
Life in a Shell: 
Getting the Most out of Linux/

Unix 

Thomas Nichols, PhD 
University of Warwick 

 
25 September, 2014 



Motivation 

•  Linux is crucial for Scientific Computing 
– Fast clusters use it (buster, minerva, etc) 

•  Need mastery of the command-line & 
scripts 
– A command-line environment is excellent for 

manipulating large numbers of files 
– But without basic skills, the command-line can 

slow you down, result in errors, and can drive 
you nuts 

– Scripts crucial for efficiency & reproducibility 



Long-Term Outline 
•  Life on the (tcsh) command line 

– Wildcards, pipes, essential commands,  
•  Basic bash Scripting 

– Variables, if/then, for … do 
•  Intermediate bash Scripting 

– Case statements, advanced tests 
•  Advanced bash Scripting 

– Parsing arguments, functions 



Life on the Command Line 

•  Shell basics 
•  Fundamental commands 
•  Wildcards 
•  Input/Output redirect 
•  Shell variables (local vs. environmental) 
•  Essential commands 



Linux: How do I get there? 

•  Windoze 
– putty ssh client and terminal 
– Cygwin – Linux command line suite 

•  Still need a terminal; use Dos command window, 
or mintty 

•  Then ssh to linux host 

•  MacOS – You’re already there! 
– Terminal terminal program 

•  Bash shell by default 
•  ssh to other Linux hosts 



Shell Basics 

•  The Shell 
– Just another program 

•  Accepts your keystrokes 
•  Sends corresponding letter on terminal 
•  Runs programs on your behalf 

– But shells are also scripting language 
•  Text file lists of commands 
•  Complicated, looped, conditional programs 



Shell Basics 
•  Different types of shells 

–  sh    “Bourne Shell” 
•  Written by Steve Bourne at Bell Labs, c. 1974 
•  Not so friendly on command line 
•  On linux, now same as bash 

–  bash  “Bourne-Again Shell” 
•  More friendly on command line 
•  Regarded as best-practice scripting shell language 

–  csh “c-shell” 
•  Former standard shell 
•  On linux, now same as tcsh 

–  tcsh “Enhanced c-shell” 
•  Enhanced c-shell, with tabular completion 



Which Shell to Use? 

•  Interactive, on command line 
– bash 

•  Most common; previously, tcsh was dominant 
•  It’s the default 
•  Changing the default is hard 

•  For scripting 
– bash 

•  functions 
•  Extensively used in FSL, elsewhere 
•  See “Csh Programming Considered Harmful” 



File Paths 

•  Hierarchical directory tree 
/   “Root” directory 
/tmp  Temporary files 
/home  User files 
/etc  System configuration files 

•  Special directories 
.!   (period)  references current directory 
..!  (period2) references parent directory 
~!   Your home (& initial) directory 



Filenames 

•  Essentially no limit on filename length (256) 

– Though best to keep it reasonable <20 char 
•  Extensions meaningless to unix itself 
•  But use them for humans’ sake 

– Text files  .txt!
– Data file  .dat   (generic) 
– Shell script  .sh    (bash/sh) 

•  Best to not use extensions in directory 
names 



How Shell Parses Your Commands 

•  Each line entered broken into white-space 
separated tokens 
–  White space = 1 or more space or tabs 
–  E.g.  cd/to/my/directory           Only 1 token! 
–  E.g.  cd /to/My Programs/Desktop  3 tokens! 

•  First token is the command 
•  Remaining tokens are arguments to command 

–  E.g.   cd /to/my/directory!
•  "cd" first token, the command 
•  "/to/my/directory", argument for command “cd” 

–  E.g.   cd "/to/My Programs/Desktop"!

Copy & Paste 
Danger! 
Smart quotes 
don't work! 
 
Must use plain 
quotes ' "	



‘’ “”	





How Shell Parses Your Commands 

•  Arguments vs. Options 
– Convention has it that optional arguments are 

preceded by a minus sign 
– E.g.  ls /tmp     (Show contents of /tmp dir) 
– E.g.  ls -l /tmp  (Show detailed contents) 



Fundamental Commands 

• pwd  “Print working directory” 
– You are always somewhere, from which 

• cd  “Change directory” 
– E.g.  cd ..    (go up one directory) 
– E.g.  cd ~/tmp   (go to my personal temp dir) 
– E.g.  cd ../../duh  (go up 2 dirs, then duh) 
– E.g.  cd ~       (go to your home directory) 
– E.g.  cd        (same) 



Fundamental Commands 

• ls  “List files” 
– E.g.  ls    (list files in current directory) 
– E.g.  ls .   (same) 
– Optional Arguments 

•   -l  (minus ell) Long listing, showing date, size 
•   -a  Include files beginning with . (dot) 
•   -t  Order by time of last modification (best w/ -l) 
•   -d  Do not list subdirectory contents 
•  E.g.  ls /home/essicd  

