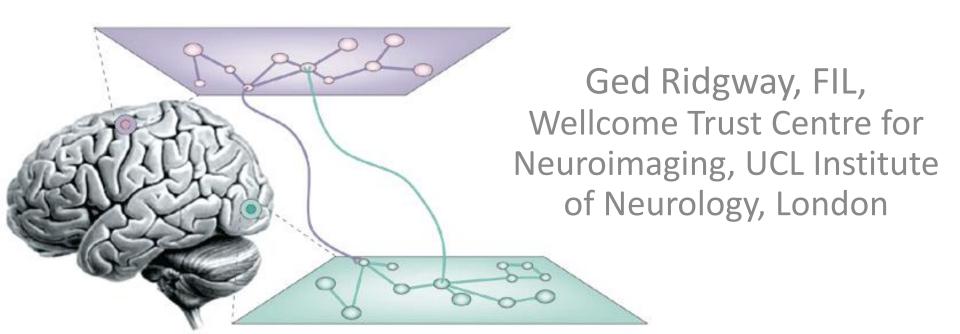
Stochastic Dynamic Causal Modelling for resting-state fMRI

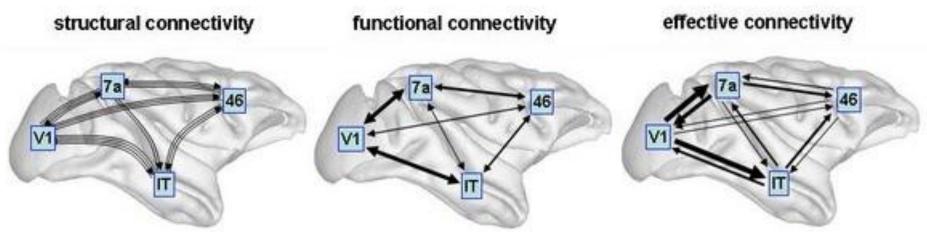


Overview

- Connectivity in the brain
- Introduction to Dynamic Causal Modelling
- Bayes, prior knowledge, and model evidence

- Connectivity in disease
- Motivation for resting-state fMRI in pharma
- Stochastic DCM and resting-state fMRI
- Pros and cons of sDCM for rs-fMRI in pharma

Connectivity in the brain

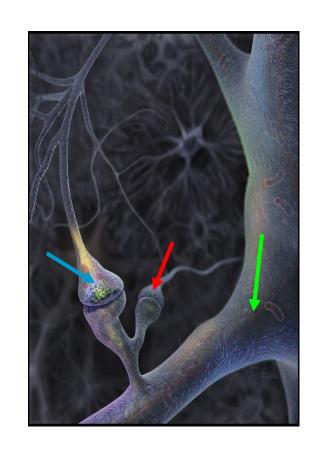


Sporns 2007, Scholarpedia

- structural / anatomical connectivity
 - = presence of axonal connections (from tracing or dMRI)
- functional connectivity
 - = statistical dependencies between regional time series
- effective connectivity
 - = causal (directed) influences between neuronal populations

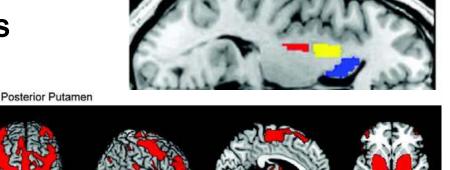
Functional and effective connectivity are dynamic

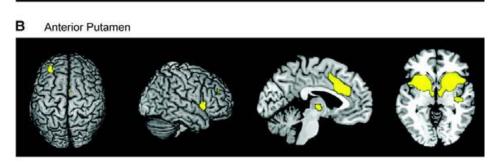
- Context-dependent recruitment and gating of connections
 - Synaptic depression over millisec
 - Long-term potentiation over weeks
- Even structural connectivity changes
 - Microscopic and macroscopic (developmental) levels
 - (Friston, 2011, Brain Connectivity)
- Pharmacological manipulations

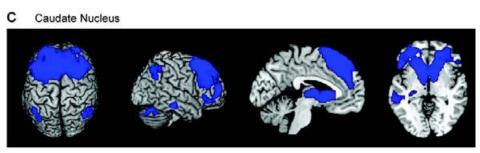


Analysis of functional connectivity

- Seed voxel correlation analysis
- Coherence analysis
- Eigen-decomposition (PCA, SVD)
- Independent component analysis (ICA)
- any technique describing statistical dependencies among regional time series







