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Statistical inference on images

The goal of statistical inference is to make decisions based on our data, while

accounting for uncertainty due to noise in the data. From a broad perspective,

statistical inference on fMRI data is no different from traditional data analysis on,

say, a response time dataset. Inference for fMRI is challenging, however, because of

the massive nature of the datasets and their spatial form. Thus, we need to define

precisely what are the features of the images that we want to make inference on, and

we have to account for the multiplicity in searching over the brain for an effect.

We begin with a brief review of traditional univariate statistical inference and then

discuss the different features in images we can make inference on and finally cover

the very important issue of multiple testing.

7.1 Basics of statistical inference

We will first briefly review the concepts of classical hypothesis testing, which is the

main approach used for statistical inference in fMRI analysis. A null hypothesis H0

is an assertion about a parameter, some feature of the population from which we’re

sampling. H0 is the default case, typically that of “no effect”, and the alternative

hypothesis H1 corresponds to the scientific hypothesis of interest. A test statistic T

is a function of the data that summarizes the evidence against the null hypothesis.

We write T for the yet-to-be-observed (random valued) test statistic, and t for a

particular observed value of T . (Note here T stands for a generic Test statistic, not

t -test.) While there are many different possible types of test statistics with different

units and interpretations (e.g., t -tests, F-tests, χ2-tests), the P-value expresses the

evidence against H0 for any type of T : The P-value is P(T > t |H0), the chance

under the null hypothesis of observing a test statistic as large or larger than actually

observed. (Tests for decreases in T or two-sided changes, i.e., either positive or

negative, are possible by redefining T .)

110
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It is useful to dispense with two frequent misunderstandings about P-values. First,

and crucially, the P-value is not the probability that the null is true given the data,

P(H0|T ). To determine this quantity, we must use Bayesian computations that are

not part of Classical hypothesis testing (see Box 7.1). Roughly, the P-value expresses

the surprise of observing the data if the null hypothesis was actually true. Second, a

P-value can only be used to refute H0 and doesn’t provide evidence for the truth of

H0. The reason for this is that the P-value computation begins by assuming that the

null hypothesis is true, and thus a P-value cannot be used to deduce that H0 is true.

When P-values are used to decide whether to reject H0 or not, there are two

different types of errors that one can make, and we can quantify the likelihood of

each. Rejecting H0 when there is no effect is a Type I or false positive error. The

desired tolerance of the chance of a false positive is the Type I error level, denoted α.

Failing to reject H0 when there truly is an effect is a Type II or false negative error.

The chance that a testing procedure correctly rejects H0 when there is a true effect is

the power of the procedure (which is one minus the Type II error rate). Power varies

as a function of the size of the true effect, the efficiency of the statistical procedure,

and the sample size. This implies that a sample size that is sufficient to detect an effect

in one study (which has a relatively large effect magnitude using a sensitive statistical

test) may not be sufficient to find an effect in other studies where the true effect is

smaller or the test is less sensitive. In Section 7.6 we consider power calculations in

detail.

For any testing procedure used to make “Reject”/“Don’t Reject” decisions, based

either on T or on P , there are several ways to describe the performance of the test. A

test is said to be valid if the chance of a Type I error is less than or equal to α; if this

chance exceeds α, we say the test is invalid or anticonservative. A test is exact if the

chance of a Type I error is precisely α, while if this probability is strictly less than α

we say the test is conservative. In this terminology, we always seek to use valid tests,

and among valid tests we seek those with the greatest power.

Box 7.1 Bayesian statistics and inference

Bayesian methods are growing in popularity, as they provide a means to express

prior knowledge before we see the data. Thomas Bayes (1702–61) is remembered

for the following theorem:

P(A|B) = P(B|A)P(A)

P(B)

which says the chance of random event A occurring assuming or given that B

occurs, can be computed from an expression involving the reverse statement, the

chance of B given A. This expression gives a formal mechanism for combining
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prior information with information in the data. In the context of the GLM with

data y and parameters β, it allows us to write f (β|y) ∝ f (y|β)f (β), where f (β)

is the prior density, our beliefs about the parameters before we see the data (e.g.,

that BOLD percent changes generally range from −5% to +5%), f (y|β) is the

traditional likelihood of the data given parameters, and f (β|y) is the posterior,

the distribution of the parameter after we observe the data. Crucially, it allows

us to make probabilistic statements on the unknown parameter β, whereas clas-

sical (or frequentist ) statistics assumes β is fixed and has no random variation.

Bayesian inference is based entirely on the posterior: The posterior mean provides

a point estimate, and the posterior standard deviation provides the equivalent of

a standard error.

There are fundamental differences between the classical and Bayesian

approaches. A classical method couches inference relative to infinite theoreti-

cal replications of your experiment: A 95% confidence interval means that if you

were to repeat your experiment over and over, 19 out of 20 times (on average)

the interval produced will cover the fixed, true, but unobservable parameter. The

randomness of the data over hypothetical experimental replications drives fre-

quentist inference. The Bayesian method casts inference based on belief about the

random unobservable parameter: The prior expresses belief about the parameter

before seeing the data, the posterior expresses belief about the parameter after

seeing the data. There is no reference to infinite replications of your experiment,

as the data are fixed (not random).

A true Bayesian thinks a classical statistician is absurd for referencing imag-

inary experiments that are never conducted. A true classical statistician thinks

a Bayesian is irrational because different scientists (with different priors) could

analyze the same data and come to different conclusions. Fortunately, in many

settings the Bayesian and classical methods give similar answers, because with

more and more data the influence of the prior diminishes and the posterior looks

like the classical likelihood function.

