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Scaling up Directed Graph Models for Resting-State fMRI with Stepwise Regression
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Abstract
The Multiregression Dynamic Model (MDM) is a graphical model for estimating dynamic, directed
connectivity. The model evidence has a closed form and factors by node, allowing a fast, parallelised model
search. Using a resting-state fMRI data set, we show that applying stepwise methods to approximate the
model search can dramatically reduce computation time with a negligible effect on the estimated connectivity
structures. This will allow the extension of the methodology to much larger numbers of nodes.

The Multiregression Dynamic Model
The model equations are

Observation Equation Yt(r) = FT
t (r)θt(r) + vt(r) vt(r) ∼ N (0,Vt(r))

System Equation θt(r) = θt−1(r) +wt(r) wt(r) ∼ N (0,Wt(r))
Initial Information (θ0|y0) ∼ N (m0,C0)

where Yt(r) is the time series for node r at time t. The matrix Ft(r)T contains a 1 for an intercept and the values
of the parent nodes at time t. The coefficients θt(r) represent connectivity strength and may vary over time.
This variability is controlled by a scalar discount factor δ where if δ = 0.5, θt(r) evolves as a random walk and if
δ = 1 the model is static (Costa et al., 2015).

Data
We applied exhaustive and stepwise MDM-DGM searches to 32 subjects with 15-minute resting-state fMRI
scans (TR=1140 ms, 2 x 2 x 2 mm). ROIs were defined either functionally or based on the Harvard-Oxford
atlas: ventromedial prefrontal cortex (VMPFC), orbitofrontal cortex (OFC, L,R), dorsolateral prefrontal cortex
(DLPFC, L,R), Amygdala (L,R), Anterior Insula (AntIns, L,R), Posterior Insula (PostIns, L,R), anterior mid-cingulate
cortex (aMCC), primary and secondary somatosensory cortex (SI and SII, mean over left and right hemispheres)
and periaqueductal gray (PAG) (Bijsterbosch et al., 2015).

The MDM-DGM Model Search
In a Directed Graph Model search (MDM-DGM), the optimal model m (the optimal set of parents Pa(r)) is
found for each node r individually by maximising the Log Predictive Likelihood

LPL(m) =

n∑
r=1

T∑
t=1

logp(yt(r)|yt−1,Pa(r))

As the number of nodes n increases, the total number of models (2n−1) grows exponentially, making an
exhaustive model search infeasible for n > 20.
Two models, m1 and m2, may be compared using the log Bayes Factor

logBF = LPL(m1)− LPL(m2)

where logBF > ±1 indicates there is evidence to prefer one model over another and logBF > ±2 indicates that
this evidence is strong (Harrison and West, 1997).

Stepwise Methods
Forward selection starts from the no-parent (intercept only) model. The first step scores all the one parent
models, selecting for inclusion the parent which most increases the LPL. Parents are added one at a time until
there is no increase in the LPL.
Backward elimination begins with the model that includes all the possible parents, maximising the LPL as
each parent is removed until this removal fails to improve the LPL.
An improved performance may be achieved by combining the results of the forward and backward approaches:
when they disagree the model with the higher score is selected.
Code was run on Dell PowerEdge R410 servers with 12 2.80 GHz processors (X5660) and 64GB RAM, using
R version 3.2.4 with C++ implementation.

The MDM-DGM Search Identifies Consistent, Directed Networks
Significant Edges, Partial Correlations
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Significant Edges, MDM−DGM
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(a) An MDM-DGM was fit for each subject s and the total number of edges ns calculated. Equivalent adjacency matrices based on partial correlations were then created by selecting the ns edges
with the highest absolute partial correlation (excluding the diagonal). One-sided Binomial tests were performed to identify edges occurring more (purple) or less (green) frequently than would be ex-
pected in a homogenous network (defined as the average proportion of subjects with an edge over the 210 possible edges (p = 0.37 (presence), p = 0.63 (absence)). Edges surviving a 5 % false
discovery rate threshold are shown.

aMCC

Amyg−L Amyg−R

AntIns−L AntIns−R

DLPFC−L DLPFC−R

OFC−L OFC−R

PAG

PostIns−L PostIns−R

SII−LRSI−LR

VMPFC

(b) An alternative representation of the MDM-DGM network (of present edges) shown in (a),
emphasising the strongest edges, using the igraph package (Csardi and Nepusz, 2006).