 Shows contents of the directory 
•  E.g.  ls -d /home/essicd  

 Shows info on the directory itself 



Fundamental Commands 

• mkdir <dirname> 
– Create a directory 

• rmdir <dirname> 
– Remove a directory; must be empty 

• rm <file> 
– Remove files 
– Optional Arguments 

•   -i  Interactive – ask if you're sure for each file 
•   -r  Recursive, delete directories and conents 



Fundamental Commands 
•  cp file1 file2  
cp file1 file2 file3 … directory 
–  Creates a copy of a file (first form) 
–  Copies one or more files to a directory (second form) 
–  Optional Arguments 

•   -i  Interactive, warn about over-writing 
•   -r  Recursive, copies directories and contents 
•   -p  Preserve file modification times (otherwise timestamp 

on new file is now) 
•  mv file1 file2  
mv file1 file2 file3 directory!
–  Renames a files (i.e. "moves" it) (first form) 
–  Moves one or more files to a directory (second form) 
–  Optional Arguments 

•   -i  Interactive, warn about over-writing 



Fundamental Commands 
• more  Show file, one screen at a time 
• head  Show first few lines of a file 
• tail  Show last few lines of a file 

– For both head & tail: 
• -n #   Show # lines instead of default (10) num. 

             e.g.  head -n 20 file.txt!
– For just tail: 

• -f  Show last 10 lines, then wait for file to grow, 
 and show new lines as they appear 

• cat   “Concatenate” files 
– Useful for combining multiple files 
– E.g.   cat file1.txt file2.txt file3.txt!



Output Redirection 

•  Each program in unix has three modes of input/
output 
–  Standard input 
–  Standard output 
–  Standard error  (for error messages) 

•  Shell can redirect input or output 
|  Connect standard output to input (pipe) of another program 
<  Standard input from file 
>  Standard output to file 
>& Standard output and standard error to file 



Output Redirection 

•  Pipe 
– Can have several pipes 

•  E.g.   ls -l | tail -100 | more!

•  Redirects to files 
>!   Standard output, overwrite file 
>>!  Standard output append to file 
>&!  Standard output and standard error, 

  overwrite file 
>> file.out 2>&1!
   Standard output and standard error, 
  append to file.out. (don’t ask) 

 



Output Redirection 

•  Useful Examples 
– Save directory listing 

• ls -l > FileList.txt  

– Look at long listing page at a time 
• ls -l | more!

– Look at only the most recently modified files 
• ls -lt | head!

– Concatenate a bunch of files into a new one 
• cat file1.txt file2.txt > allfiles.txt!



Shell Variables 

•  Assign variables with equal sign = 
NextSim=TestProg!

•  Dereference with dollar sign $ 
echo $NextSim!

 … just shows "TestProg" 
•  Protect dereferencing with brackets 

echo $NextSim_1!
     …no output, variable NextSim_1 undefined 
echo ${NextSim}_1 

 … shows "TestProg_1" 
 

The simplest shell 
command: echo!
Just 'echoes' the 
command line 



Shell Variables: Local vs Global 
•  Local variables do not get passed on to child 

processes 
NextSim=TestProg!
bash 
echo $NextSim!
  … no output   

•  Global variables passed to 'child' processes 
– Mark global variable with "export" 
export NextSim=TestProg!
bash!
echo $NextSim!
  … shows "TextProg" 
– By convention (only) global variables are capitalised 

   
 

Start a new shell!  Yes, you can do that any time.   



Important Shell Variables 

• USER!
– Your user name 

• HOME!
– Your home directory, same as ~ 

• PS1!
– Prompt string. Try… 
PS1="Your wish is my command> "!



Most Important Shell Variable 
•  PATH!

–  Colon-separated list of directories 
echo $PATH !
… might show something like 
/usr/local/bin:/usr/bin:/bin!
–  These are the directories searched when you type a 

command. 
–  If you type "Ls", the shell will first look in /usr/local/bin 

for a program named "ls" and then run it; if it isn' 
there, it will look in "/usr/bin", and then "/bin", etc.   

–  Finally, if it doesn't find it, you get 
"bash: Ls: command not found" 



Setting Shell Variables 
Permanently  

•  Configuration Files 
~/.profile  
Run each time you log in 
~/.bashrc  
Run each time you start a new interactive shell 

•  Login-only? 
– E.g. when SGE runs programs on your behalf 

•  Interactive shell? 
– E.g. whenever you ssh, or start a new shell with 

"bash" 
•  Change your PATH in .profile!
•  Change command-line goodies in .bashrc!

–  e.g. PS1, aliases 



Editing Configuration Files 
SAFELY! 

•  Editing .profile and .bashrc is dangerous! 
–  If you introduce an error to .profile, you might not be able to log in!! 
–  Be careful!  Always use two terminal windows! 

•  Terminal Window 1 
–  Make a backup-copy 

•  cp .bashrc .bashrc_safe!
•  cp .profile .profile_safe!

–  Open a text editor; make edit to .profile/.bashrc 
•  Terminal Window 2 

–  After making edit, try running a new shell 
•  bash!

–  ALSO, log out, and try logging back in 
•  exit!
•  ssh buster!