7.2 Features of interest in images

For an image composed of V voxels, it might seem that there is only one way to decide

where there is a signal, by testing each and every voxel individually. This approach

is referred to as ‘voxel-level’ inference. Alternatively, we can take into account the

spatial information available in the images, by finding connected clusters of activated

voxels and testing the significance of each cluster, which is referred to as ‘cluster-level’

inference. (See Figure 7.1.) Finally, we might sometimes simply want to ask ‘is there

any significant activation anywhere?’ which is referred to as a ‘set-level’ inference.

First, we discuss what it means to have a significant voxel-level or cluster-level result,
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Figure 7.1. Illustration of voxel-level versus cluster-level inference. Both axes show the same one-

dimensional section of a statistic image. In the top, voxel-level inference finds two voxels

above a significance threshold, and thus both voxels are individual marked as significant. In

the bottom, a cluster-forming threshold defines clusters, and cluster-wise inference finds a

single cluster of 12 voxels significant; none of the 12 voxels are individually significant, but

together they comprise a significant cluster.

and then how we actually compute significance (P-values) accounting for the search

over the brain.

7.2.1 Voxel-level inference
In an image of test statistics, each voxel’s value measures the evidence against the null

hypothesis at that location. The most spatially specific inference that we can make

is to determine whether there is a significant effect at each individual voxel. We do

this by examining whether the statistic at each voxel exceeds a threshold u; if it does,

then we mark that voxel as being “significant” (i.e., we reject the null hypothesis at

that voxel. Such voxel-by-voxel inferences allow us to make very specific inferences

if the threshold is chosen properly; in Section 7.3 we discuss how the threshold is

chosen.

7.2.2 Cluster-level inference
Voxel-level inferences make no use of any spatial information in the image, such

as the fact that activated voxels might be clustered together in space. However, we

generally expect that the signals in fMRI will be spatially extended. One reason is

that the brain regions that are activated in fMRI are often much larger than the size

of a single voxel. The second reason is that fMRI data are often spatially smoothed
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and then oversampled to small (e.g., 2 mm3) voxels during spatial normalization,

which results in a spreading of the signal across many voxels in the image.

To take advantage of this knowledge about the spatial structure of fMRI signals,

it is most common to make inferences about clusters of activated voxels rather than

about individual voxels, which is referred to as cluster-level inference. The most

common approach to cluster-level inference involves a two-step procedure. First, a

primary threshold (known as a cluster-forming threshold) uc is applied to a statistic

image, and the groups of contiguous voxels above uc are defined as ‘clusters’. What

exactly constitutes ‘contiguous’ depends on the definition of a neighborhood. For

example, in 2D, we certainly would consider two suprathreshold voxels connected if

they share an edge (4-connectivity), but might also consider them connected if they

share a corner (8-connectivity). In 3D, the choices are 6-connectivity (only faces), 18-

connectivity (also edges) or 26-connectivity (also corners).1 Second, the significance

of each cluster is determined by measuring its size (in voxels) and comparing this to

a critical cluster size threshold k. Methods for choosing this threshold k are discussed

below in Section 7.3.

Cluster size inference is generally more sensitive than voxel-level inference for

standard MRI data (Friston et al., 1996a). In rough terms, cluster size inference

should be better at detecting a signal when that signal is larger in scale than the

smoothness of the noise. To see this, consider an example where our fMRI noise

has smoothness of 10 mm FWHM and the true effects are also 10 mm in scale. In

this instance, the true signal clusters will be similar in size to noise-only clusters,

and it will be difficult for cluster-level inference to detect the signal. In contrast,

if the scale of the effect is larger than 10 mm, cluster-level inference should detect

the effects more often than voxel-level inference. Assigning signifiance to clusters

based on their extent ignores the statistic values within a cluster. It would seem

that using such intensity information would improve the sensitivity of cluster infer-

ence, and indeed some authors have found this result. Poline & Mazoyer (1993)

proposed inference using the minimum of the cluster size P-value and cluster peak

P-value, and Bullmore et al. (1999) suggested cluster mass inference based on the

sum of all voxel-level statistic values in a cluster. For the mass statistic in particular,

Hayasaka & Nichols (2004) found that it has equal or greater power than the size

statistic.

There are two drawbacks to cluster-level inference: The arbitrary cluster-forming

threshold and the lack of spatial specificity. The cluster-forming threshold uc can be

set to any value in principle, though if set too low, focal signal may be lost in the

gigantic clusters that are formed, and if set to high it may exclude voxels with weak

signal intensity (see Figure 7.2). Also, random field theory results break down for

thresholds more generous than α = 0.01 (see Section 7.3.1). Most troubling, if one

1 The SPM software uses 18-connectivity while the FSL uses 26-connectivity; in practice you find very similar
clusters with either connectivity unless the data has very low smoothness.
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Figure 7.2. Effects of cluster-forming threshold on cluster size. The same data were thresholded using

increasing cluster-size thresholds; the resulting clusters are randomly color-coded to show

which voxels belong to each cluster. At the lowest threshold, there is one large cluster that

encompasses much of the brain, whereas higher thresholds break up this cluster, at the

expense of excluding many regions that do not survive the higher threshold.

adjusts uc up or down just slightly, some clusters may merge or split, and significant

clusters disappear. In practice, most users take uc to correspond to either α = 0.01

or α = 0.001 (FSL users must set a statistic value threshold rather than a P-value,

usually t = 2.3 or 3.1).

