Stochastic Dynamic Causal
Modelling for resting-state fMRI

Ged Ridgway, FIL,
Wellcome Trust Centre for
Neuroimaging, UCL Institute
of Neurology, London




Overview

Connectivity in the brain
Introduction to Dynamic Causal Modelling
Bayes, prior knowledge, and model evidence

Connectivity in disease

Motivation for resting-state fMRI in pharma
Stochastic DCM and resting-state fMRI

Pros and cons of sDCM for rs-fMRI in pharma



Connectivity in the brain

structural connectivity functional connectivity effective connectivity
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Sporns 2007, Scholarpedia

+ structural / anatomical connectivity
= presence of axonal connections (from tracing or dMRI)

« functional connectivity
= statistical dependencies between regional time series

- effective connectivity
= causal (directed) influences between neuronal populations



Functional and effective connectivity are dynamic

» Context-dependent recruitment and
gating of connections

— Synaptic depression over millisec
— Long-term potentiation over weeks

« Even structural connectivity changes

— Microscopic and macroscopic
(developmental) levels

— (Friston, 2011, Brain Connectivity)

* Pharmacological manipulations



Analysis of functional connectivity

V-

Seed voxel correlation analysis
Coherence analysis

Eigen-decomposition
(PCA, SVD)

Independent component
analysis (ICA)

B  Anterior Putamen

any technique describing
statistical dependencies
among regional time series g casaetues

Helmich et al. (2009) Cerebral Cortex



Analysis of effective connectivity

To get beyond descriptive statistical measures
requires a model; parameterise connectivity

— “modelling -> understanding”

The model defines what is meant by
(effective) direct/directed causal influence

Model inversion yields estimated connectivity
Generative models cause the observed data

— “better to use an original than a derived measure”



Generic time-series models

* Discrete-time “auto-regressive” models
— next states = f( previous states, inputs, parameters )
— X(k+1) = f( x(k), u, ©6)
— Underlies Granger Causality

* Very roughly, if current x; and x, explain next x, better than
X, does alone, then x, Granger-causes x,

* Continuous-time dynamical systems models
— rate of change = f( current states, inputs, parameters )
— dx/dt = f( x(t), u, 6 )
— Used in Dynamic Causal Modelling

e Bayesian model comparison accounting for complexity
* Friston (2011) Brain Connectivity



Dynamic Causal Modelling

* Neurodynamic model (state evolution model)
— Underlying (hidden) neuronal states x (or often z)

— dx;/dt =f({xy, ..., X}, {uy, ..., u.}, {64, ..., 6.})
— Linear state-coupling terms: a,, x; + ... +a,, X, = Z, @, X

In “'n
— Linear input terms: ¢;; u; + ... + ¢, U, = 2, C; U
— Bilinear input-modulated coupling terms: 2, 2, u; By, X,
— dx/dt=Ax+ Cu+Z uBlilx [A,Band Cininterface]
 Haemodynamic model (observation model)

— Response = f( state, parameters) + confounds + noise
— v, =8(x, {6,})+XB+e
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DCM — haemodynamic model

Generalises Buxton’s
balloon model

Complete generative
model including noise

Bayesian inference
allows prior constraints
(& model comparison)

Region specific
Subject specific
Treatment specific
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DCM and Bayesian inference

* Generative or “forward” model (with noise
distribution assumptions) gives “likelihood”:
p( data | parameters, model )

* To estimate parameters given observed data
need to “invert” model:
p( parameters | data, model )

e Bayesian inference enables this inversion
using “prior” information about parameters



Bayesian inference

* Bayes rule:

— p(A, B) = p(A|B) p(B) = p(B|A) p(A)

— p(B|A) = p(A|B) p(B) / p(A)

— p(A) =2, p(A, B=b) =%, p(A|B=b) p(B=b)
* Bayes rule for DCM:

— p( parameters | data, model)
= p( data | parameters, model)
X p( parameters | model)
/ p( data | model )



Bayesian model comparison

The denominator, p( data | model ), in turn
gives p( model | data ) via Bayes rule

Allows computation of “Bayes factor” to
compare p( model, | data) / p( model, | data)
— Note: same data; no absolute p(model, | data)
Known as the model evidence and also the

marginal likelihood, because parameters are
marginalised / integrated out

— Recall: p(A) =%, p(A, B=b)
Accounts for complexity (favours parsimony)



Bayesian model comparison

* Can be extended to encompass

— Random effects model selection over subjects,
allowing heterogeneity and outliers (Stephan et al.
2009, Neurolmage)

— Bayesian parameter averaging and Bayesian model
averaging accounting for uncertainty over models
(Stephan et al. 2010, Neurolmage)

— Comparison of families of models, e.g. top-down/
bottom-up (Penny et al. 2010, PLoS Comput Biol)

— Optimal experimental design (Daunizeau et al.
2011, PLoS Comput Biol)



Free energy in DCM (and the brain!)

p(data | model) = [ p( data | 6,model ) p(6) d6

However... the integration is impossible in practice

We can optimise a lower bound on the model evidence
known as the “free energy”

Using “variational” calculus (variational Bayes)

The optimised “proposal distribution” tends to the
posterior distribution of interest

Unlike other methods (e.g. Monte Carlo), could be
implemented biologically — the Bayesian brain

— (Friston, 2010, Nat Rev Neurosci)
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Connectivity and disease

“Dysconnection in Schizophrenia ...”

