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Research Problem

There 1s a great interest in models that can decompose brain func-
tional or structural networks into Q sub-groups (blocks) of func-
tionally similar nodes. However, such models are suitable only
for a single network analysis and their application in multi-subject
networks poses several unresolved problems including:

1. How we can estimate a common network decomposition
in multi-subject data, while accounting for between sub-
ject variability?

2. How we can use such network decomposition to infer dif-
ferences between populations (e.g., patients vs. controls),
or effects of covariates?

In this work, we address these problems by developing a
stochastic block model (SBM) for multi-subject binary network
data, that includes a logistic regression model within each block
and block-to-block relationships. While others [4] have network
regression approaches, they have been based on edge-varying co-
variates for a single network, instead of subject-varying for multi-
subject data.

Contributions

The SBM [1] models edges as homogeneous Bernoulli random
variables within and between blocks of nodes, estimating the
number of blocks and their composition. We extend the SBM
to account multi-subject data, while allowing for additional vari-
ability according to a logistic regression model. The key details
are as follows.

1. The GL-SBM estimates a common network decomposi-
tion but allows for subject-wise variability in edge occur-
rence. In the illustration below, the variability between
subjects 1s explained by an age covariate.
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2. The GL-SBM allows us to construct tests with p-values
from asymptotic theory (Wald test) or resampling proced-
ures (Permutation test). Thus, for example, we can ask if
there 1s a significant age effect in block (1,1)?

3. To ensure a good behaviour of the tests, when edge-
counts are very rare or saturated, we use a Firth estimator

[2].

4. We propose a two-stage estimation algorithm which com-
bines the variational approximation and the Newton-
Raphson optimisation.

GL-SBM

The main parameters in the GL-SBM are: @ (proportions of
nodes in each of the Q blocks) and regression coefficients 8 il
forg,l =1,...,0, each of which 1s a vector of length P. For ad-
jacency matrix X = ((X;jx)) and covariate values dy, for subjects
k=1,...,K, the model 1s

Z; ~ Categorical (Q, Q) (1)

Xiik|Zig =1,Zj; =1 ~ Bernoulli(7y) (2)
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where Z; 1s the latent block-indicator variable of node ¢, and pi,/k
are the subject-specific edge rates for block (¢,/). The estimation
1s based on the two-stage algorithm, which combines the vari-
ational approximation and Newton-Raphson algorithm with Firth

regularisation on 8, and estimate of Q is found with the Integ-
rated Classification Likelihood. (See details 1n be [5, 6]).

Data

We consider a multi-subject study with 13 controls and 12 pa-
tients with schizophrenia [3]. The individual functional networks
were derived from the resting-state fMRI time series (297 nodes)
and, at scale 2 of discrete wavelet transform (0.06-0.125 Hz).
Correlations were transformed to Fisher-Z scores and threshold
at 5% FDR, producing a binary network for each subject.

We consider covariates of age, premorbid IQ and per-subject
motion in the scanner, as well as a patient/control effect. The
covariates are column-wise assigned into the design matrix D, so
that the first two columns are group intercepts. Also, D 1s centred
about the mean covariate values.

Simulations Settings and Results

We simulated data for K = 10 subjects, with networks of 50,100 and 500 nodes. We set Q = 3 and study the effect of block
sizes under three proportion designs: Balanced (a = (0.33,0.33,0.33)), Mildly Unbalanced (o = (0.6,0.3,0.1)) and Unbalanced
(o = (0.7,0.3,0.1)). Each network is simulated according to the connectivity rates PI1-8 (see Fig. 1 (a)). Also, we consider the
cases when there is no age effect (B, = 0) and decreasing age effect (§,; = —0.025). We use the notation n50_0 to indicate
network with 50 nodes and no age effect while n50_0025 indicate network with 50 nodes and age effect of -0.025. For each
combination of parameters, we generated 1000 network realisations. Except for nearly or totally unidentifiable block structure (PI1-2
and PI5), the recovery of true block structure was excellent (Fig. 1 (b)), as was the control of false positives (Fig. 1 (¢) and (d)).
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Figure 1: (a) Design of connectivity structures PI1-8. (b) Recovery of true node assignments measured with
Adjusted Rand Index (ARI). (¢) Wald test-False Positive Rates (FPR) for B al* (d) Permutation test - FPR for

ﬁql'

Real Data Results

The GL-SBM discovered well-known resting-state networks (Fig. 2 (a)), as well as strong patent/control and age effects (Fig. 2 (b)&(c)).
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Figure 2: (a) Anatomical locations of individual blocks. (b) Bonferroni thresholded (5%) Wald score image
of the intercepts (Patients vs. Controls). (¢) Bonferroni thresholded (5%) Wald score image of common age
effect.

Conclusions

We have developed a novel stochastic block regression model for multi-subject binary network data. In real data applications, the GL-
SBM 1identified anatomically and functionally plausible blocks, as well as differences in connectivity between patients and controls and
their variation with age (http://warwick.ac.uk/tenichols/ohbm).
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