Cluster inference’s greater power comes at the expense of spatial specificity, or

precision. When a 1,000 voxel cluster is marked as statistically significant, we cannot

point to a single voxel in the cluster and say “The signal is here.” All we can conclude

is that one or more voxels within that cluster have evidence against the null. This

isn’t a problem, though, when cluster sizes are small. If you get a cluster that covers

half the brain, however, this can be quite unsatisfying. The only remedy is to resort

to raising uc to get smaller clusters, but this further compounds the multiple testing

problem because one is searching across multiple thresholds.

A recently developed method attempts to address these two problems. Threshold

Free Cluster Enhancement (TFCE) (Smith & Nichols, 2009) uses all possible uc ,

and then integrates over uc to provide a voxel-level map that indicates cluster-level

significance. By eliminating one parameter it does introduce two new parameters,

specifically how to weight uc versus cluster size, but these are set to fixed values

inspired by theory and empirical simulations. While not an established approach,

it has shown promise as a sensitive approach to cluster-level inference that removes

the dependence on the cluster-forming threshold.

7.2.3 Set-level inference
Although rare, there may be some cases when one simply wants to know if there is

any significant activation for a particular contrast, with no concern for where the

activation is. In SPM, there is an inference method known as set-level inference that
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Box 7.2.3 Inference on location vs. inference on magnitude

When we apply a threshold to a statistic image and search the brain for

activations, the end result is an inference on location. We answer the question:

“Where in the brain is there a response to my experiment?” Once a significant

region is identified as active, one would like to characterize the nature of the effect,

in particular the effect magnitude. However, due to a problem of circularity (dis-

cussed in greater detail in Chapter 10; see Box 10.4.2), we cannot subsequently

answer the question of how large the identified effect is. The reason is that of

all the possible true positive voxels we will detect, we are more likely to find the

voxels that are randomly higher than the true effect and will miss those that are

randomly smaller. In genetics this is known as the “winner’s curse,” as the first

group to find a gene will often report an effect size that is greater than any subse-

quent replication.

At the present time, there is no way to correct for the bias in effect sizes found by

searching the brain for activations. One simply must recognize that effect size bias

is present and note this when discussing the result. If unbiased effect size estimates

are required, one must sacrifice inference on location and instead assume a fixed

and known location for the effect. Specifically, one must use a priori specified

regions of interest (ROIs) and average the data within those regions. For more on

the topic of circularity, see Kriegeskorte et al. (2009).

is a overall test of whether there exists any significant signals anywhere in the brain.

The test statistic is the number of clusters for an arbitrary cluster defining threshold

uc that are larger than an arbitrary cluster size threshold k. A significant set-level

P-value indicates that there are an unusually large number of clusters present, but

it doesn’t indicate which clusters are significant. For this reason it is referred to an

omnibus test and has no localizing power whatsoever.

7.3 The multiple testing problem and solutions

As previously reviewed, classical statistical methods provide a straightforward

means to control the level of false positive risk through by appropriate selection

of α. However, this guarantee is a made only on a test-by-test basis. If a statistic

image has 100,000 voxels, and we declare all voxels with P < 0.05 to be “significant,”

then on average 5% of the 100,000 voxels – 5,000 voxels – will be significant as false

positives! This problem is referred to as the multiple testing problem and is an critical

issue for fMRI analysis.

Standard hypothesis tests are designed only to control the ‘per comparison rate’

and are not meant to be used repetitively for a set of related tests. To account for the

multiplicity, we have to measure false positive risk over an entire image. We define,
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in turn, two measures of false positive risk – the familywise error rate and the false

discovery rate.

7.3.1 Familywise error rate

The most common measure of Type I error over multiple tests is the ‘familywise error

rate’, abbreviated FWER or FWE. FWE is the chance of one or more false positives

anywhere in the image. When we use a valid procedure with αFWE = 0.05, there is

at most a 5% chance of any false positives anywhere in the map. Equivalently, after

thresholding with a valid αFWE = 0.05 threshold, we have 95% confidence that there

are no false positive voxels (or clusters) in the thresholded map. For a particular voxel

(or cluster), we can refer to its “corrected FWE P-value” or just “corrected P-value,”

which is the smallest αFWE that allows detection of that voxel (or cluster).

Several procedures that can provide valid corrected P-values for fMRI data are

available.

7.3.1.1 Bonferroni correction

Perhaps the most widely known method for controlling FWE is the ‘Bonferroni

correction.’ By using a threshold of α = αFWE/V , where V is the number of tests,

we will have a valid FWE procedure for any type of data. However, even though it

will control FWE for any dataset, the Bonferroni procedure becomes conservative

when there is strong correlation between tests. Because of the smoothness of fMRI

data, Bonferroni corrections are usually very strongly conservative. Instead, we need

a method that accounts for the spatial dependence between voxels. The two main

methods that do this are random field theory (RFT) and permutation methods.

7.3.1.2 Random field theory

Random field theory uses an elegant mathematical theory on the topology of thresh-

olded images. The details of this method require mathematics beyond the scope of

this book, but an approachable overview can be found in Nichols & Hayasaka (2003);

treatments with more mathematical detail can be found in Cao & Worsley (2001)

and Adler & Taylor (2007).

