Stochastic Dynamic Causal Modelling for resting-state fMRI

Ged Ridgway, FIL,
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London
Overview

• Connectivity in the brain
• Introduction to Dynamic Causal Modelling
• Bayes, prior knowledge, and model evidence
• Connectivity in disease
• Motivation for resting-state fMRI in pharma
• Stochastic DCM and resting-state fMRI
• Pros and cons of sDCM for rs-fMRI in pharma
Connectivity in the brain

- **structural / anatomical connectivity**
 = presence of axonal connections (from tracing or dMRI)

- **functional connectivity**
 = statistical dependencies between regional time series

- **effective connectivity**
 = causal (directed) influences between neuronal populations

Sporns 2007, Scholarpedia
Functional and effective connectivity are dynamic

- Context-dependent recruitment and gating of connections
 - Synaptic depression over millisec
 - Long-term potentiation over weeks

- Even structural connectivity changes
 - Microscopic and macroscopic (developmental) levels
 - (Friston, 2011, *Brain Connectivity*)

- Pharmacological manipulations
Analysis of functional connectivity

- Seed voxel correlation analysis
- Coherence analysis
- Eigen-decomposition (PCA, SVD)
- Independent component analysis (ICA)
- any technique describing statistical dependencies among regional time series

Helmich et al. (2009) Cerebral Cortex
Analysis of effective connectivity

• To get beyond descriptive statistical measures requires a model; parameterise connectivity
 – “modelling -> understanding”
• The model defines what is meant by (effective) direct/directed causal influence
• Model inversion yields estimated connectivity
• Generative models cause the observed data
 – “better to use an original than a derived measure”
Generic time-series models

• Discrete-time “auto-regressive” models
 – next states = f(previous states, inputs, parameters)
 – $x(k+1) = f(x(k), u, \theta)$
 – Underlies Granger Causality
 • Very roughly, if current x_1 and x_2 explain next x_1 better than x_1 does alone, then x_2 Granger-causes x_1

• Continuous-time dynamical systems models
 – rate of change = f(current states, inputs, parameters)
 – $\frac{dx}{dt} = f(x(t), u, \theta)$
 – Used in Dynamic Causal Modelling
 • Bayesian model comparison accounting for complexity
 • Friston (2011) Brain Connectivity
Dynamic Causal Modelling

- **Neurodynamic model** (state evolution model)
 - Underlying (hidden) neuronal states x (or often z)
 - $\frac{dx_i}{dt} = f(\{x_1, ..., x_n\}, \{u_1, ..., u_m\}, \{\theta_1, ..., \theta_p\})$
 - Linear state-coupling terms: $a_{i1}x_1 + ... + a_{in}x_n = \Sigma_k a_{ik}x_k$
 - Linear input terms: $c_{i1}u_1 + ... + c_{im}u_m = \Sigma_j c_{ij}u_j$
 - Bilinear input-modulated coupling terms: $\Sigma_j \Sigma_k u_j B_{ijk}x_k$
 - $\frac{dx}{dt} = Ax + Cu + \Sigma_j u_j B^{(j)}x$ [A, B and C in interface]

- **Haemodynamic model** (observation model)
 - Response = $f(\text{state, parameters}) + \text{confounds} + \text{noise}$
 - $y_i = g(\ x_i, \ \{\theta_h\}\) + X\beta + \varepsilon$
DCM

The bilinear model

\[
\dot{z} = (A + \sum_j u_j B^j)z + Cu
\]
DCM – haemodynamic model

- Generalises Buxton’s balloon model
- Complete generative model including noise
- Bayesian inference allows prior constraints (& model comparison)
- Region specific
- Subject specific
- Treatment specific

Stephan et al., 2007, Neuroimage; now revisiting for 7T
DCM and Bayesian inference

• Generative or “forward” model (with noise distribution assumptions) gives “likelihood”: $p(\text{data} \mid \text{parameters, model})$

• To estimate parameters given observed data need to “invert” model: $p(\text{parameters} \mid \text{data, model})$

• Bayesian inference enables this inversion using “prior” information about parameters
Bayesian inference

- Bayes rule:
 - \(p(A, B) = p(A|B) \ p(B) = p(B|A) \ p(A) \)
 - \(p(B|A) = \frac{p(A|B) \ p(B)}{p(A)} \)
 - \(p(A) = \sum_b p(A, B=b) = \sum_b p(A|B=b) \ p(B=b) \)

- Bayes rule for DCM:
 - \(p(\text{parameters} \mid \text{data, model}) \)
 \[= p(\text{data} \mid \text{parameters, model}) \]
 \[\times p(\text{parameters} \mid \text{model}) \]
 \[/ p(\text{data} \mid \text{model}) \]
Bayesian model comparison

- The denominator, \(p(\text{data} | \text{model}) \), in turn gives \(p(\text{model} | \text{data}) \) via Bayes rule.
- Allows computation of “Bayes factor” to compare \(p(\text{model}_a | \text{data}) / p(\text{model}_b | \text{data}) \).
 - Note: same data; no absolute \(p(\text{model}_a | \text{data}) \).
- Known as the model evidence and also the marginal likelihood, because parameters are marginalised / integrated out.
 - Recall: \(p(A) = \Sigma_b p(A, B=b) \).
- Accounts for complexity (favours parsimony).
Bayesian model comparison

• Can be extended to encompass
 – Random effects model selection over subjects, allowing heterogeneity and outliers (Stephan et al. 2009, *NeuroImage*)
 – Bayesian parameter averaging and Bayesian model averaging accounting for uncertainty over models (Stephan et al. 2010, *NeuroImage*)
 – Comparison of families of models, e.g. top-down/bottom-up (Penny et al. 2010, *PLoS Comput Biol*)
Free energy in DCM (and the brain!)

