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Introduction 
Multiple sclerosis (MS) is an autoimmune 
disease of the brain and spinal cord that  
can produce severe disability. Quantitative 
analyses of MS lesion maps (binary images 
that mark the exact location of the lesions)  
are typically "mass univariate" and conducted 
with standard linear models that are ill suited 
to the binary nature of the data and ignore  
the spatial dependence between nearby 
voxels [1]. Smoothing the lesion maps does 
not entirely eliminate the non-Gaussian  
nature of the data and requires an arbitrary 
choice of the smoothing parameter [2].  
      Here we present a Bayesian spatial 
model to accurately model binary lesion maps 
and the relationship between local lesion 
incidence and subject specific covariates such 
as MS subtype, age, gender, disease duration 
and disease severity measures. We apply  
our model to T2 lesion maps from 250 MS 
patients classified into five clinical subtypes, 
and demonstrate its unique modeling and 
predictive capabilities over existing methods. 
 
 

Methods 
The Model   We propose a Bayesian spatial 
model for binary lesion images based on a 
generalized linear mixed model (GLMM) at 
each voxel. The covariates can be subject 
specific (e.g., age) or voxel-wise (e.g., atlas 
white matter probability). The voxel-wise 
coefficients [3] are regarded as latent  
spatial processes and jointly modeled by a 
multivariate pairwise difference prior model, 
an instance of the multivariate conditional 
autoregressive (CAR) model [4], to account 
for the spatial structure.  
 

Implementation   We introduce continuous 
latent variables that convert the spatial  
GLMM into a spatial linear mixed model [5] 
and sample all full conditional posterior 
distributions using Gibbs sampler. The 
computational burden can be reduced by 
coding the problem to run in parallel on  
a graphical processing unit (GPU). 
 

Application   We applied our model to T2 
lesion maps from 250 MS patients classified 
into five clinical subtypes of MS. Binary 
images have voxel size 2x2x2 mm3  for a total 
of 274,596 voxels (specifically we used a full 
brain mask, and did not use a white matter 
mask). We included patient specific covariates 
for clinical subtype (coded as five dummy 
variables), age, gender, disease duration 
(DD), the Expanded Disability Status Scale 
(EDSS) score and the Paced Auditory Serial 
Addition Test (PASAT) score; each of these 
covariates  is associated with spatially varying 
coefficients. We used one spatially varying 
covariate shared by all subjects, the white 
matter probability image (from FSL). All 
computation can be completed under 8 hours. 
 

Evaluation   We compared our model to  
a "mass univariate" logistic regression 
approach, Firth logistic regression [6].  
 

An efficient leave-one-out cross-validation 
(LOOCV) approach based on importance 
sampling [7] was also used to predict the 
clinical subtype of a held-out subject  
(with knowledge of their covariates).  
The classification results were compared to  
a Naïve Bayes Classifier (NBC) and  
the Firth logistic regression on voxels with  
at least 2 lesions. Smoothing the data  
before running the NBC or smoothing  
the coefficient maps of the Firth regression 
did not improve predictive performance. 
 

Results 
Our model produces regularized (smoothed) 
estimates of lesion incidence compared to 
empirical lesion probability maps (Fig. 1).  
The significance of the spatial parameters is 
much greater in our model as compared to  
the "mass univariate" Firth regression (Fig. 2),  
and spatial profiles of covariate effects are 
easily obtained (Fig. 3). Moreover, the 
LOOCV classification results based on 

our model dramatically outperform the NBC 
and the Firth logistic regression (Tables).  
 

Conclusions 
We have created a Bayesian spatial model 
that fully respects the binary nature and 
spatial structure of the lesion maps.  
It produces regularized estimates of  
lesion incidence without a fixed smoothing 
parameter. Our model delivered more 
sensitive inferences of covariates and  
group differences, and demonstrated 
dramatically improved predictive capabilities 
over  existing "mass univariate" methods. 
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Tables: Leave-one-out Classification Results 

Figure: Comparison of the empirical and model-based lesion probabilities 

Tables: The confusion 
matrices of the leave-
one-out cross-validation 
classification using the 
Bayesian spatial model 
(left), a Naïve Bayes 
Classifier (middle) and 
the Firth logistic 
regression (right). 
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Figure: Statistical significance maps for PASAT and EDSS covariates 

Figure: Comparison of the statistical significance maps 

Figure 3: Left: High PASAT scores 
correspond to less damage from MS, 
and hence negative correlation 
between PASAT score and lesion 
occurrence along the corpus callosum. 
Middle: Higher EDSS scores 

correspond to more severe MS, and hence the positive correlation between EDSS score and lesion occurrence  
in the minor and major forceps. Right: T1 MRI template with total empirical lesion counts overlaid for reference. 

Figure 2: Top: Bayesian 
standardized spatial maps 
(posterior mean divided by 
posterior standard deviation). 
Bottom: Classical statistic spatial 
maps (mean divided by standard 
deviation) from the “mass 
univariate” Firth logistic regression. 
(Color scale: -5 to -2, 2 to 5)   

Figure 1: Top: Empirical lesion 
probabilities for five MS subtypes, 
clinically isolated syndrome (CIS,  
11 subj), relapsed remitting (RLRM, 
173 subj), primary progressive (PRP, 
13 subj), secondary chronic spatial 
progressive (SCP, 43 subj) and 
primary relapsing (PRL, 10 subj). 
Bottom: Model-based (posterior 
mean) lesion probabilities from  
our Bayesian model.  
(Color scale: 1% - 35%) 
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