A crucial aspect of RFT is how it accounts for the degree of smoothness in the

data. Smoothness is measured by FWHM = [FWHMx ,FWHMy ,FWHMz ]. This

smoothness is not the size of the Gaussian smoothing kernel applied to the data, but

it is important to point out that the smoothness of the data is not equivalent to the

size of a Gaussian smoothing kernel applied to the real data, but rather the intrinsic

smoothness of the data. That is, even before any smoothing, there is some spatial

correlation present in all imaging data, and the RFT smoothness parameter relates

to the combination of the intrinsic and applied smoothing.

The definition of RFT’s FWHM is somewhat convoluted: It is the size of a Gaussian

kernel that, when applied to spatially independent “white noise” data, induces the
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degree of smoothness present in the noise of the data at hand. See previous citations

for a more precise definition in terms of the variability of the partial derivatives of

the noise.

A related concept is ‘RESEL’ or RESolution ELement, a virtual voxel of size

FWHMx × FWHMy × FWHMz . The analysis volume expressed in units of RESELs

is denoted R, the RESEL count.

We present one formula to gain intuition on how RFT results work, the expression

for the corrected P-value for a voxel value t in a three-dimensional Gaussian statistic

image

Pvox
FWE(t ) ≈ R × (4 ln(2))3/2

(2π)2
e−t 2/2(t 2 − 1) (7.1)

where R = V /(FWHMx FWHMy FWHMz ) is the RESEL count for the image. This

demonstrates the essential role of the RESEL count and shows that, for a given

statistic value t and search volume V , as the product of FWHM’s increase, the

RESEL count decreases and so does the corrected P-value, producing increased

significance. The intuition is that greater smoothness means there is a less severe

multiple testing problem, and a less stringent correction is necessary. Conversely,

as the search volume in RESELs grows, so does the corrected P-value, producing

decreased significance for the same statistical value. This should also make sense, as

the larger the search volume, the more severe the multiple testing problem.

These observations illustrate how RFT inference adapts to the smoothness in the

data, and how the RESEL count is related to the number of ‘independent observa-

tions’ in the image. This loose interpretation, however, is far as it goes, and RFT

should never be misunderstood to be equivalent to a ‘RESEL-based Bonferroni cor-

rection’. This is not the case, and there is no equivalent voxel count that you can feed

into Bonferroni correction that will match RFT inferences (Nichols & Hayasaka,

2003).

RFT can also be used to obtain P-values for the clusters based on cluster-size

(Friston et al., 1994b). Again, the details are mathematically involved, but Gaussian

random field theory provides results for the expected size and number of clusters, and

these results adapt to the smoothness of the search volume. RFT P-values have also

been developed for the alternate cluster statistics mentioned earlier, combined cluster

size and peak height (Poline & Mazoyer, 1993) and cluster mass (Zhang et al., 2009).

Limitations of RFT. Even though RFT methods form the core of fMRI inference,

they have a number of shortcomings. First, they require a multitude of distributional

assumptions and approximations. In particular, they require that the random field

be sufficiently smooth, which practically means that one needs to smooth the data

with a Gaussian filter whose FWHM is at least twice the voxel dimensions. In fact,

the RFT methods are overly conservative for smoothness less than three- to four-

voxel FWHM (Nichols & Hayasaka, 2003; Hayasaka & Nichols, 2003). In addition,
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RFT methods are overly conservative for sample sizes less than about 20 (Nichols &

Hayasaka, 2003; Hayasaka & Nichols, 2003).

7.3.1.3 Parametric simulations

Another approach to voxel-level and cluster-level inference is Monte Carlo simu-

lation, from which we can find a threshold that controls the FWE. For example,

Forman et al. (1995) proposed a Monte Carlo cluster-level inference method. Gaus-

sian data are simulated and smoothed based on the estimated smoothness of the real

data, creating surrogate statistic images under the null hypothesis. These surrogate

images are thresholded, and an empirical cluster size distribution is derived. These

methods have an underlying model that is similar to RFT’s model (i.e., smooth

Gaussian data), but they do not rely on an asymptotic or approximate results. They

are, however, much more computationally intensive than RFT.

This method is implemented in AFNI’s alphasim program. Users of this approach

must take care that the smoothness parameter, which, as in RFT, is not the size of

the applied smoothing kernel but the estimated intrinsic smoothness of the data. In

addition, the analysis mask used for the simulation must be exactly the same as the

mask used for analysis of the real data.

7.3.1.4 Nonparametric approaches

Instead of making parametric assumptions about the data to approximate P-values,

an alternative approach is to use the data themselves to obtain empirical null dis-

tributions of the test statistic of interest. The two most widely used resampling

methods are permutation tests and the bootstrap. While the bootstrap is perhaps

better known, it is an asymptotic method (meaning that it is only provably correct in

the large-sample limit), and in particular has been shown to have poor performance

for estimating FWE-corrected P-values (Troendle et al., 2004). In contrast the per-

mutation test, which has exact control of false positive risk, is a useful alternative to

RFT methods for small samples.

A permutation test is easy to understand when comparing two groups. Consider-

ing just a single voxel, suppose you have two groups of ten subjects, high performers

(H) and low performers (L), each of whose BOLD response data you wish to com-

pare. Under the null hypothesis of no group difference, the group labels are arbitrary,

and one could randomly select ten subjects to be the H group, reanalyze the data, and

expect similar results. This is the principle of the permutation test: repeatedly shuf-

fling the assignment of experimental labels to the data, and analyzing the data for

each shuffle to create a distribution of statistic values that would be expected under

the null hypothesis. Just as a parametric P-value is found by integrating the tails of

the null distribution that are more extreme than the actual data observed, the non-

parametric permutation P-value is the proportion of actually observed permuted

statistic values that are as or more extreme than the value that was actually observed.

