

Searching for Common Variants

Derrek Paul Hibar derrek.hibar@ini.usc.edu

Objectives

- Obtain the ADNI Genetic DataQuality Control Procedures
 - Missingness
 - Testing for relatedness
 - Minor allele frequency (MAF)
 - Hardy-Weinberg Equilibrium (HWE)
- Testing for ancestry (MDS analysis)
 Image-wide genetic analysis!

Finding Common Genetic Variants Influencing Brain Structure

Software and Scripts

- PLINK
- <u>http://pngu.mgh.harvard.edu/~purcell/plink/</u>
 R
 - <u>http://cran.us.r-project.org/</u>
- PLINK 2 (beta)
 - https://www.cog-genomics.org/plink2
- Files for ADNI_Diagnosis and MDS Plots
 - <u>https://github.com/dhibar/</u> OHBMImagingGenetics2015

- Download/Unzip PLINK formatted ADNI1 data.
 - ida.loni.usc.edu/
- Data are in binary (compressed) PLINK format:
 - http://pngu.mgh.harvard.edu/~purcell/plink/ data.shtml#bed

Name 🔺	Date Modified	Size
ADNI_cluster_01_forward_757LONI.bed	Mar 22, 2012, 5:36 PM	118 MB
ADNI_cluster_01_forward_757LONI.bim	Mar 22, 2012, 5:36 PM	20.9 MB
ADNI_cluster_01_forward_757LONI.fam	Mar 22, 2012, 5:36 PM	18 KB

- We need to update the files to include diagnostic status.
 - This is important for later steps (specifically for HWE testing).
- Download Diagnosis Information:
 - From the LONI IDA
 - Patients = 2; Controls = 1

Example of OHBM_ADNI1_diagnosis.tx	xt:
------------------------------------	-----

	3M_ADNI1_diagnos	is.txt	×
333	002_S_0295	1	
319	002_S_0413	1	
304	002_S_0559	1	
90	002_S_0619	2	
541	002_S_0685	1	
545	002_S_0729	1	
230	002_S_0782	1	
707	002_S_0816	2	
521	002_S_0938	2	

- plink
- --bfile ADNI_cluster_01_forward_757LONI
- --pheno OHBM_ADNI1_diagnosis.txt
- --noweb
- --make-bed

--out ADNI1_Genotypes_Unfilt

- We name our PLINK formatted ADNI1 genotype data:
 - ADNI1_Genotypes_Unfilt.bed
 - ADNI1_Genotypes_Unfilt.bim
 - ADNI1_Genotypes_Unfilt.fam
- The files contain 757 subjects
 - 449 Males and 308 Females
 - 177 AD, 366 MCI, and 214 CTLs

ADNI1_Genotypes_Unfilt.bed

FID

HD

PID

MID

Sex

Allele1

Allele

ADNI1_Genotypes_Unfilt.bim

ADNI1_Genotypes_Unfilt.fam

USC Mark and Mary Steven Neuroimaging and Informati

FamilyID

#1 - Check for Discordant Sex Information

- Use genotype data from X chromosomes to determine sex (females have two copies, males have only one).
- Compare the genotyped sex to the sex reported in the study. % heterozygosity on the X chromosome is used to determine genotypic sex.
- Consider removing subjects with discordant sex information in PLINK using the --remove command
 - http://pngu.mgh.harvard.edu/~purcell/plink/ dataman.shtml#remove

- To check sex with PLINK:
 - plink
 - --bfile ADNI1_Genotypes_Unfilt
 - --check-sex
 - --out ADNI1_sex
- Print out any discordant subjects:
 - grep "PROBLEM" ADNI1_sex.sexcheck

FID	IID	PEDSEX	SNPSEX	STATUS	F
574	073_S_0909	2	0	PROBLEM	0.2268
764	130_S_1201	2	0	PROBLEM	0.2273

- Remove these subjects from the dataset:
 - Store the FID and IID in a text file called remove.txt

