Harmonizing sMRI Data via Robust Preprocessing

Aristeidis Sotiras

Postdoctoral Research Fellow Section of Biomedical Image Analysis

SBIA

SBIA – Neuroimaging Projects

Study	Multi-site	Scanner	Participants
BLSA	No	1.5T/3T	160
SCZ	Yes	1.5T/3T	1081
ADNI	Yes	1.5T	822
PNC	No	3T	1,445
ACCORD	Yes	1.5T	729 (BL) – 511 (FUP)
CARDIA	Yes	3T	~600
NiCK	No	3T	180
Sprint	Yes	3Т	640

"Big Data" projects:

- high sample size
- multi-site
- different imaging protocols

Challenges

Significant differences in intensity characteristics

Templates (with ground-truth ROI masks)

Multiple atlases capturing

- Anatomical variability
- Intensity variability

Doshi, Jimit, et al. "Multi-atlas skull-stripping." *Academic radiology* 20.12 (2013): 1566-1576.

Ou, Yangming, et al. "DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting." *Medical image analysis* 15.4 (2011): 622-639.

Ou, Yangming, et al. "DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting." *Medical image analysis* 15.4 (2011): 622-639.

Doshi, Jimit, et al. "Multi-atlas skull-stripping." *Academic radiology* 20.12 (2013): 1566-1576.

6

Hierarchical Multi-Atlas Representation

Doshi, Jimit, et al. "Multi-atlas skull-stripping." *Academic radiology* 20.12 (2013): 1566-1576.

3

Hierarchical Multi-Atlas Representation

TOTALBRAIN	TISSUE_SEG	SUBGROUP_0	SUBGROUP_1	SUBGROUP_2	ROI_NAME
	GM			FRONTAL_INFERIOR_GM	Left AOrG anterior orbital gyrus
1	GM				Left LOrG lateral orbital gyrus
1	GM				Right MOrG medial orbital gyrus
1	GM				Right POrG posterior orbital gyrus
1	GM			FRONTAL_INSULAR_GM	Left Alns anterior insula
1	GM				Left Plns posterior insula
1	GM				Right Alns anterior insula
1	GM				Right Plns posterior insula
1	GM			FRONTAL_LATERAL_GM	Right OpIFG opercular part of the inferior frontal gyrus
1	GM				Right OrIFG orbital part of the inferior frontal gyrus
1	GM				Right PrG precentral gyrus
1	GM				Right SFG superior frontal gyrus
1	GM				Right TrIFG triangular part of the inferior frontal gyrus
1	GM	FRONTAL			Left GRei gyrus rectus
1	GM	THOMIAL			Left MFC medial frontal cortex
1	GM				Left MPrG precentral gyrus medial segment
1	GM			FRONTAL_MEDIAL_GM	Right MPrG precentral gyrus medial segment
1	GM				Right MSFG superior frontal gyrus medial segment
1	GM				Right SCA subcallosal area
1	GM				Right SMC supplementary motor cortex
1	GM			FRONTAL_OPERCULAR_GM	Left CO central operculum
1	GM				Left FO frontal operculum
1	GM				Left PO parietal operculum
1	GM				Right CO central operculum
1	GM				Right FO frontal operculum
1	GM				Right PO parietal operculum
1	WM				frontal lobe WM left
1	WM		THOM AL_WIT		frontal lobe WM right
1	GM		PARIETAL_GM	PARIETAL_LATERAL_GM	Left AnG angular gyrus
1	GM	PARIETAL			Left PoG postcentral gyrus
1	GM				Right PoG_postcentral gyrus
1	GM				Right SMG supramarginal gyrus
	GM				Right SPL superior parietal lobule
	GM			PARIETAL_MEDIAL_GM	Left MPoG postcentral gyrus medial segment
	GM				Left PCu precuneus
	GM				Right MPoG postcentral gyrus medial segment
]	GM				Right PCu precuneus
]	WM		PARIETAL_WM		parietal lobe WM left
1	WM				parietal lobe WM right

Doshi, Jimit, et al. "Multi-atlas skull-stripping." *Academic radiology* 20.12 (2013): 1566-1576.

Harmonizing BLSA*

*BLSA: Baltimore Longitudinal Study of Aging America's longest-running scientific study of human aging Longitudinal scans of hundreds of subjects

Main challenge:

Scanner change from 1.5T SPGR to 3T MPRAGE

Scanner	1.5T	3Т	
Participants	160	561	
Gender: males (females)	92 (68)	252 (309)	
Age: mean ± std (range)	73.79 ± 8.17 (45.64)	71.87±13.00 (69.33)	
No of scans	1089	862	

Harmonizing BLSA

Image contrast differences between SPGR and MPRAGE:
▶ Lead to under-segmentation

Solution: adaptive atlas construction

Adaptive Atlas Construction

Segmentation Results

Previous Segmentation

Adaptive Segmentation

Segmentation Results

Longitudinal WM Trajectories

Initial

Cross-Sectional WM Trends

Initial

Adaptive

Normative Brain Dataset

Main objective: Combining control subjects from different studies and extracting robust imaging features for the analysis of structural brain age-related change across life span.

Study	Scanner	Subjects	Gender	Age (Years)
			Male/Female	Mean ± SD (range)
BLSA 1.5T		468	220/248	66.40 ± 13.91 (65)
BBL_GO	3T	201	101/100	14.51 ± 3.79 (14)
BBL_20-50	0 1.5T 79 41/38		41/38	28.22 ± 7.52 (31)
ADNI	1.5T	215	109/106	75.83 ± 5.03 (30)
NiCK	3Т	66	35/31	15.89 ± 3.90 (16)

ROI Volumes across Life Span

16

Age Prediction Across Life Span

Harmonizing SCZ Study

Data Site	Scanner	Diagnosis	Subjects	Gender	Age (Years)
				Male/Female	Mean ± SD (range)
Penn	3Т	SCZ	138	86/52	35.38 ± 11.34 (13-60)
		NC	132	63/69	31.80 ± 12.89 (12-65)
China	3Т	SCZ	144	73/71	30.35 ± 9.52 (14-59)
		NC	169	79/90	31.63 ± 10.54 (17-57)
Munich	1.5T	SCZ	165	123/42	31.35 ± 9.66 (18-65)
		NC	177	123/54	31.48 ± 9.16 (18-61)
Brazil	1.5T	SCZ	62	45/17	27.74 ± 8.00 (18-50)
		NC	94	53/41	30.21 ± 8.40 (18-50)
TOTAL		SCZ	509	327/182	31.73 ± 10.18 (13-65)
		NC	572	318/254	31.39 ± 10.41 (12-65)

Challenges: Contrast Difference

Penn

China

Dataset Differences

GM-WM-CSF Segmented Images

Blue: Penn less GM Yellow: Penn more GM

VBM comparison of dataset control **GM**

Harmonizing by CN Means

VBM Comparison of NC vs SCZ within each dataset

VBM Comparison of NC vs SCZ for Pooled Datasets

2

Section of Biomedical

IMAGE ANALYSIS

Classification Accuracy

Demographic information

a: Pearson Chi-square test. b: Two-sample t-test.

Conclusions

- Important challenges associated with harmonizing shared resources
 - Anatomical variability
 - Different intensity properties
- Robust preprocessing removes important confounding variation
- Simple statistical models help
- Can we do more ?
 - Machine learning approaches based on multi-task learning
 - Machine learning techniques that model explicitly the confounding factors

Credits

C. Davatzikos (

G. Erus

T. Zhang

J. Doshi

M. Rozycki

Q. Ma