See Figure 7.3 for an illustration with this example with three subjects per group.
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( None – standard deviation unknown ) 

Nonparametric Null Distribution of D 

D = xH − xL

T = D/SD

Mean
Difference

fMRI Activation

Two Sample
T Statistic

0.05

n/a

0.05

0.0117 

Data Statistic Null Distribution P-value

Figure 7.3. Illustration of parametric and nonparametric inference at the group level, comparing two

groups of three subjects. Parametric methods use assumptions about the data to find the

null distribution of the test statistic. Nonparametric methods use the data itself to find the

null distribution, allowing the consideration of nonstandard test statistics. Under the null

hypothesis the group labels are irrelevant, and thus we can reanalyze the data over and over

with different permutations of the labels. Here, there are 20 possible ways to assign three

subjects to the Low-performers group (and the other three must be high performers), and

thus the permutation distribution consists of 20 test statistic values. With either parametric or

nonparametric methods, the P-value is the proportion of the null distribution as large or larger

than the statistic actually observed. However, there is no parametric test for the difference, as

the standard deviation (SD) is unknown.

For a single subject’s fMRI data, the permutation test is difficult to apply. Drift

and temporal autocorrelation make the timeseries autocorrelated and thus not

“exchangeable”under the null hypothesis (since randomly reordering the data points

would disrupt the temporal autocorrelation). Even though there are methods to

decorrelate the data (Bullmore et al., 2001) as part of the permutation procedure,

such semiparametric methods are very computationally demanding and depend on

accurate modelling of the correlation.

At the group level, on the other hand, the permutation approach is easy to apply

(this correction is implemented in the randomise tool in FSL and in the SnPM
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toolbox for SPM). Each subject is analyzed with a standard GLM model, and for

each contrast of interest, an effect image (a Contrast of Parameter Estimates or

COPE image in FSL; a con image in SPM) is created. If there is just a single group of

subjects, it might seem that a permutation test is impossible, as there are no group

labels to permute. If we instead assume that the COPE images have a symmetric

distribution (about zero under H0), a permutation test can made by randomly

multiplying each subject’s COPE by 1 or −1. The assumption of symmetry is much

weaker than a Gaussian assumption and can be justified by the first-level errors

having a symmetric distribution.

So far, we have discussed the use of permutation tests to obtain null distributions

at each voxel, but this does not solve the multiple testing problem. Importantly,

permutation can also be used to obtain FWE-corrected P-values. An FWE-corrected

P-value is found by comparing a particular statistic value to the distribution of the

maximal statistic across the whole image. In the previous High and Low performers

example, this means that for each random labeling of Hs and Ls, the entire brain

volume is analyzed, and the maximum statistic value across the whole brain is noted.

In the case of voxel-level inference, this is the largest intensity in the statistic image,

whereas for cluster-level inference, this is size of the largest cluster in the image.

With repeated permutation a distribution of the maximum statistic is constructed,

and the FWE corrected P-value is the proportion of maxima in the permutation

distribution that as large or large than the observed statistic value.

The primary drawback of permutation methods is that they are computationally

intensive. Whereas RFT computations take seconds at most, a typical permutation

analysis can take anywhere from 10 minutes to an hour on modern computing

hardware. However, given the great amount of time spent to perform other aspects

of fMRI processing, this seems like a relatively small price to pay for the accuracy

that comes from using permutation tests. In general, when FWE-corrected results

are desired, we recommend the use of permutation tests for all inferences on group

fMRI data.

7.3.2 False discovery rate

While FWE-corrected voxel-level tests were the first methods available for neu-

roimaging, practitioners often found the procedures to be quite insensitive, leaving

them with no results that survived correction. While sometimes FWE inferences are

conservative due to inaccurate RFT methods, even with exact permutation FWE

methods, many experiments will produce no positive results (especially with small

sample sizes). A more lenient alternative to FWE correction is the false discovery

rate (Benjamini & Hochberg, 1995; Genovese et al., 2002). The false discovery pro-

portion (FDP) is the fraction of detected voxels (or clusters) that are false positives

(defined as 0 if there are no detected voxels). FDP is unobservable, but FDR proce-

dures guarantee that the average FDP is controlled. Put another way, where a level

0.05 FWE procedure is correct 95% of the time – no more than 5% of experiments
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Signal + Noise

FWE

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%

Control of Familywise Error Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Control of Per Comparison Rate at 10%

Percentage of Null Pixels That Are False Positives

Control of False Discovery Rate at 10%

Occurrence of Familywise Error

Percentage of Activated Pixels That Are False Positives

Figure 7.4. Illustration of three different multiple comparison procedures. Each column corresponds to

a different realization of signal plus noise as illustrated in the simulated data in the top

row, and can be thought of as your next ten experiments. The top row shows the statistic

image without any thresholding. The second row illustrates the control of the per comparison

rate at 10%, that is, no special account of multiplicity. The third row shows control of the

familywise error rate at 10%, say with RFT or Bonferroni. The bottom row shows control of

the false discovery rate. With no adjustment for multiple testing (second row) there is excellent

sensitivity, but very poor specificity – there are false positives everywhere. Controlling FWE

(third row) gives excellent specificity – only 1 out of 10 experiments have any false positives—

but poor sensitivity. Controlling FDR (bottom row) is a compromise between no correction

and FWE correction, giving greater sensitivity at the expense of some false positives, even

though it is still controlled as a fraction of all voxels detected. Note that, just as the emperical

per comparison error rate for each experiment is never exactly 10%, likewise the emperical

false discovery rate is never exactly 10%; in both instances, we’re guaranteed only that, in the

long run, the average rate will not exceed 10%.

examined can have any false positives – a level 0.05 FDR procedure produces results

that are 95% correct – in the long run the average FDP will be no more than 5%.