- \(p(\text{data} \mid \text{model}) = \int p(\text{data} \mid \theta, \text{model}) \, p(\theta) \, d\theta \)
- However... the integration is impossible in practice
- We can optimise a lower bound on the model evidence known as the “free energy”
- Using “variational” calculus (variational Bayes)
- The optimised “proposal distribution” tends to the posterior distribution of interest
- Unlike other methods (e.g. Monte Carlo), could be implemented biologically – the Bayesian brain

 (Friston, 2010, *Nat Rev Neurosci*)
Overview

• Connectivity in the brain
• Introduction to Dynamic Causal Modelling
• Bayes, prior knowledge, and model evidence

• Connectivity in disease
• Motivation for resting-state fMRI in pharma
• Stochastic DCM and resting-state fMRI
• Pros and cons of sDCM for rs-fMRI in pharma
Connectivity and disease

• “Dysconnection in Schizophrenia …”
 – Stephan et al. (2009) *Schizophr Bul*

• “Autism spectrum disorders: developmental disconnection syndromes”
 – Geschwind et al. (2007) *Curr Opin Neurobiol*

• “Neurodegenerative Diseases Target Large-Scale Human Brain Networks”
 – Seeley et al. (2009) *Neuron*
Seeley et al. (2009)

Syndrome-specific regional atrophy patterns: patients vs. controls

- AD: +35 R Ang
- bvFTD: +11 R FI
- SD: +14 L TPole
- PNFA: +10 L IFG
- CBS: +40 R PMC

Intrinsic functional connectivity networks: healthy controls

Structural covariance networks: healthy controls
Promising results / example applications

• Alzheimer’s disease (and risk factors)
 – AD and MCI (Binnewijzend et al., in press, *Neurobiol Aging*)
 – Amyloid positive healthy elderly (Hedden et al., 2009, *J Neurosci*; Sheline et al., 2010, *Biol Psych*)
 – APOE e4 carrying elderly (Sheline et al., 2010, *J Neurosci*)
 – APOE e4 carrying under 35s! (Filippini et al., 2009, *PNAS*)

• Parkinson’s disease
 – Rowe et al. (2010) *Neurolmage*:
 – “DCM model selection is robust and sensitive enough to study clinical populations and their pharmacological treatment”
Advantages of rs-fMRI for pharma

• Sensitivity to early/mild change
 – E.g. preceding structural atrophy

• Generality for multiple diseases and severities
 – No need for relevant (and implementable) task
 – No issue of task-difficulty, floor/ceiling effects, etc.

• Ease of standardisation, practicality
 – No special hardware or expertise required
 – Short scan, repeatable given problems
DCM for resting state data?

- Neurodynamic model without inputs \(u \)
- \(\frac{dx}{dt} = Ax \)
- Stability requires (roughly) negative feedback
 - More precisely, negative real eigenvalues of \(A \)
- In the absence of input/perturbation \(x \) decays
- Without dynamics of \(x \) cannot have coupling!
- Require endogenous stochastic fluctuations
 - State noise – but differentiable rather than Markovian
 - \(\frac{dx}{dt} = Ax + \omega \)
Stochastic DCM

• Applicable to both task-driven and resting-state fMRI
• Uses variational Bayesian “generalised filtering” (Friston et al., 2010, Math Probl Eng)
• More complicated than usual state noise (cf. Kalman)
 – “separation of dynamics into a slow, low-dimensional flow on an attracting manifold and a fast (analytic) fluctuating part that describes perturbations”
 – “only the slow dynamics are communicated among nodes, which means we can model distributed activity with a small number of macroscopic variables (e.g. one per node) with fast fluctuations that are specific to each node” – (Friston et al., 2011, NeuroImage)
Regions/nodes for (s)DCM

• ROIs can come from prior hypotheses with anatomical atlases (though see “cons” later...)
• Or from functional connectivity analyses
 – E.g. distinct clusters from seed-correlation analysis
 – Or parts from ICA modes, or entire components from a high-dimensional ICA decomposition
• Nodes needn’t be regions, can be distributed
 – E.g. distinct networks (such as default and exec.)
 – Note that (spatial) ICs can have dependencies...
sDCM of rs-fMRI for pharma – Cons

• Need for relatively strong hypotheses
 – Which ROIs, what topology, which aspects to test

• Definition of ROIs in individual subjects
 – Smith et al. (2011) *NeuroImage*, recommends against use of anatomical atlases for generic ROIs
 – Time-consuming, error-prone, less reproducible

• Validity of priors for pathology and/or drug

• Though all to some extent also cons for more general fMRI in pharma (assumptions = priors)
sDCM Cons – revisited

• Need for relatively strong hypotheses
 + Savage-Dickey facilitates network discovery

• Definition of ROIs in individual subjects
 + High-dimensional registration improving all the time
 (Dartel, LDDMM, ANTS, Nifty-Reg, Geodesic Shooting)
 + Atlas fusion strategies can help (STAPLE, MAPS, LEAP)

• Validity of priors for pathology and/or drug
 + Evaluating priors using model evidence (Moran et al.)
sDCM of rs-fMRI for pharma – Pros

- Connectivity from neuronal model parameters more interpretable than correlations or components; perhaps also more sensitive
- Potential for modelling concomitant neuronal and haemodynamic treatment effects
- Principled model selection, random effects inference (outliers, etc.), families of models
- Can be applied to regions within a network and/or to interacting networks
- Recent and on-going work enabling more nodes
Some useful references

• **Network discovery with DCM**. Friston et al., *NeuroImage* 56(3):1202

• Generalised filtering and **stochastic DCM** for fMRI. Li et al., *NeuroImage* 58(2):442