function [P,p,Em,En,EN] = spm_P_RF(c,k,Z,df,STAT,R,n) % Returns the [un]corrected P value using unifed EC theory % FORMAT [P p Em En EN] = spm_P_RF(c,k,Z,df,STAT,R,n) % % c - cluster number % k - extent {RESELS} % Z - height {minimum over n values} % df - [df{interest} df{error}] % STAT - Statisical field % 'Z' - Gaussian field % 'T' - T - field % 'X' - Chi squared field % 'F' - F - field % R - RESEL Count {defining search volume} % n - abs(n), number of component SPMs in conjunction % % P - corrected P value - P(n > kmax} % p - uncorrected P value - P(n > k} % Em - expected total number of maxima {m} % En - expected total number of resels per cluster {n} % EN - expected total number of voxels {N} % %___________________________________________________________________________ % % spm_P_RF returns the probability of c or more clusters with more than % k voxels in volume process of R RESELS thresholded at u. All p values % can be considered special cases: % % spm_P_RF(1,0,Z,df,STAT,1,n) = uncorrected p value % spm_P_RF(1,0,Z,df,STAT,R,n) = corrected p value {based on height Z) % spm_P_RF(1,k,u,df,STAT,R,n) = corrected p value {based on extent k at u) % spm_P_RF(c,k,u,df,STAT,R,n) = corrected p value {based on number c at k and u) % spm_P_RF(c,0,u,df,STAT,R,n) = omnibus p value {based on number c at u) % % If abs(n) > 1, a P-value for a minimum of n values of the statistic % is returned. If n>0, the P-value assesses the conjunction null % hypothesis of one or more of the null hypotheses being true. If n<0, % then the P-value assess the global null of all nulls being true. % % Ref: Hasofer AM (1978) Upcrossings of random fields % Suppl Adv Appl Prob 10:14-21 % Ref: Friston et al (1993) Comparing functional images: Assessing % the spatial extent of activation foci % Ref: Worsley KJ et al 1996, Hum Brain Mapp. 4:58-73 %___________________________________________________________________________ % @(#)spm_P_RF.m 1.5 Karl Friston 04/06/30 if n>0 Cnj_n = 1; % Inf on Conjunction Null else Cnj_n = abs(n); % Inf on Global Null end % get expectations %=========================================================================== % get EC densities %--------------------------------------------------------------------------- D = max(find(R)); R = R(1:D); G = sqrt(pi)./gamma(([1:D])/2); EC = spm_ECdensity(STAT,Z,df); EC = EC([1:D]); % corrected p value %--------------------------------------------------------------------------- P = triu(toeplitz(EC'.*G))^Cnj_n; P = P(1,:)'; Em = (R./G)*P; EN = P(1)*R(D); En = G(D)*P(1)/(eps+P(D)); % i.e. En = EN/Em; % get P{n > k} %=========================================================================== % assume a Gaussian form for P{n > k} ~ exp(-beta*k^(2/D)) % Appropriate for SPM{Z} and high d.f. SPM{T} %--------------------------------------------------------------------------- D = D - 1; if ~k | ~D p = 1; elseif STAT == 'Z' beta = (gamma(D/2 + 1)/En)^(2/D); p = exp(-beta*(k^(2/D))); elseif STAT == 'T' beta = (gamma(D/2 + 1)/En)^(2/D); p = exp(-beta*(k^(2/D))); elseif STAT == 'X' beta = (gamma(D/2 + 1)/En)^(2/D); p = exp(-beta*(k^(2/D))); elseif STAT == 'F' beta = (gamma(D/2 + 1)/En)^(2/D); p = exp(-beta*(k^(2/D))); end % Poisson clumping heuristic {for multiple clusters} %=========================================================================== P = 1 - spm_Pcdf(c - 1,(Em + eps)*p); % set P and p = [] for non-implemented cases %+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if k > 0 & abs(n) > 1 P = []; p = []; end if k > 0 & (STAT == 'X' | STAT == 'F') P = []; p = []; end %+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % spm_ECdensity %=========================================================================== function [EC] = spm_ECdensity(STAT,t,df) % Returns the EC density %___________________________________________________________________________ % % Reference : Worsley KJ et al 1996, Hum Brain Mapp. 4:58-73 % %--------------------------------------------------------------------------- % EC densities (EC} %--------------------------------------------------------------------------- t = t(:)'; if STAT == 'Z' % Gaussian Field %------------------------------------------------------------------- a = 4*log(2); b = exp(-t.^2/2); EC(1,:) = 1 - spm_Ncdf(t); EC(2,:) = a^(1/2)/(2*pi)*b; EC(3,:) = a/((2*pi)^(3/2))*b.*t; EC(4,:) = a^(3/2)/((2*pi)^2)*b.*(t.^2 - 1); elseif STAT == 'T' % T - Field %------------------------------------------------------------------- v = df(2); a = 4*log(2); b = exp(gammaln((v+1)/2) - gammaln(v/2)); c = (1+t.^2/v).^((1-v)/2); EC(1,:) = 1 - spm_Tcdf(t,v); EC(2,:) = a^(1/2)/(2*pi)*c; EC(3,:) = a/((2*pi)^(3/2))*c.*t/((v/2)^(1/2))*b; EC(4,:) = a^(3/2)/((2*pi)^2)*c.*((v-1)*(t.^2)/v - 1); elseif STAT == 'X' % X - Field %------------------------------------------------------------------- v = df(2); a = (4*log(2))/(2*pi); b = t.^(1/2*(v - 1)).*exp(-t/2-gammaln(v/2))/2^((v-2)/2); EC(1,:) = 1 - spm_Xcdf(t,v); EC(2,:) = a^(1/2)*b; EC(3,:) = a*b.*(t-(v-1)); EC(4,:) = a^(3/2)*b.*(t.^2-(2*v-1)*t+(v-1)*(v-2)); elseif STAT == 'F' % F Field %------------------------------------------------------------------- k = df(1); v = df(2); a = (4*log(2))/(2*pi); b = gammaln(v/2) + gammaln(k/2); EC(1,:) = 1 - spm_Fcdf(t,df); EC(2,:) = a^(1/2)*exp(gammaln((v+k-1)/2)-b)*2^(1/2)... *(k*t/v).^(1/2*(k-1)).*(1+k*t/v).^(-1/2*(v+k-2)); EC(3,:) = a*exp(gammaln((v+k-2)/2)-b)*(k*t/v).^(1/2*(k-2))... .*(1+k*t/v).^(-1/2*(v+k-2)).*((v-1)*k*t/v-(k-1)); EC(4,:) = a^(3/2)*exp(gammaln((v+k-3)/2)-b)... *2^(-1/2)*(k*t/v).^(1/2*(k-3)).*(1+k*t/v).^(-1/2*(v+k-2))... .*((v-1)*(v-2)*(k*t/v).^2-(2*v*k-v-k-1)*(k*t/v)+(k-1)*(k-2)); end