(See Figure 7.4.)

FDR’s greater sensitivity comes at the cost of greater false positive risk. That risk

is still measured in an objective way that accounts for features of the data, which is

in contrast to, say, an uncorrected α = 0.001 threshold, which will give varying false

positive risk depending on smoothness and the size of the search region. Standard
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FDR, as applied voxel-level, lacks any kind of spatial specificity, similar to cluster

inference. Given a map of FDR-significant voxels, one cannot point to a single

voxel and conclude that it is significant. One can only assert that, on average, no

more than 5% (or the FDR level used) of the voxels present are false positives.

Even if some significant voxels form a large cluster, and others are scattered as tiny

clusters, voxel-level FDR has no spatial aspect and does not factor cluster size into

significance.

This lack of spatial precision has led some to criticise FDR, with Chumbley &

Friston (2009) even recommending that voxel-level FDR should not be used at all.

They propose, instead, that FDR should be applied in a cluster-level fashion. On

balance, both voxel-level and cluster-level FDR are reasonable procedures, and each

needs to be interpreted with care, accounting for the presence of false positives in

the map of significant voxels or clusters.

7.3.3 Inference example

To illustrate these inference methods just discussed, we consider data from a gam-

bling task (Tom et al., 2007); these data are available from the book Web site. In

this experiment, 16 subjects were offered 50/50 gambles where the size of the poten-

tial gain and loss varied parametrically from trial to trial. Here we just consider

the negative parametric effect of potential loss on BOLD response (which identifies

regions whose activity goes down as the size of the potential loss goes up). Using a

cluster-forming threshold of Z = 2.3, 154 clusters were found (Figure 7.5a). Based

on the search volume and estimated smoothness, RFT finds 5% FWE critical cluster

size threshold to be 570 voxels, and only four clusters are larger (Figure 7.5b and

Table 7.1).

Note the difficulty in visualizing 3D clusters with orthogonal slices. In Figure 7.5b,

in the coronal (middle) slice, there appears to be perhaps six or more separate clusters,

yet in fact there are only three clusters shown this panel. Contiguity of clusters is

measured in 3D and is very difficult to gauge visually from 2-D slices.

Another challenge arises with large clusters, such as the first cluster in Table 7.1

and as seen in the lower portions of the sagittal and coronal (left and middle) slices.

This cluster covers a number of anatomical regions, yet calling this cluster significant

only tells us there is some signal somewhere in these 6,041 voxels. If we had known

this would be a problem a prori, we could have used voxel-level inference instead

to improve spatial specificity. For this data, though, no voxels are found significant

with either FWE or FDR (max voxel Z = 4.00 has Pvox
FWE = 1.0, Pvox

FDR = 0.1251). This

is typical of cluster inference greater sensitivity over voxel-level inference.

7.4 Combining inferences: masking and conjunctions

A single fMRI experiment will usually produce a number of different contrasts, and

fully understanding the outcome of the study may require combining the statistic
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(a) All clusters created with Z=2.3  cluster-forming threshold

(b) Clusters surviving 5% FWE threshold

Figure 7.5. Thresholded maps from the gambling experiment, parametric effect of the size of potential

loss on BOLD response. Top (a) shows clusters created with Z = 2.3 cluster-forming threshold

and no cluster-size threshold, while bottom (b) shows the 3 clusters that survive a critical

cluster size threshold of 570 voxels.

Table 7.1. Significant clusters from the gambling experiment.

Region Cluster Corrected X Y Z

Size P-value

(voxels) Pclus
FWE

Striatum, ventromedial prefrontal cortex, ventral

anterior cingulate cortex, medial orbitofrontal

cortex

6,041 <0.0001 0 4 −4

Right superior frontal gyrus 1,102 0.0010 22 42 38

Posterior cingulate 901 0.0040 4 −38 40

Left superior frontal gyrus 738 0.0133 −30 24 54

Notes: Search volume: 236,516 2 × 2 × 2 mm3 voxels, 1.89 liters, 1,719.1 RESELs, FWHM 5.1 mm

Cluster forming threshold Z = 2.3, 0.05 FWE cluster size threshold k = 570.
aOf the 154 clusters found (see Figure 7.5) with a cluster-forming threshold of Z = 2.3, only the four listed

here are FWE significant at 0.05. X, Y, Z coordinates listed are the location of the peak Z value in each cluster.
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images in different ways. To make these issues concrete, consider a 2 × 2 facto-

rial design, where there are two factors with two levels each. Henson et al. (2002)

uses such a design for a face recognition and implicit memory. That study has

two factors, “Fame” indicating whether a presented face is famous or nonfamous

and “Repetition” indicating whether this is the first or second presentation of a

face (each face was presented exactly twice). Among the contrasts of interest are:

cFamous>Nonfamous , the positive effect of famousness, averaged over both presenta-

tions; cFamous:Rep1>Nonfamous:Rep1, the famousness effect on the first presentation;

cFamous:Rep2>Nonfamous:Rep2 , the famousness effect on the second presentation; and

cFame×Repetition = cFamous:Rep1>Nonfamous:Rep1−cFamous:Rep2>Nonfamous:Rep2 , a one-sided

test of the interaction, repitition-dependent effect of famousness.

