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Connectivity in the brain 

• structural / anatomical connectivity 

= presence of axonal connections (from tracing or dMRI) 

• functional connectivity  

= statistical dependencies between regional time series 

• effective connectivity  

= causal (directed) influences between neuronal populations 

Sporns 2007, Scholarpedia 



Functional and effective connectivity are dynamic 

• Context-dependent recruitment and 
gating of connections 

– Synaptic depression over millisec 

– Long-term potentiation over weeks 

 

• Even structural connectivity changes 

– Microscopic and macroscopic 
(developmental) levels 

– (Friston, 2011, Brain Connectivity) 

 

• Pharmacological manipulations 



• Seed voxel correlation analysis 

• Coherence analysis 

• Eigen-decomposition 

(PCA, SVD) 

• Independent component 

analysis (ICA) 

• any technique describing 

statistical dependencies 

among regional time series 

Analysis of functional connectivity 

Helmich et al. (2009) Cerebral Cortex 



Analysis of effective connectivity 

• To get beyond descriptive statistical measures 
requires a model; parameterise connectivity 

– “modelling -> understanding” 

• The model defines what is meant by 
(effective) direct/directed causal influence 

• Model inversion yields estimated connectivity 

• Generative models cause the observed data 

– “better to use an original than a derived measure” 



Generic time-series models 

• Discrete-time “auto-regressive” models 
– next states = f( previous states, inputs, parameters ) 

– x(k+1) = f( x(k), u, θ ) 

– Underlies Granger Causality 
• Very roughly, if current x1 and x2 explain next x1 better than 

x1 does alone, then x2 Granger-causes x1 

• Continuous-time dynamical systems models 
– rate of change = f( current states, inputs, parameters ) 

– dx/dt = f( x(t), u, θ ) 

– Used in Dynamic Causal Modelling 
• Bayesian model comparison accounting for complexity 

• Friston (2011) Brain Connectivity 



Dynamic Causal Modelling 

• Neurodynamic  model (state evolution model) 
– Underlying (hidden) neuronal states x (or often z) 

– dxi/dt = f( {x1, …, xn}, {u1, …, um}, {θ1, …, θp} ) 

– Linear state-coupling terms: ai1 x1 + … + ain xn = Σk aik xk 

– Linear input terms: ci1 u1 + … + cim um = Σj cij uj 

– Bilinear input-modulated coupling terms: Σj Σk uj Bijk xk 

– dx/dt = Ax + Cu + Σj ujB
(j) x     [A, B and C in interface] 

• Haemodynamic  model (observation model) 
– Response = f( state, parameters) + confounds + noise 

– yi = g( xi,  {θh} ) + Xβ + ε 



DCM 



DCM – haemodynamic model 

• Generalises Buxton’s 
balloon model 

• Complete generative 
model including noise 

• Bayesian inference 
allows prior constraints 
(& model comparison) 

• Region specific 

• Subject specific 

• Treatment specific 
Stephan et al., 2007, Neuroimage; now revisiting for 7T 



DCM and Bayesian inference 

• Generative or “forward” model (with noise 
distribution assumptions) gives “likelihood”: 
p( data | parameters, model ) 

• To estimate parameters given observed data 
need to “invert” model: 
p( parameters | data, model ) 

• Bayesian inference enables this inversion 
using “prior” information about parameters 



Bayesian inference 

• Bayes rule: 

– p(A, B) = p(A|B) p(B) = p(B|A) p(A) 

– p(B|A) = p(A|B) p(B) / p(A) 

– p(A) = Σb p(A, B=b) = Σb p(A|B=b) p(B=b) 

• Bayes rule for DCM: 

– p( parameters | data, model) 
= p( data | parameters, model) 
x p( parameters | model) 
/ p( data | model ) 



Bayesian model comparison 

• The denominator, p( data | model ), in turn 
gives p( model | data ) via Bayes rule 

• Allows computation of “Bayes factor” to 
compare p( modela | data) / p( modelb | data) 
– Note: same data; no absolute p(modela | data) 

• Known as the model evidence and also the 
marginal likelihood, because parameters are 
marginalised / integrated out 
– Recall: p(A) = Σb p(A, B=b)  

• Accounts for complexity (favours parsimony) 



Bayesian model comparison 

• Can be extended to encompass 
– Random effects model selection over subjects, 

allowing heterogeneity and outliers (Stephan et al. 
2009, NeuroImage) 

– Bayesian parameter averaging and Bayesian model 
averaging accounting for uncertainty over models 
(Stephan et al. 2010, NeuroImage) 