Analysis of effective connectivity

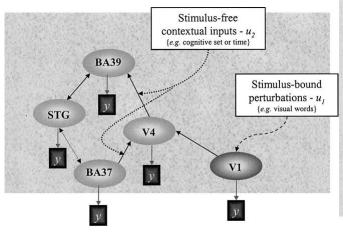
- To get beyond descriptive statistical measures requires a model; parameterise connectivity
 - "modelling -> understanding"
- The model defines what is meant by (effective) direct/directed causal influence
- Model inversion yields estimated connectivity
- Generative models cause the observed data
 - "better to use an original than a derived measure"

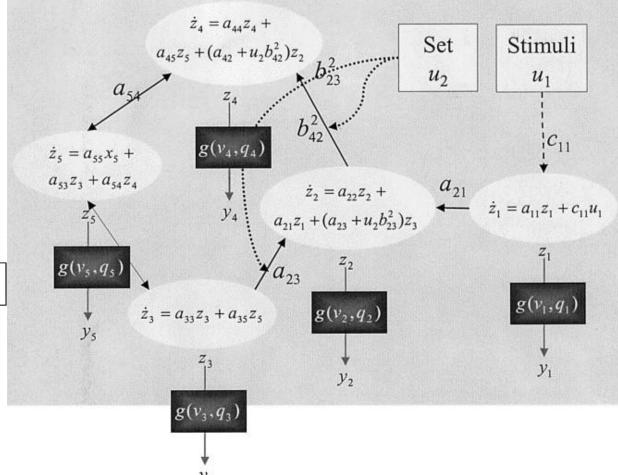
Generic time-series models

- Discrete-time "auto-regressive" models
 - next states = f(previous states, inputs, parameters)
 - $x(k+1) = f(x(k), u, \theta)$
 - Underlies Granger Causality
 - Very roughly, if current x_1 and x_2 explain next x_1 better than x_1 does alone, then x_2 Granger-causes x_1
- Continuous-time dynamical systems models
 - rate of change = f(current states, inputs, parameters)
 - $dx/dt = f(x(t), u, \theta)$
 - Used in Dynamic Causal Modelling
 - Bayesian model comparison accounting for complexity
 - Friston (2011) Brain Connectivity

Dynamic Causal Modelling

- Neurodynamic model (state evolution model)
 - Underlying (hidden) neuronal states x (or often z)
 - $dx_i/dt = f(\{x_1, ..., x_n\}, \{u_1, ..., u_m\}, \{\theta_1, ..., \theta_p\})$
 - Linear state-coupling terms: $a_{i1} x_1 + ... + a_{in} x_n = \sum_k a_{ik} x_k$
 - Linear input terms: $c_{i1} u_1 + ... + c_{im} u_m = \sum_j c_{ij} u_j$
 - Bilinear input-modulated coupling terms: $\Sigma_j \Sigma_k u_j B_{ijk} x_k$
 - $dx/dt = Ax + Cu + \Sigma_i u_i B^{(j)}x$ [A, B and C in interface]
- Haemodynamic model (observation model)
 - Response = f(state, parameters) + confounds + noise
 - $-y_i = g(x_i, \{\theta_h\}) + X\beta + \varepsilon$





