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Introduction 
Imaging genetic studies present a particular 
statistical challenge due to the high 
dimensionality of each domain's data. 
Specifically some issues have been raised 
about the adequate control of false positives in 
imaging genetics [1]. A previous study 
assessed the effect of a set of 'null' SNPs on 
brain structure and function [2]. Using voxel-
wise tests, they found that the empirical family-
wise error rate (FWE) was at or below 5%, 
indicating that false positive risk was 
controlled. 

Statistical tests based on the size of significant 
clusters of contiguous voxels are also widely 
used, due to their typically increased statistical 
power over voxel-wise tests [3]. With VBM 
(voxel-based morphometry) data, an 
adjustment for non-stationarity is made to 
account for variations in smoothness across 
the brain. While non-stationary RFT tests have 
been validated with simulations in small 
datasets [4], they have not yet been evaluated 
with the large datasets typical to imaging 
genetics. 

Methods 
Real image and genotype data on 181 
subjects with mild cognitive impairment was 
obtained from the Alzheimer's Disease 
Neuroimaging Initiative. 700 null SNPs were 
selected from chromosome 3, a chromosome 
with no well-known AD risk genes, specifically 
not APOE, PSEN1, PSEN2 or SORL1. The 
700 were selected to satisfy minimum allele 
frequency greater than 5%, and negative 
Hardy-Weinberg Equilibrium test at 
P<0.05/700. 

We used standard 'optimized' VBM 
preprocessing (SPM5), with 6 mm and 12 mm 
Gaussian kernel smoothing, and cluster-
forming thresholds (uc) corresponding to α 
0.01, 0.05 and 0.001 uncorrected. Non-
stationary cluster size inference was used with 
a nominal rejection rate of 0.05 familywise 
corrected. 

A total of 700 SPM analyses were fitted, and 
the empirical familywise error rate determined 
by the proportion of the 700 that had one or 
more (necessarily false) positives. To rule out 
any possible true association, we also 
permuted the SNP data 10 times, running an 
additional 7000 analyses. 

Results 
Figure 1 shows the image of local FWHM 
smoothness estimated from the 181 subjects. 
The lack of stationarity is evident, with FWHM 
smoothness varying by over a factor of 2 from 
the smooth to rough regions of cortex.  Table 1 
shows the empirical false positive rates; as 
expected, application of a stationary cluster-
size test resulted in false positive rates far in 
excess of the nominal 5%, especially with 
6mm smoothing. Unexpected, however, was 
that nonstationary cluster-size tests only 
controlled false positives for the case of 12mm 

12mm smoothing with a cluster-forming 
threshold of 0.001. Otherwise tests were very 
anticonservative (i.e. invalid), with rejection 
rates ranging from 9.1- 45%. 

As this contradicted previous work showing the 
non-stationary cluster-size test to be valid at uc 
corresponding to 0.01, we ran simulations with 
both stationary and non-stationary noise 
(Figure 2 shows the pattern of nonstationarity 
induced). Table 2 shows the results using 
simulated data, showing that false positive 
rates are controlled for both 0.001 and 0.01 
cluster-forming threshold when the non-
stationary cluster size-test is applied to 
nonstationary data.  Further simulations (not 
shown) with more complicated patterns of 
nonstationarity (based on observed FWHM 
image), and with non-Gaussian simulated 
noise images also showed good performance. 

Conclusions 
Our results suggest that any study—not just  
genetics studies—using VBM and RFT cluster-
size tests should use great caution with any 
cluster forming threshold less than 0.001, as 
there is likely inflated false positive risk.  
Nonparametric permutation, of course, is valid 
for any threshold and should be consulted as a 
reference when RFT results are in question. 
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Figure 2. Simulation of 
nonstationary Gaussian images.  
The top row shows the pattern of 
nonstationarity simulated; for ‘6mm’ 
smoothness setting outer-to-inner 
regions have 4, 6, & 9 mm FWHM, 
respectively, and for the ’12mm’ 
smoothness setting the regions 
have 8, 12 and 18 mm FWHM 
smoothness.  The middle row 
shows the three different levels of 
smoothness assembled ‘cookie 
cutter’ fashion; the discontinuity at 
the boundaries of smoothness are 
evident.  The bottom row shows the 

Figure 1. Local FWHM on 12mm-
smoothned VBM data. Substantial 
variation in FWHM (3.8mm min,  27.7mm 
max) demonstrates the importance of 
correcting for nonstationarity. 
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Table 1.  Empirical cluster size test FWE false positive rates, based on 700 null SNPs before (“Observed”) 
and after permutation (“Permuted”).  Nominal 5% error control is only attained at the highest smoothness 
level and highest cluster-forming threshold.  Voxel-wise FWE false positive rates are also shown, which 
exhibit good control. 

Figure 2.  Clustering of cortical thickness based on log10 P of ρg estimate  stationary test not supposed 
to work & doesn’t	


nonstationary supposed to 
work but doesn’t!	


final simulated nonstationary data, after a small (1.5mm) 
smoothing to eliminate these discontinuities, and application of 
the gray matter analysis mask. 

Table 2.  Monte Carlo 
cluster size test FWE 
false positive rates.  
Using the very same 
null SNPs as with the 
real data, Gaussian 
nonstationary data was 
simulated and fit. 
Nominal 5% error 
control is only attained 
at both low and high 
smoothness, and for 
cluster-forming 
thresholds 0.001 and 
0.01. 

Again, stationary test doesn’t work, as expected	


With simulated data, now nonstationary does work!	