The interaction contrast cFame×Repetition is perhaps the most interesting effect,

but it detects voxels both where the cFamous:Rep1>Nonfamous:Rep1 effect is positive

and greater than cFamous:Rep2>Nonfamous:Rep2 and where decreases in the cFamous:

Rep1 > Nonfamous : Rep1 effect are less negative than decreases in cFamous:Rep2>

Nonfamous : Rep2. Assume we are only interested in the interaction when the effects

of famousness are positive. We can address this by first creating the statistic image for

cFamous:Rep1>Nonfamous:Rep1 and thresholding at 0 to create a binary mask indicating

where cFamous:Rep1>Nonfamous:Rep1 is positive. We then create the statistic image for

cFame×Repetition , apply significance thresholding as usual, and finally apply the binary

mask. The resulting map will show significant effects for cFame×Repetition masked for

positive effects of famousness. Note that here we are using masking as an image

processing manipulation, eliminating voxels that satisfy an arbitrary condition on

an supplemental contrast. That is, the statistical threshold is uninformed about the

nature of the mask, and, in general, the false positive rate will be only lower after

application of such a mask. See the next section for use of regions of interest to

change the search region and affect the multiple testing correction.

Whereas an interaction looks for differences in effects, a conjunction looks for sim-

ilarities (Nichols et al., 2005). For example, we may wish to find regions where there

is a Fame effect for both the first and second face presentation. A conjunction of the

tests specified by contrasts cFamous:Rep1>Nonfamous:Rep1 and cFamous:Rep2>Nonfamous:Rep2

will provide this inference. Note that this conjunction is not the same as the main

effect of Fame, cFamous>Nonfamous , which could be significant if there was a positive

Fame effect in just either the first or second presentation.

Valid conjunction inference is obtained by thresholding each statistic image sep-

arately and then taking the voxel-level intersection of above-threshold voxels. There

is no assumption of independence between each contrast tested, and the voxel-

level significance level of the conjunction is that of each of the combined tests;

for example, if a 5% FWE voxel-level threshold is applied to each statistic image,

the conjunction inference has level 5% FWE. Alternatively, the voxel-wise mini-

mum can be computed, and this minimum image can be thresholded as if it were

a single statistic image. The precise definition of conjunction inference is that it
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measures the evidence against the conjunction null hypothesis that one or more effects

are null.

Note there is often low power to detect a conjunction, simply because it is a strin-

gent requirement that each and every tests must demonstrate a significant effect.

Friston et al. (2005) proposed a weakened form of conjunction inference that also

uses the minimum statistic of K effects. Instead of making inference on the con-

junction null hypothesis, which has an alternative hypothesis that all K effects are

true, they make inference on an intermediate null whose alternative holds that at

least k < K of the effects are true. This alternative approach, however, requires an

assumption of independence between the tested effects and, as stated, cannot provide

an inference that all effects are true.

7.5 Use of region of interest masks

If a study is focused on a particular region of the brain, then it is possible to limit

the search for activations to a region of interest, which reduces the stringency of the

correction for multiple testing. In Chapter 10 we discuss the issue of ROI analysis

in more detail; here we focus on the use of ROIs with voxel-level or cluster-level

inference to reduce the volume of brain searched for activations, often known as a

‘small volume correction’. The advantage of this strategy is that the ROI definitions

do not have to be very precise, as they are only used to define regions of the brain

that are of interest or not. As mentioned before, it is crucial that the ROI is defined

independently of the statistical analysis of interest.

The only practical concerns to be aware of is that not all multiple testing proce-

dures work equally well for very small ROIs. Cluster-level inference based on RFT,

for example, assumes that the search region is large relative to the smoothness of the

noise. Clusters that touch the edge of the search can have their significance under-

estimated, with either RFT or permutation, thus cluster-level inference is not ideal

when using ROIs smaller than about 25 RESELs. For example, if FWHM in voxel

units is [3,3,3] voxels3, a 1,000-voxel ROI has RESEL count 1,000/(3×3×3) = 37.0,

and thus is sufficiently large. Similarly voxel-level inference with FDR correction can

work poorly when ROIs are very small. In essence, FDR has to learn the distribution

of nonnull P-values to distinguish them from the background of null P-values.

7.6 Computing statistical power

One of the most common question asked of statisticians is “How many subjects do I

need in my study in order to detect a hypothesized effect.? To answer this question,

we need to compute the statistical power of the test. As mentioned at the start of the

chapter, power is the probability of correctly rejecting the null hypothesis when it is

false (i.e., when there is a true signal). Figure 7.6 illustrates how power is calculated

for a simple univariate test. The red distribution is the null distribution of a Z test
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Figure 7.6. Illustration of how power is calculated. The red distribution is the null distribution, which is

centered about 0, and the blue distribution is the alternative distribution centered about a

value determined by the expected mean and variance of the activation. The statistic threshold

indicates the threshold that is used to assess whether or not a statistic value is significant or

not. The area under the null distribution to the right of this threshold is the type I error rate,

α, and the area under the alternative distribution to the right of this threshold (blue shaded

region) is power.

statistic, and the blue distribution is the alternative distribution. The mean of the

alternative distribution is a function of the size of the activation you expect to have

in your study, its variance, and the sample size. For a given α level (e.g., α = 0.05

for a single test), you find the corresponding null distribution threshold such that

the area to the right of this threshold under the null distribution is α (the Type

I error rate) and then the area to the right of this threshold under the alternative

distribution is the power. If your test has 80% power, it means that you will have,

with many possible replicate experiments, an 80% chance of detecting the specified

signal.