latent connectivity

induced connectivity

$$\dot{z} = (A + \sum_{j} u_{j} B^{j}) z + Cu$$

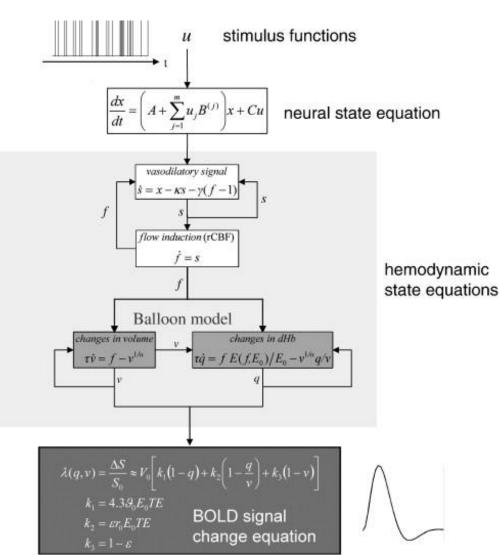
The bilinear model

$$\dot{z} = (A + \sum_{j} u_{j} B^{j}) z + C u \begin{bmatrix} \dot{z}_{1} \\ \vdots \\ \dot{z}_{5} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & 0 \\ a_{21} & a_{22} & a_{23} \\ \vdots & & & \\ a_{42} & & & \\ 0 & \cdots & a_{53} \end{bmatrix} + u_{2} \begin{bmatrix} 0 & \cdots & 0 \\ b_{23}^{2} & & \\ \vdots & \ddots & \vdots \\ b_{42}^{2} & & \\ 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} z_{1} \\ \vdots \\ z_{5} \end{bmatrix} + \begin{bmatrix} c_{11} & 0 \\ \vdots & \vdots \\ u_{2} \end{bmatrix}$$
The bilinear model

Forward, backward & self

DCM – haemodynamic model

- Generalises Buxton's balloon model
- Complete generative model including noise
- Bayesian inference allows prior constraints (& model comparison)
- Region specific
- Subject specific
- Treatment specific



Stephan et al., 2007, Neuroimage; now revisiting for 7T

DCM and Bayesian inference

- Generative or "forward" model (with noise distribution assumptions) gives "likelihood": p(data | parameters, model)
- To estimate parameters given observed data need to "invert" model: p(parameters | data, model)
- Bayesian inference enables this inversion using "prior" information about parameters

Bayesian inference

Bayes rule:

```
-p(A, B) = p(A|B) p(B) = p(B|A) p(A)
```

- -p(B|A) = p(A|B) p(B) / p(A)
- $p(A) = \Sigma_b p(A, B=b) = \Sigma_b p(A | B=b) p(B=b)$
- Bayes rule for DCM:
 - p(parameters | data, model)
 = p(data | parameters, model)
 x p(parameters | model)
 / p(data | model)

Bayesian model comparison

- The denominator, p(data | model), in turn gives p(model | data) via Bayes rule
- Allows computation of "Bayes factor" to compare p(model_a | data) / p(model_b | data)
 - Note: same data; no absolute p(model_a | data)
- Known as the model evidence and also the marginal likelihood, because parameters are marginalised / integrated out
 - Recall: $p(A) = \Sigma_b p(A, B=b)$
- Accounts for complexity (favours parsimony)

Bayesian model comparison

- Can be extended to encompass
 - Random effects model selection over subjects, allowing heterogeneity and outliers (Stephan et al. 2009, Neurolmage)
 - Bayesian parameter averaging and Bayesian model averaging accounting for uncertainty over models (Stephan et al. 2010, NeuroImage)
 - Comparison of families of models, e.g. top-down/ bottom-up (Penny et al. 2010, PLoS Comput Biol)
 - Optimal experimental design (Daunizeau et al. 2011, PLoS Comput Biol)

Free energy in DCM (and the brain!)

- $p(data \mid model) = \int p(data \mid \theta, model) p(\theta) d\theta$
- However... the integration is impossible in practice
- We can optimise a lower bound on the model evidence known as the "free energy"
- Using "variational" calculus (variational Bayes)
- The optimised "proposal distribution" tends to the posterior distribution of interest
- Unlike other methods (e.g. Monte Carlo), could be implemented biologically – the Bayesian brain
 - (Friston, 2010, Nat Rev Neurosci)

Overview

- Connectivity in the brain
- Introduction to Dynamic Causal Modelling
- Bayes, prior knowledge, and model evidence

- Connectivity in disease
- Motivation for resting-state fMRI in pharma
- Stochastic DCM and resting-state fMRI
- Pros and cons of sDCM for rs-fMRI in pharma

Connectivity and disease

- "Dysconnection in Schizophrenia ..."
 - Stephan et al. (2009) Schizophr Bul
- "Autism spectrum disorders: developmental disconnection syndromes"
 - Geschwind et al. (2007) Curr Opin Neurobiol
- "Neurodegenerative Diseases Target Large-Scale Human Brain Networks"
 - Seeley et al. (2009) Neuron

Seeley et al. (2009)



