Standardized reporting of neuroimaging results with NIDM in SPM, FSL and AFNI

Camille Maumet1, B. Nolan Nichols2, Guillaume Flandin3, Karl Helmer4, Tibor Auer5, Richard Reynolds6, Ziad Saad6, Gang Chen6, Mark Jenkinson7, Matthew A. Webster7, Jason Steffener8, Krzysztof J. Gorgolewski9, Jessica Turner10, Thomas E. Nichols11, Satrajit Ghosh12, Jean-Baptiste Poline13, David Keator14

Introduction

The growing awareness of underpowered and irreproducible research [1] has highlighted the necessity for data sharing in neuroimaging. Encouragingly, in the past ten years, the number of publicly available datasets has greatly increased [3,4,5,6].

But while there is an increasing interest in sharing raw or pre-processed data, statistical images supporting neuroimaging publications are rarely made available. Furthermore, despite the availability of guidelines [7], ambiguous or incomplete methodological reporting is still commonplace [2] making image-based meta-analysis and reproducibility studies particularly challenging.

In [6], we introduced the Neuroimaging Data Model (NIDM), a domain-specific extension of the recently-approved W3C recommendation, PROV-DM [9]. Here, we introduce NIDM-Results, a standardised representation of “mass univariate” neuroimaging results for the three major software analysis packages: SPM, FSL and AFNI.

Methods

Since August 2013, we have organised weekly conference calls and 5 focused workshops with a core group of experts representing more than 10 labs involved in various facets of neuroimaging. Separate meetings were organised with the development teams of SPM, FSL and AFNI.

We selected the pieces of information to be included in the model based on two inclusive criteria:

1. piece of information present in the results display of SPM, FSL or AFNI (e.g. peak location).
2. piece of information considered as essential to support image-based meta-analysis by our panel of experts (e.g. standard error of a contrast).

For each piece of information, we checked if an appropriate term was available in publicly available ontologies (in particular: OBI, STATO, Dublin Core). And, if not, we created a new term and carefully crafted a definition.

Results

A total of 98 classes and 93 relations were created. An overview of the proposed model is provided in fig. 1.

Specification:
http://nidm.nidash.org/specs/nidm-results.html

Fig. 1: A) Conceptual overview of the SPM statistical estimation and inference workflow. B) Overview of the proposed model to report “mass univariate” results, including entities (yellow), activities (blue) and agent (green).

Fig. 3: SPN12 support of NIDM found in batch system, "SPM Stats Results report".

Conclusion

We have presented a standardized representation for “mass univariate” neuroimaging results. In future work, we will provide a native export for FSL and AFNI and for previous releases of these neuroimaging software (e.g. SPM8). A viewer (HTML5, Javascript) is also under development.

References