Power analyses must be carried out prior to data collection to plan how many

subjects are necessary for a study. The power calculation itself is a function of the

number of subjects in the study; the Type I error rate, α; the size of the effect that

you wish to be able to detect, δ; and the variance of this effect, σ 2. Power is also

impacted by the number of runs of data that will be collected and the length of the

runs because those factors affect the variance of the effect (see Mumford & Nichols,

2008, for details). Using this calculation, one can compute the number of subjects

necessary to find the desired effect with 80% power, which is the generally accepted

threshold for reasonable power. The size of the effect and its variance are often based

on pilot data or data from a similar previous study. As discussed in Chapter 6, the

variance of the effect takes on a complicated form, including a within-subject and

between-subject component, and so it must be carefully estimated to reflect this

structure.
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In fMRI, we are of course faced with thousands of tests, and thus a comprehensive

power analysis would require specifying the effect size of every voxel. Further, the

probability calculations would have to account for spatial correlation and the mul-

tiple testing problem. In practice this isn’t done (though see Hayasaka et al., 2007),

and to simplify power analyses we consider only an a priori ROI, and predict the

power for the mean percent BOLD change in that ROI based on a simple single-

group ordinary least squares (OLS) mode. While our aims are rarely so simple, if

one doesn’t have sufficient power for this setting, any other analysis will surely be

underpowered. In this case, the power analysis is simply that of a one-sample t-test.

From pilot data, if µ̂ is the ROI mean (over space and subjects) and σ̂ is the ROI

standard deviation (over subjects, of the ROI mean), then the power for a sample

size of N and a type I error rate of α would be

Power = P(TNCP ,N−1 > t1−α,N−1) (7.2)

where TNCP ,N−1 corresponds to a noncentral T random variable where NCP is the

noncentrality parameter and is set to NCP =
√

N µ̂

σ̂
and t1−α,N−1 is the 1−α quantile

of a central t distribution with N − 1 degrees of freedom. For other group models

such as a two-sample t -test or ANOVA, models estimated using OLS examples can

be found in Cohen (1988), and estimation techniques for full mixed effects models

can be found in Mumford & Nichols (2008). A tool for computing power estimates

based on previous studies is also available at http://www.fmripower.org.

As an example, say you are planning a new study using a stop signal task and want

to ensure you have sufficient subjects to distinguish between successfully stopping

versus not successfully stopping in the putamen. You have a previous study with data

on 16 subjects for this very sort of experiment and contrast; by using this data we

make the assumption that our future study will use a similar scanner and acquisition

parameters, preprocessing options, number of trials per run, and runs per subject.

Using an anatomical atlas to create a mask for the putamen, we measure the mean

BOLD signal change in for each subject (see Section 10.4.3.3 for instructions on

converting to percent signal change units). We find that the mean over subjects is

0.8% BOLD signal change units, and the standard deviation across subjects is 2%

BOLD. Based on these two numbers and α-level 0.05 using a range of sample sizes

with Equation 7.2, the power curve in Figure 7.7 is generated. This curve crosses the

80% mark between 40 and 41 subjects and so a sample of at least 41 subjects will

yield at least 80% power, if the given effect is 0.8% and standard deviation is 2%.

Note, if you are working on a grant application the power calculations will often not

be what you had hoped and you will need to refigure your budget. Because of this,

carrying out your power analyses well in advance of your grant deadline is highly

recommended.

Several limitations of power analyses are worth considering. First and foremost,

appreciate that power computations are quite speculative enterprises. The whole
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Figure 7.7. Power curve. The curve was generated using an estimated mean effect of 0.8% signal change

units with standard deviation of 2% signal change units and a type I error rate of 0.05 using

Equation 7.2. Since the graph crosses 80% between 40 and 41 subjects, a sample size of 41

will yield at least 80% power.

point of planning an experiment is to study an effect, yet a power analysis assumes

you know the true effect magnitude and standard deviation. Thus, it is a good idea

to consider a range of “what if” scenarios: What if true effect is 10% smaller? 20%

smaller? What if standard deviation is off, by 10%? and so on. If it appears you still

have good power over a range of alternative scenarios, you should be in good shape.

Second, never compute the power of a study post hoc. That is, it is pointless to

assess the power of a study that has already been performed: If the effect is there and

you detect it, you have 100% power; if it is there and you missed it, you have 0%

power. Another way to see this is to consider a series of failed experiments, where the

null hypothesis is always true. If α = 0.05 is used, we will reject the null hypothesis

and declare a significant result on 5% of these tests. Further, say the observed test

statistic t is just equal to the statistic threshold, and we use t to compute an effect

size and power (t could be higher, but let’s be pessimistic). In this case, you will

compute the power to be 50% (as it can be inferred from Figure 7.6, if you shift

the mean of the alternative distribution left to equal the statistic threshold). Thus, a

series of failed experiments will tell you that you have at least 50% power whenever

they detect something, when in fact you have 0% power.

Finally, best practice dictates that you base your power analysis on studies that

are as similar to your planned study as possible. From those studies, calculate the

typical mean and standard deviation of the relevant effect and use independently

determined ROIs to avoid circular estimates of effect size (see Box 10.4.2). For more

details on the limitations of power analysis, see Hoenig & Heisey (2001).