Promising results / example applications

- Alzheimer's disease (and risk factors)
 - AD and MCI (Binnewijzend et al., in press, Neurobiol Aging)
 - Amyloid positive healthy elderly (Hedden et al., 2009, J Neurosci; Sheline et al., 2010, Biol Psych)
 - APOE e4 carrying elderly (Sheline et al., 2010, J Neurosci)
 - APOE e4 carrying under 35s! (Filippini et al., 2009, PNAS)
- Parkinson's disease
 - Rowe et al. (2010) Neurolmage:
 - "DCM model selection is robust and sensitive enough to study clinical populations and their pharmacological treatment"

Advantages of rs-fMRI for pharma

- Sensitivity to early/mild change
 - E.g. preceding structural atrophy
- Generality for multiple diseases and severities
 - No need for relevant (and implementable) task
 - No issue of task-difficulty, floor/ceiling effects, etc.
- Ease of standardisation, practicality
 - No special hardware or expertise required
 - Short scan, repeatable given problems

DCM for resting state data?

- Neurodynamic model without inputs u
- dx/dt = Ax
- Stability requires (roughly) negative feedback
 - More precisely, negative real eigenvalues of A
- In the absence of input/perturbation x decays
- Without dynamics of x cannot have coupling!
- Require endogenous stochastic fluctuations
 - State noise but differentiable rather than Markovian
 - $dx/dt = Ax + \omega$

Stochastic DCM

- Applicable to both task-driven and resting-state fMRI
- Uses variational Bayesian "generalised filtering" (Friston et al., 2010, Math Probl Eng)
- More complicated than usual state noise (cf. Kalman)
 - "separation of dynamics into a slow, low-dimensional flow on an attracting manifold and a fast (analytic) fluctuating part that describes perturbations"
 - "only the slow dynamics are communicated among nodes, which means we can model distributed activity with a small number of macroscopic variables (e.g. one per node) with fast fluctuations that are specific to each node" (Friston et al., 2011, Neurolmage)

Regions/nodes for (s)DCM

- ROIs can come from prior hypotheses with anatomical atlases (though see "cons" later...)
- Or from functional connectivity analyses
 - E.g. distinct clusters from seed-correlation analysis
 - Or parts from ICA modes, or entire components from a high-dimensional ICA decomposition
- Nodes needn't be regions, can be distributed
 - E.g. distinct networks (such as default and exec.)
 - Note that (spatial) ICs can have dependencies...

sDCM of rs-fMRI for pharma – Cons

- Need for relatively strong hypotheses
 - Which ROIs, what topology, which aspects to test
- Definition of ROIs in individual subjects
 - Smith et al. (2011) NeuroImage, recommends against use of anatomical atlases for generic ROIs
 - Time-consuming, error-prone, less reproducible
- Validity of priors for pathology and/or drug
- Though all to some extent also cons for more general fMRI in pharma (assumptions = priors)

sDCM Cons – revisited

- Need for relatively strong hypotheses
 - + Savage-Dickey facilitates network discovery
- Definition of ROIs in individual subjects
 - + High-dimensional registration improving all the time (Dartel, LDDMM, ANTS, Nifty-Reg, Geodesic Shooting)
 - + Atlas fusion strategies can help (STAPLE, MAPS, LEAP)
- Validity of priors for pathology and/or drug
 - + Evaluating priors using model evidence (Moran et al.)

sDCM of rs-fMRI for pharma – Pros

- Connectivity from neuronal model parameters more interpretable than correlations or components; perhaps also more sensitive
- Potential for modelling concomitant neuronal and haemodynamic treatment effects
- Principled model selection, random effects inference (outliers, etc.), families of models
- Can be applied to regions within a network and/or to interacting networks
- Recent and on-going work enabling more nodes

Some useful references

- The first DCM paper: Dynamic Causal Modelling (2003). Friston et al. *Neurolmage* 19:1273
- Physiological validation of DCM for fMRI: Identifying neural drivers with functional MRI: an electrophysiological validation (2008). David et al. *PLoS Biol.* 6 2683
- **Hemodynamic model:** Comparing hemodynamic models with DCM (2007). Stephan et al. *NeuroImage* 38:387
- Group Bayesian model comparison: Bayesian model selection for group studies (2009). Stephan et al. *NeuroImage* 46:1004
- Ten Simple Rules for Dynamic Causal Modelling (2010). Stephan et al. Neurolmage 49(4):3099
- Network discovery with DCM. Friston et al., Neurolmage 56(3):1202
- Generalised filtering and stochastic DCM for fMRI. Li et al., Neurolmage 58(2):442