + εnI

)−1
g − E[kY(·, Y )|g(X)]

∥∥
HY

= O
(
Lmεmin{1,(2βm+1)/2}

n

)
(15)

as n → ∞. In fact, balancing the rates easily derives the assertion of the

theorem.

Since B−1 −A−1 = B−1(A−B)A−1 for any invertible operators A and

B, the left hand side of Eq. (14) is upper bounded by

∥∥Ĉ(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
(CXX − Ĉ

(n)
XX)

(
CXX + εnI

)−1
Cβm+1
XX h

∥∥
HY

+
∥∥(Ĉ(n)

Y X − CY X)
(
CXX + εnI

)−1
Cβm+1
XX h

∥∥
HY

.

By the decomposition Ĉ
(n)
Y X = Ĉ

(n)1/2
Y Y ŴY XĈ

(n)1/2
XX with ∥ŴY X∥ ≤ 1 (Baker,

1973), we have ∥Ĉ(n)
Y X

(
Ĉ

(n)
XX+εnI

)−1∥ = O(ε
−1/2
n ). From Lemma 6, ∥CXX−

Ĉ
(n)
XX∥ = Op(αmn−1/2). It follows from these two facts and assumption

(vi) that the first term of the above expression is of Op(Lmαmε
−1/2
n n−1/2).

Eq. (14) is then obtained, since the second term is of Op(Lmαmn−1/2).

For Eq. (15), first note that by using Theorem 1 for each y

E[kY(y, Y )|g(X)] = ⟨E[kY(y, Y )|X = ·], g⟩ = ⟨E[kY(y, Y )|X = ·], Cβm+1
XX h⟩

= ⟨CXXE[kY(y, Y )|X = ·], Cβm

XXh⟩ = ⟨CXY kY(y, ·), Cβm

XXh⟩

= ⟨kY(y, ·), CY XCβm

XXh⟩ = (CY XCβm

XXh)(y),

which means E[kY(·, Y )|g(X)] = CY XCβm

XXh. Let CY X = C
1/2
Y Y WY XC

1/2
XX be
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the decomposition with ∥WY X∥ ≤ 1. Then, we have

∥∥CY X

(
CXX + εnI

)−1
g − E[kY(·, Y )|g(X)]

∥∥
HY

= ∥C1/2
Y Y WY X∥

∥∥Cβm+3/2
XX

(
CXX + εnI

)−1
h− C

βm+1/2
XX h

∥∥
HY

.

From

∥Cβm+3/2
XX

(
CXX + εnI

)−1 − C
βm+1/2
XX ∥ = εn∥Cβm+1/2

XX

(
CXX + εnI

)−1∥,

this norm is upper bounded by εn for βm ≥ 1/2. For 0 < βm < 1/2, it follows

from εnC
βm+1/2
XX

(
CXX+εnI

)−1
= ε

βm+1/2
n {εn(CXX+εnI)

−1}1/2−βm{(CXX+

εnI)
−1CXX}βm+1/2 that the above norm is upper bounded by ε

βm+1/2
n . We

have thus Eq. (15), which completes the proof of Theorem 5

For the second assertion of Theorem 3, note∥∥∥∥∥ 1n
n∑

i=1

M̂n(Xi)− E[M(X)]

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1n
n∑

i=1

M̂n(Xi)−
1

n

n∑
i=1

M(Xi)

∥∥∥∥∥
F

+

∥∥∥∥∥ 1n
n∑

i=1

M(Xi)−E[M(X)]

∥∥∥∥∥
F

.

From Eq. (13) and E[kY(·, Y )|g(X)] = CY XCβm

XXh, we have E[Mab(X)2] =

O(L4
m), The second term in the right hand side is thus of Op(mL2

mn−1/2) by

the central limit theorem. By replacing g and h in the proof of Theorem 5

by
∑n

i=1 ga,Xi/n and
∑n

i=1 ha,Xi/n, respectively, where ga,x = ∂kX (·, x)/∂xa

and ga,x = Cβm+1
XX ha,x, the first term can be bounded by

Op

(
mLm

(α2
m

n

)min{ 1
3
, 2βm+1
4βm+4

})
in the same manner.
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The proof of the following Lemma, which is used in the above proof, can

given by direct computation, and we omit it.

Lemma 6. Let X be a random variable on a measurable space (Ω,B), and k

be a measurable positive definite kernel such that E[kX (X,X)2] < ∞. Then,

E
[
∥Ĉ(n)

XX − CXX∥2HS

]
=

1

n

(
E[kX (X,X)2]− E[kX (X, X̃)2]

)
,

where X̃ is an independent copy of X.
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