Neuroimaging and Informatics Institute

#2 Test for Missingness

- We excluded genotypes with GC Scores < 0.15 and marked them as missing. If >10% of the total set of SNPs genotyped are missing it might indicate a poorly genotyped subject.
- Using PLINK:
- plink --bfile ADNI1_Genotypes_Unfilt

 -remove remove.txt --noweb --missing
 -out missingness

 Print the subjects with >10% missingness:

awk '{if(\$6 > 0.1) print \$0}' missingness.imiss

In our data it looks like one subject might have excessive missingness:

FID	IID	MISS_PHENO	N_MISS	N_GENO	F_MISS
011_S_0002	011_S_0002	N	63407	620901	0.1021

Update the remove.txt file to exclude this subject as well:

🗋 remove.txt 🛣						
574	073 <u>S</u> 0909					
764	130_S_1201					
704	011_S_0002					

- #3 Identifying Related Subjects
 Prune down high-LD regions:
 - plink --bfile ADNI1_Genotypes_Unfilt
 - --indep-pairwise 50 5 0.2
 - --remove remove.txt
 - --out relatedness
 - --noweb
- Generate an IBS Matrix:
 - plink --bfile ADNI1_Genotypes_Unfilt
 - --extract relatedness.prune.in
 - --genome
 - --out relatedness
 - --noweb

What is Linkage Disequilibrium?

USC Mark and Mary Stevens Neuroimaging and Informatics Institute

http://shared.web.emory.edu/whsc/news/img/whsc/linkage_disequilibrium.jpg

What is Linkage Disequilibrium?

USC Mark and Mary Stevens Neuroimaging and Informatics Institute

 $https://estrip.org/articles/read/tinypliny/44920/Linkage_Disequilibrium_Blocks_Triangles.html$

- Identify related subjects, with an IBS > 0.2
 - plink --bfile ADNI1_Genotypes_Unfilt
 - --extract relatedness.prune.in
 - --min 0.2
 - --genome
 - --genome-full
 - --out relatedness
 - --noweb
- Remove one subject from each related pair, keep the one with the highest genotyping rate:
 - grep "057_S_0643" missingness.imiss
 - grep "057_S_0934" missingness.imiss
 - Add 057_S_0934 to remove.txt (has high missingness)

We found that 6 subjects were related:

	1104		1152		DUIE	DCT	222	DATIO
FID1	IID1	FID2	IID2	PI_HAI	PHE	DST	PPC	RATIO
FC		04.4		0.534	4	0.077000		44.060
56	057_5_0643	814	057_5_0934	0.524	-1	0.877099	1	11.868
359	067_S_0059	447	067_S_0056	0.4746	-1	0.865581	1	9.8591
591	023_S_0058	620	023_S_0916	0.5266	0	0.87768	1	11.0342

Add one subject from each pair to the remove.txt list (the ones with the highest missingness):

A Pre-Cleaned Dataset

- Create a new PLINK file that removes each of the subjects in the remove list that can then be carried forward for additional QC:
 - plink --bfile ADNI1_Genotypes_Unfilt
 - --remove remove.txt
 - --make-bed
 - --out ADNI1_Genotypes_Unfilt_preclean

--noweb

- Now that we have carefully looked at our dataset and removed bad samples we can filter the dataset:
 - plink
 - --bfile ADNI1_Genotypes_Unfilt_preclean
 - --maf 0.01
 - --geno 0.05
 - --hwe 5e-7
 - --make-bed
 - --out ADNI1_Genotypes_Filt
 - --noweb

Filtering Criteria

- --maf 0.01
 - Removes "rare" SNPs, if the minor allele occurs fewer than 1% of the total alleles.
- --geno 0.05
 - Removes SNPs that have >5% of alleles missing. This is related to the subject-wide missingness (--mind)
- --hwe 5e-7
 - Removes SNPs that significantly deviate from Hardy-Weinberg Equilibrium. The option 5e-7 we give here is the p-value threshold from the HWE test we use to exclude tests.
 - Note: HWE can detect deviations in allele frequency that might be due to poor genotyping. However, if you are looking at a case-control cohort alleles may deviate from HWE just because they are overrepresented in your patient population. So it is good practice to only run the HWE tests in controls (this is the default behavior PLINK, but you have to first include diagnosis information).

