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Research Problem
There is a great interest in models that can decompose brain func-
tional or structural networks into Q sub-groups (blocks) of func-
tionally similar nodes. However, such models are suitable only
for a single network analysis and their application in multi-subject
networks poses several unresolved problems including:

111. How we can estimate a common network decomposition
in multi-subject data, while accounting for between sub-
ject variability?

222. How we can use such network decomposition to infer dif-
ferences between populations (e.g., patients vs. controls),
or effects of covariates?

In this work, we address these problems by developing a
stochastic block model (SBM) for multi-subject binary network
data, that includes a logistic regression model within each block
and block-to-block relationships. While others [4] have network
regression approaches, they have been based on edge-varying co-
variates for a single network, instead of subject-varying for multi-
subject data.

Contributions
The SBM [1] models edges as homogeneous Bernoulli random
variables within and between blocks of nodes, estimating the
number of blocks and their composition. We extend the SBM
to account multi-subject data, while allowing for additional vari-
ability according to a logistic regression model. The key details
are as follows.

111. The GL-SBM estimates a common network decomposi-
tion but allows for subject-wise variability in edge occur-
rence. In the illustration below, the variability between
subjects is explained by an age covariate.

222. The GL-SBM allows us to construct tests with p-values
from asymptotic theory (Wald test) or resampling proced-
ures (Permutation test). Thus, for example, we can ask if
there is a significant age effect in block (1,1)?

333. To ensure a good behaviour of the tests, when edge-
counts are very rare or saturated, we use a Firth estimator
[2].

444. We propose a two-stage estimation algorithm which com-
bines the variational approximation and the Newton-
Raphson optimisation.

GL-SBM
The main parameters in the GL-SBM are: ααα (proportions of
nodes in each of the Q blocks) and regression coefficients βββ ql ,
for q, l = 1, . . . ,Q, each of which is a vector of length P. For ad-
jacency matrix Xk = ((Xi jk)) and covariate values dk , for subjects
k = 1, . . . ,K, the model is

ZZZi ∼Categorical(Q,ααα) (1)

Xi jk|Ziq = 1,Z jl = 1∼ Bernoulli(πqlk) (2)

log
(

πqlk

1−πqlk

)
= ddd>k βββ ql , (3)

where ZZZi is the latent block-indicator variable of node i, and piqlk
are the subject-specific edge rates for block (q, l). The estimation
is based on the two-stage algorithm, which combines the vari-
ational approximation and Newton-Raphson algorithm with Firth
regularisation on βββ ql , and estimate of Q is found with the Integ-
rated Classification Likelihood. (See details in be [5, 6]).

Data
We consider a multi-subject study with 13 controls and 12 pa-
tients with schizophrenia [3]. The individual functional networks
were derived from the resting-state fMRI time series (297 nodes)
and, at scale 2 of discrete wavelet transform (0.06-0.125 Hz).
Correlations were transformed to Fisher-Z scores and threshold
at 5% FDR, producing a binary network for each subject.
We consider covariates of age, premorbid IQ and per-subject
motion in the scanner, as well as a patient/control effect. The
covariates are column-wise assigned into the design matrix DDD, so
that the first two columns are group intercepts. Also, DDD is centred
about the mean covariate values.

Simulations Settings and Results
We simulated data for K = 10 subjects, with networks of 50,100 and 500 nodes. We set Q = 3 and study the effect of block
sizes under three proportion designs: Balanced (α = (0.33,0.33,0.33)), Mildly Unbalanced (α = (0.6,0.3,0.1)) and Unbalanced
(α = (0.7,0.3,0.1)). Each network is simulated according to the connectivity rates PI1-8 (see Fig. 1 (a)). Also, we consider the
cases when there is no age effect (βql = 0) and decreasing age effect (βql = −0.025). We use the notation n50_0 to indicate
network with 50 nodes and no age effect while n50_0025 indicate network with 50 nodes and age effect of -0.025. For each
combination of parameters, we generated 1000 network realisations. Except for nearly or totally unidentifiable block structure (PI1-2
and PI5), the recovery of true block structure was excellent (Fig. 1 (b)), as was the control of false positives (Fig. 1 (c) and (d)).

Figure 1: (a) Design of connectivity structures PI1-8. (b) Recovery of true node assignments measured with
Adjusted Rand Index (ARI). (c) Wald test-False Positive Rates (FPR) for β̂ββ ql . (d) Permutation test - FPR for

β̂ββ ql .

Real Data Results
The GL-SBM discovered well-known resting-state networks (Fig. 2 (a)), as well as strong patent/control and age effects (Fig. 2 (b)&(c)).

Figure 2: (a) Anatomical locations of individual blocks. (b) Bonferroni thresholded (5%) Wald score image
of the intercepts (Patients vs. Controls). (c) Bonferroni thresholded (5%) Wald score image of common age
effect.

Conclusions
We have developed a novel stochastic block regression model for multi-subject binary network data. In real data applications, the GL-
SBM identified anatomically and functionally plausible blocks, as well as differences in connectivity between patients and controls and
their variation with age (http://warwick.ac.uk/tenichols/ohbm).
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