– Comparison of families of models, e.g. top-down/ 
bottom-up (Penny et al. 2010, PLoS Comput Biol) 

– Optimal experimental design (Daunizeau et al. 
2011, PLoS Comput Biol) 



Free energy in DCM (and the brain!) 
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Connectivity and disease 

• “Dysconnection in Schizophrenia …” 

– Stephan et al. (2009) Schizophr Bul 

• “Autism spectrum disorders: developmental 
disconnection syndromes” 

– Geschwind et al. (2007) Curr Opin Neurobiol 

• “Neurodegenerative Diseases Target Large-
Scale Human Brain Networks” 

– Seeley et al. (2009) Neuron 



Seeley et al. (2009) 



Promising results / example applications 

• Alzheimer’s disease (and risk factors) 
– AD and MCI (Binnewijzend et al., in press, Neurobiol Aging) 

– Amyloid positive healthy elderly (Hedden et al., 2009, J 
Neurosci; Sheline et al., 2010, Biol Psych)  

– APOE e4 carrying elderly (Sheline et al., 2010, J Neurosci) 

– APOE e4 carrying under 35s! (Filippini et al., 2009, PNAS) 

• Parkinson’s disease 
– Rowe et al. (2010) NeuroImage: 

– “DCM model selection is robust and sensitive enough to 
study clinical populations and their pharmacological 
treatment” 



Advantages of rs-fMRI for pharma 

• Sensitivity to early/mild change 

– E.g. preceding structural atrophy 

• Generality for multiple diseases and severities 

– No need for relevant (and implementable) task 

– No issue of task-difficulty, floor/ceiling effects, etc. 

• Ease of standardisation, practicality 

– No special hardware or expertise required 

– Short scan, repeatable given problems 



DCM for resting state data ? 

• Neurodynamic model without inputs u 

• dx/dt = Ax 

• Stability requires (roughly) negative feedback 
– More precisely, negative real eigenvalues of A 

• In the absence of input/perturbation x decays 

• Without dynamics of x cannot have coupling! 

• Require endogenous stochastic fluctuations 
– State noise – but differentiable rather than Markovian 

– dx/dt = Ax + ω 



Stochastic DCM 

• Applicable to both task-driven and resting-state fMRI 

• Uses variational Bayesian “generalised filtering” 
(Friston et al., 2010, Math Probl Eng) 

• More complicated than usual state noise (cf. Kalman) 
– “separation of dynamics into a slow, low-dimensional flow 

on an attracting manifold and a fast (analytic) fluctuating 
part that describes perturbations” 

– “only the slow dynamics are communicated among nodes, 
which means we can model distributed activity with a 
small number of macroscopic variables (e.g. one per node) 
with fast fluctuations that are specific to each node” – 
(Friston et al., 2011, NeuroImage) 



Regions/nodes for (s)DCM 

• ROIs can come from prior hypotheses with 
anatomical atlases (though see “cons” later…) 

• Or from functional connectivity analyses 

– E.g. distinct clusters from seed-correlation analysis 

– Or parts from ICA modes, or entire components 
from a high-dimensional ICA decomposition 

• Nodes needn’t be regions, can be distributed 

– E.g. distinct networks (such as default and exec.) 

– Note that (spatial) ICs can have dependencies… 



sDCM of rs-fMRI for pharma – Cons 

• Need for relatively strong hypotheses 

– Which ROIs, what topology, which aspects to test 

• Definition of ROIs in individual subjects 

– Smith et al. (2011) NeuroImage, recommends against use 
of anatomical atlases for generic ROIs 

– Time-consuming, error-prone, less reproducible 

• Validity of priors for pathology and/or drug 

 

• Though all to some extent also cons for more general 
fMRI in pharma (assumptions = priors) 



sDCM Cons – revisited 

• Need for relatively strong hypotheses 

+ Savage-Dickey facilitates network discovery 

• Definition of ROIs in individual subjects 

+ High-dimensional registration improving all the time 
(Dartel, LDDMM, ANTS, Nifty-Reg, Geodesic Shooting) 

+ Atlas fusion strategies can help (STAPLE, MAPS, LEAP) 

• Validity of priors for pathology and/or drug 

+ Evaluating priors using model evidence (Moran et al.) 



sDCM of rs-fMRI for pharma – Pros 

• Connectivity from neuronal model parameters 
more interpretable than correlations or 
components; perhaps also more sensitive 

• Potential for modelling concomitant neuronal 
and haemodynamic treatment effects 

• Principled model selection, random effects 
inference (outliers, etc.), families of models 

• Can be applied to regions within a network 
and/or to interacting networks 

• Recent and on-going work enabling more nodes 
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