- Before we can use our cleaned files for genetic association testing we need to examine the ethnicities of our samples.
- For genetic tests we can only compare samples of the same ancestry, or else we risk discovering spurious results due to Population Stratification.
 - Li, C. C. "Population subdivision with respect to multiple alleles." Annals of human genetics 33.1 (1969): 23-29.

Eric Lander's example

- Say you want to study the "trait" of ability to eat with chopsticks
- Decide to look at the HLA-A1 allele in San Francisco
- We know that the HLA-A1 allele is more common among Asians than Caucasians
- So when looking for an association we would conclude that Asian ethnicity is associated with the phenotype of interest
 - But obviously we know that immune response does not play a role in your ability to use chopsticks.

 Using Multi-Dimensional Scaling (MDS) Analysis we can estimate the ancestry of each sample in our study by comparing their genetic footprint with other subjects of known ancestry.

Performing an MDS Analysis

awk 'BEGIN{OFS=","};{print \$1, \$2, \$3, \$4, \$5, \$6, \$7}' >> HM3mds2R.mds.csv HM3mds.mds

Visualize results in R

- R
- source(mdsplot.R)
- #Read our MDS analysis output into R
- mds.cluster =
 read.csv(as.character("HM3mds2R.mds.c
 sv"), header=T)
- #Plot our data
- mdsplot(mds.cluster,pop.interest="CEU
 ",pruningf=0.03,plotfinal=FALSE,flip.
 x=FALSE,flip.y=FALSE)

USC Mark and Mary Stevens Neuroimaging and Informatics Institute

Dimension 2

Plot data with outliers removed

- mdsplot(mds.cluster,pop.interest="
 CEU",pruningf=0.03,plotfinal=TRUE,
 flip.x=FALSE,flip.y=FALSE)
- A final plot will be outputted as well as a file called HM3mds_Pruned_0.03_CEU.txt which will contain the list of subjects to keep in the analysis.

- We still need to drop the ancestry outliers from our dataset.
 - awk 'NR > 1{print \$1, \$2}'
 HM3mds_Pruned_0.03_CEU.txt >
 Subjects.list
 - plink --bfile ADNI1_Genotypes_Filt

 -noweb --keep Subjects.list make-bed --out

 ADNI1 Genotypes Filt CEU

Millions of SNPs

Position along genome

An unbiased search to find where in the genome a common variant is associated with a trait.

- You can run a GWAS very easily in PLINK.
- First, you need to create a text file for the phenotype (imaging trait) that you want to test.
- The --pheno file is just a text file organized in excel and saved as a tab delineated text file. The first column is the subject FamilyID, second column is the SubjectID, and the third column is the value/ phenotype you are testing. No column headers.
 - Lets run a GWAS on temporal lobe volume, saving the phenotype info in a file called temporal.txt

1	014_S_0520	3090
2	005_S_1341	4039
3	012_S_1175	3847
4	012_S_0803	5983
5	018_S_0055	2999
6	027_S_0118	3485

- What about covariates? You can include covariates like age, sex, intracranial volume, etc. by creating a text file just like the phenotype file. The first two columns are the FamilyID and IndividualID and each column after that is a covariate.
- NOTE: if sex is already included in your PLINK file then you do not have to add it to your covariates file, you can include it as a covariate by adding the --sex option to your PLINK GWAS command.
 For this analysis we just control for age and sex, in a file called covars.txt