— Stephan et al. (2009) Schizophr Bul

“Autism spectrum disorders: developmental
disconnection syndromes”

— Geschwind et al. (2007) Curr Opin Neurobiol
“Neurodegenerative Diseases Target Large-
Scale Human Brain Networks”

— Seeley et al. (2009) Neuron



Seeley et al. (2009)
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Promising results / example applications

* Alzheimer’s disease (and risk factors)
— AD and MCI (Binnewijzend et al., in press, Neurobiol Aging)

— Amyloid positive healthy elderly (Hedden et al., 2009, J
Neurosci; Sheline et al., 2010, Biol Psych)

— APOE e4 carrying elderly (Sheline et al., 2010, J Neurosci)
— APOE e4 carrying under 35s! (Filippini et al., 2009, PNAS)

 Parkinson’s disease
— Rowe et al. (2010) Neurolmage:

— “DCM model selection is robust and sensitive enough to
study clinical populations and their pharmacological
treatment”



Advantages of rs-fMRI for pharma

* Sensitivity to early/mild change
— E.g. preceding structural atrophy

* Generality for multiple diseases and severities
— No need for relevant (and implementable) task
— No issue of task-difficulty, floor/ceiling effects, etc.
* Ease of standardisation, practicality

— No special hardware or expertise required
— Short scan, repeatable given problems



DCM for resting state data ?

Neurodynamic model without inputs u

dx/dt = Ax

Stability requires (roughly) negative feedback
— More precisely, negative real eigenvalues of A

In the absence of input/perturbation x decays
Without dynamics of x cannot have coupling!

Require endogenous stochastic fluctuations
— State noise — but differentiable rather than Markovian
— dx/dt=Ax+w



Stochastic DCM

* Applicable to both task-driven and resting-state fMRI

* Uses variational Bayesian “generalised filtering”
(Friston et al., 2010, Math Probl Eng)

 More complicated than usual state noise (cf. Kalman)

— “separation of dynamics into a slow, low-dimensional flow

on an attracting manifold and a fast (analytic) fluctuating
part that describes perturbations”

— “only the slow dynamics are communicated among nodes,
which means we can model distributed activity with a
small number of macroscopic variables (e.g. one per node)
with fast fluctuations that are specific to each node” —
(Friston et al., 2011, Neurolmage)



Regions/nodes for (s)DCM

* ROIs can come from prior hypotheses with
anatomical atlases (though see “cons” later...)

* Or from functional connectivity analyses
— E.g. distinct clusters from seed-correlation analysis

— Or parts from ICA modes, or entire components
from a high-dimensional ICA decomposition

* Nodes needn’t be regions, can be distributed
— E.g. distinct networks (such as default and exec.)
— Note that (spatial) ICs can have dependencies...



sDCM of rs-fMRI for pharma — Cons

* Need for relatively strong hypotheses
— Which ROIls, what topology, which aspects to test

e Definition of ROIs in individual subjects

— Smith et al. (2011) Neurolmage, recommends against use
of anatomical atlases for generic ROIs

— Time-consuming, error-prone, less reproducible

Validity of priors for pathology and/or drug

Though all to some extent also cons for more general
fMRI in pharma (assumptions = priors)



sDCM Cons — revisited

* Need for relatively strong hypotheses
+ Savage-Dickey facilitates network discovery

e Definition of ROIs in individual subjects

+ High-dimensional registration improving all the time
(Dartel, LDDMM, ANTS, Nifty-Reg, Geodesic Shooting)

+ Atlas fusion strategies can help (STAPLE, MAPS, LEAP)
 Validity of priors for pathology and/or drug

+ Evaluating priors using model evidence (Moran et al.)



sDCM of rs-fMRI for pharma — Pros

more interpretab
components; per

e Potential for mod

Connectivity from neuronal model parameters

e than correlations or
naps also more sensitive

elling concomitant neuronal

and haemodynamic treatment effects

* Principled model

selection, random effects

inference (outliers, etc.), families of models

Can be applied to regions within a network

and/or to interacting networks

Recent and on-going work enabling more nodes



Some useful references

* The first DCM paper: Dynamic Causal Modelling (2003). Friston et
al. Neurolmage 19:1273

* Physiological validation of DCM for fMRI: Identifying neural drivers
with functional MRI: an electrophysiological validation (2008). David et
al. PLoS Biol. 6 2683

« Hemodynamic model: Comparing hemodynamic models with DCM
(2007). Stephan et al. Neurolmage 38:387

 Group Bayesian model comparison: Bayesian model selection for
group studies (2009). Stephan et al. Neurolmage 46:1004

« Ten Simple Rules for Dynamic Causal Modelling (2010). Stephan
et al. Neurolmage 49(4):3099

* Network discovery with DCM. Friston et al., Neurolmage 56(3):1202

» Generalised filtering and stochastic DCM for fMRI. Li et al.,
Neurolmage 58(2):442