Figure 1: Estimation of individual network structure. MDM-DGM networks are consistent with networks based on partial correlations but can also estimate directionality.

Stepwise Methods Provide an Accurate Approximation to the MDM-DGM Search
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(a) When used in isolation, forward selection correctly identifies an average of 91 % of edges (min
83 %, max 97 %, sd 4 %). Backward elimination performs comparably, with mean correct edge
identification 91 % (min 79 %, max 98 %, sd 4 %). In combination, performance is improved
to an average of 97 % (min 94 %, max 100 %, sd 2 %). For 4 subjects, the exhaustive and
stepwise networks are identical.
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(b) Using the log Bayes Factor to compare the Log Predictive Likelihoods when the stepwise
search fails to find the true maximum. For 48 % of the models incorrectly specified by the step-
wise search, logBF < 1, indicating there is insufficient evidence to distinguish between the models
selected by the exhaustive and stepwise searches. For 67 % , logBF < 2, indicating there is no
strong evidence for a difference.

Significant Edges, Stepwise Disagreement
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(c) Identical analysis to that performed in Figure 1 but using a stepwise search.
Edges that were significant or non-significant in both approaches have been removed.
The stepwise search failed to identify the edges SI-LR -> OFC-L, DLPFC-L -> AntIns-R
(both −1 subject) and OFC-L -> aMCC (−3 subjects) as significant but identified
OFC-R -> aMCC (+2 subjects). Note that over all edges the two networks differ by a
maximum of 3 subjects.

Figure 2: Comparison of an exhaustive MDM-DGM search over 2.46 × 105 candidate models to a stepwise search over a maximum of 1590 models.

Stepwise Methods Significantly Reduce Computation Time
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(a) The number of models scored as a percentage of the total (2.46 × 105). This is on average 0.38 %
(sd 0.04 %) and 0.55 % (sd 0.02 %) for forward selection and backward selection respectively. For 15
nodes, the maximum percentage of models that can be scored using these methods is 0.65 %.
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(b) Estimated computation times (per subject, per node) for increasing numbers of nodes (assuming a
run time of 0.2 seconds per model and a time series with 790 time points), plotted on a log10 scale.
Stepwise estimates assume both forward selection and backward elimination are run and the maximum
number of models is scored. The computation time of a 15 node network may be reduced from hours
to less than a minute while a 50 node network is now feasible in approximately 8 minutes (assuming
parallelisation by node).

Figure 3: Stepwise methods score a fraction of the total number of candidate models, making models with large numbers of nodes
computationally tractable.

Conclusion
The MDM-DGM search estimates directed, physiologically-
interpretable networks, consistent with those obtained by
analysing partial correlations. We have shown that stepwise
methods can dramatically reduce computation time for a small
trade-off in accuracy. Future work will assess the stability of
these methods on larger (50-100) numbers of nodes.

Acknowledgements
The authors gratefully acknowledge Simon Schwab for his con-
tribution to the MDM-DGM code.
Ruth Harbord is funded by EPSRC grant number EP/F500378/1

References
Bijsterbosch et al., (2015) Functional Connectivity under Anticipation of Shock: Correlates of Trait
Anxious Effect versus Induced Anxiety Journal of Cognitive Neuroscience 27(9):1840-1853
Costa et al. (2015) Searching Multiregression Dynamic Models of Resting-State fMRI Networks using
Integer Programming. Bayesian Analysis 10(2):441-478.
Csardi and Nepusz (2006) The igraph Software Package for Complex Network Research, InterJournal,
Complex Systems 1695(5):1-9 http://igraph.org
Harrison and West (1997) Bayesian Forecasting and Dynamic Models. Springer. pp. 328

R packages for C++ implementation
Eddelbuettel and Francois (2011) Rcpp: Seamless R and C++ Integration. Journal of Statistical
Software 40(8):1-18
Eddelbuettel and Sanderson (2014) RcppArmadillo: Accelerating R with high-performance C++ linear
algebra. Computational Statistics and Data Analysis 71:1054-1063.