- We're ready to run a GWAS!
- plink --bfile
 ADNI1_Genotypes_Filt_CEU --noweb
 --linear --covar covars.txt --

pheno temporal.txt --out
temporal lobe gwas
This will output a file called

temporal_lobe_gwas.assoc.linear which is described on the PLINK site:

 http://pngu.mgh.harvard.edu/~purcell/plink/ anal.shtml#glm

CHR	SNP	BP	A1	TEST	NMISS	BETA	STAT	Р
1	rs3094315	742429	С	ADD	739	0.09045	0.02424	0.9807
1	rs3094315	742429	С	SEX	739	4.736	1.204	0.2289
1	rs3094315	742429	С	COV1	739	-0.6334	-2.235	0.0257
1	rs12562034	758311	Α	ADD	732	0.3963	0.09658	0.9231
1	rs12562034	758311	Α	SEX	732	4.372	1.1	0.2719
1	rs12562034	758311	Α	COV1	732	-0.6886	-2.397	0.01677
1	rs12124819	766409	G	ADD	739	-0.5771	-0.1891	0.8501
1	rs12124819	766409	G	SEX	739	4.998	1.27	0.2045
1	rs12124819	766409	G	COV1	739	-0.6583	-2.321	0.02057

Individual Site QQ Plots

When QQ Plots Go Wrong

Can show evidence of unaccounted for population stratification, cryptic relatedness, or just that your data does not follow expected distributions

When QQ Plots Go Really Well

N>100,000 subjects LDL Cholesterol

(Teslovich et al., 2010)

The observed distribution only deviates from the expected at low Pvalues. Would not expect something like this without huge effect sizes or huge sample sizes.

Selecting A Single SNP for Further Analysis

- You can output a single SNP from your PLINK formatted dataset to be used in other forms (e.g. testing the effects of the SNP at each voxel in the brain).
- To output an additive coded SNP from your dataset use the --recodeA option:
 - plink --bfile ADNI1_Genotypes_Filt_CEU --noweb --snp rs6265 --recodeA --out bdnf
- This will output a text file called bdnf.raw. The 7th column gives the total number of minor alleles each subject has (each subject is a row).

Image-wide genetic analysis

- You can use this extracted SNP for further analyses. One interesting analysis is to look at a SNP's effects in the full brain.
- You can get directions and code for testing a SNP for association at each point in the brain here:
 - <u>https://github.com/dhibar/</u> <u>VoxelwiseRegression</u>
 - All you need are images and a mask file.

Image-wide genetic analysis

- To download the files, go to https://ida.loni.usc.edu -> Project ADNI -> Search. In your search panel, please click <post-processed> under Image Types and enter <TBM*> under Image Description. The full description is TBM Jacobian Maps [MDT - Screening]. You should find N=817 files and then Select All -> Add to a Collection. The Jacobian maps were created by nonlinearly warping the screening scan to the average group template or MDT, thus the Jacobian values indicate regional volume differences between the screening scan and the MDT. You can download a copy of the MDT here:
 - http://users.loni.usc.edu/~thompson/XUE/MDT/ ADNI_ICBM9P_MDT.nii

Pretty Pictures

Useful web resources

UCSC genome browser: <u>http://genome.ucsc.edu/cgi-bin/hgGateway</u> Genome visualization magic.

Hapmap: <u>http://hapmap.ncbi.nlm.nih.gov/</u> Allele frequencies in multiple populations.

Allen Brain Atlas: <u>http://www.brain-map.org/</u> See where a gene is expressed.

Entrez Gene: <u>http://www.ncbi.nlm.nih.gov/gene/</u> See the gene ontology (what it does).

dbSNP: <u>http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp</u> The database of every documented genetic variation.

Plink: <u>http://pngu.mgh.harvard.edu/~purcell/plink/</u> Incredibly useful tool for genome-wide analysis, organization, etc. Excellent documentation.

dbGaP: <u>http://www.ncbi.nlm.nih.gov/gap/</u> Database of genotypes and phenotypes.

Acknowledgements

<u>IGC (USC)</u> Paul Thompson (Advisor) Jason L Stein Neda Jahanshad <u>QTIM (Australia)</u> **Sarah Medland** Margie Wright Katie McMahon Nick Martin Greig de Zubicaray