•  If you *can't* login or get errors 
–  Fix them *before* closing the editor and Terminal 1!!! 
–  Worst case, restore safe version 

•  cp .bashrc_safe .bashrc!
… and re-confirm that you can run bash and login!!! 

Terminal Text 
Editors 
 
emacs – Hard to 
learn, but incredibly 
powerful.  Can be 
entirely driven by 
control-key 
combinations, making 
you incredibly fast. 
 
vim -  Emacs' arch 
enemy.  Don't use. 
 
Others??? 



Exercise 
•  Create a "bin" directory in your home; add to 

PATH in  .profile 
mkdir ~/bin!
Now, in text editor, add this to ~/.profile… 
export PATH="$HOME/bin:$PATH"!

•  Crucial details!!! 
– Must *add* to existing path 

•  If you simply did 
export PATH=$HOME/bin 
… your shell would break; no ls! or any other command 

– Must use quotes, in case existing path has white 
space in it 



bash aliases 

•  Best way to make shortcuts for frequently 
used commands 
–  Instead of every day typing 

cd /storage/myid/very/long/path/to/my/project!

– You could type 
cdmyproj!

– Syntax 
alias cdmyproj="cd /storage/myid/very/long/path/to/my/project"!

•  Quiz! 
– Where should you add alises, .profile or .bashrc? 



Essential Aliases 

•  IMHO, everyone should have these 3 
aliases 
alias rm='rm -i'!
alias mv='mv -i'!
alias cp='cp -i'!

•  Prevents you from accidently overwriting a 
file 

•  What if you *do* have lots of files to 
delete?  Make a special "really delete" 
command 
alias trash='rm –f' 



Other Important Commands 

•  man  Show “manual” pages 
–  Gives (some) help on commands 

•  sort!
–  Key options 

• -r  Reverse the order of the sort 
• -n  Try to sort numbers correctly (e.g. 2 < 10) 

•  du  “Disk usage” 
–  Key options 

• -s  Silent, only report summary 

•  df  Show file system usage 
 



Very Basic Shell Scripting 
•  Making a script 

– Make sure you have a ~/bin directory 
– Make sure ~/bin directory is in your path 
– Create your script in ~/bin!

emacs ~/bin/myscript.sh!
First line must be 
#!/bin/bash!

– Make it executable 
chmod +x emacs ~/bin/myscript.sh!

•  Magic!!! 
– Now anytime, anywhere that you type 
myscript.sh it will run! 

 

.sh extension 
 
There is no 
requirement to 
use .sh extension on 
shell scripts. 
 
I like the convention, 
as it reminds me 
what is a script and 
what isn't. (e.g. 
vs. .R .m etc) 



Special Variables in Scripts 

•  Command line "positional" arguments 
– $0  Name of the program run 
– $1 Frist argument, $2 second argument, etc. 
– $# Number of arguments 
– "$@" All arguments 

•  Later we'll see that the quotes important to deal with white space correctly 

#!/bin/bash!
!
echo "This is the program name: $0"!
echo "There are $# args"!
echo "This is the first arg: $1"!
echo "All args: $@"!
!



Looping 
•  For loops 

for <var> in <a list of stuff> ; do!
   command1!
   command2!
done!

•  Most typically over arguments… 

#!/bin/bash!
!
for f in "$@" ; do !
  echo "This is an argument '$f'"!
done!



Integer Arithmetic 
•  Bash can natively handle integer variables and do simple 

arithmetic 
•  Double parenthesis mark "math mode" 

((i=1+2))    … but if just assigning, no need for (( ))…   i=1!
((j=3))!
((k=i+j))!

•  Special for loops available for math mode 
  

#!/bin/bash!
!
n=10!
for ((i=n;i>0;i--)) ; do!
  echo -n "$i "!
done !
echo "Lift off"!



Bash Functions 
•  Essential for scripts and command line 

functname() {!
  Commands!
}!

•  I have 2 shell functions I can't live without 
lsh() {!
    ls -lat "$@" | head!
}!
lsm() {!
    ls -lat "$@" | less!
}!
– What do these do?!   
– Are they in my .bashrc or .profile? 



The Holy Trinity 

•  grep 
– Prints lines that match general regular 

expressions 
•  sed 

– Stream editor 
•  awk 

– A full programming language, brilliant for 
handling structured data files (e.g. tab or 
comma separated) 



grep 

•  grep <pattern> <files> 
– Will print all lines in files that match the 

pattern 
–  Key options 

• -i  Ignores case 
• -l    Only print file name when a match found 
• -v    Print lines where match does *not* occur 
• -n    Show line number where match occurs 
• -r    Work recursively 

•  Ex: What aliases do I have? 
– grep alias ~/.bashrc!



sed 

•  sed <command> <files> 
•  There is basically only kind of command 

you'll use, the "search" command 
– sed 's/data/DATA/' file1.txt    
– sed 's/data/DATA/g' file1.txt     <- 

Use global option 
– sed 's/data/DATA/g;s/img/hdr/' 
file1.txt     <- stack commands 


