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Introduction

Acknowledgements and Comparison with Previous Years

These notes build upon previous versions of the ST333/ST406 course lecture notes.
The 2022/23 lecture notes are available on the Moodle page. Be warned, though: the
structure of the early sections is a bit different to those; this change was made to try
to emphasise and make clearer certain sections which the students found difficult.

The underlying material is based on older versions of the course, taught by W.S.
Kendall, D. Hobson, V. Henderson, L. Alili, A. Papavasiliou and K. Habermann.
Students Keegan Kang, Iain Carson and Carmen van-del’Isle have contributed by
typesetting lecture notes of previous years.

I took over the course in 2022/23. The 2021/22 lecture notes, as taught by Haber-
mann and Kendall, are also available on the Moodle page. However, I have changed
the course quite a bit since then—primarily, removing technical calculations and
statements, focussing more on intuition and qualitative understanding of continuous-
time Markov chains—so those notes may not be so relevant.

The notes are likely to be updated during Term 1, as we work together through
the material. Please email me with details if you find any typos or mistakes.

Extra Reading Material

The primary source for these lectures notes, which may be useful to fill in gaps in
or supplement the lecture notes, is the book Markov Chains by Norris [Nor97] The
advanced topics for the ST406 variant are based on Kelly and Yudovina [KY14]. It
is important to note that the advanced topics are not the same as in 2021/22.

See the reading list for more details of these and other possibilities. These are
accessible at third/fourth year undergraduate level.

Exercises are given throughout the lecture notes. These are optional. The primary
learning resources are the lecture notes and the example sheets. If more material is
desired, feel free to email me and I can provide.
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Structure of the Lecture Notes

Chapter 0 is a refresher on some of the most important aspects of discrete-time
Markov chains. We will not cover this material in lectures, but rather will start
immediately on Chapter 1, which introduces continuous-time Markov chains.

Chapter 2 studies a particular case of continuous-time Markov chains: birth-and-
death processes. These take values in N := {0, 1, ...} and only ever jump by ±1.

Chapter 3 is devoted to queueing theory. This is where the majority of the in-
teresting results and proofs lie. The first chapter is a little dry, being mostly about
fundamentals of general continuous-time Markov chains, and the second is a bit spe-
cialised. This third chapter on queueing theory is really where the material shines.

Finally, Chapter 4 is on epidemic models. This is a very deep topic, which could
be the basis of an entire lecture course, and we only really scratch the surface.

Additional Administrative Details

Further administrative details, including details on recording of lectures and the
schedule, can be found on the Moodle page.
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0 Preliminaries: Discrete-Time
Markov Chains

We begin by reviewing the basics of probability and random processes. All this
material should be covered in the union of the prerequisite modules:

� ST202 Stochastic Processes;
� either the ST202 first-year prerequisites ST111 Probability Part A and ST112

Probability Part B or ST115 Introduction to Probability .

For MSc students taking the ST406 version of this module, prerequisites are whatever
the equivalent material from your undergraduate degree studies was.

If you encounter material which seems unfamiliar when working through this
chapter, you should, as a matter of urgency, spend time revising preliminary material.
Norris [Nor97, Chapter 1] is particularly recommended for this, as a lot of our later
material is based on [Nor97, Chapter 2]. [GW14, Chapter 12] is also relevant. We do
not give proofs here, but all statements and proofs can be found in these books.

We speak interchangeably of random processes and of stochastic processes. They
are the same thing. Find out more about the adjective “stochastic” on Wikipedia.

0.1 Markov Property

Definition 0.1.1 (Markov Property). Let I be a countable set.1 Each i ∈ I is called
a state and I is the state space. Let X = (Xn)∞n=0 be a stochastic process taking
values in I. Then, X is a Markov chain if it satisfies the Markov property :

P{Xn = in | X0 = i0, . . . , Xn−1 = in−1} = P{Xn = in | Xn−1 = in−1}

for all times n ≥ 0 and all states i0, . . . , in ∈ I. 4
1We suppose that I is a subset of the integers endowed with its natural, rather trivial, topology;

any countable set can be represented in this manner
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Definition 0.1.2 (Time-Homogeneity). A Markov chain X is time-homogeneous if
the conditional probabilities P{Xn = in | Xn−1 = in−1} do not depend on n. Write

pi,j := Pi{X1 = j} := P{X1 = j | X0 = i}.

The (time-homogeneous) matrix of conditional probabilities P := (pi,j)i,j∈I is called
the transition matrix of the Markov chain. 4

The Markov property says, informally,

“Conditional on the present, the past and future are independent.”

It turns out that this holds when t is replaced with a stopping time T .

Theorem 0.1.3 (Strong Markov Property). Let X be a time-homogeneous Markov
chain on I with transition matrix P . Let T be a stopping time for X. Then, for all i ∈
I, conditional on T <∞ and XT = i, the process (XT+t)t≥0 is a time-homogeneous
Markov chain on I with transition matrix P and is independent of (Xs)s≤T .

Hint. Only the Markov property and basic manipulations are required. 4

We can construct any finite-dimensional distribution from a transition matrix
and the marginal distribution of X0—the initial distribution—using the Markov
property. Thus, these fully characterise the distribution of (Xn)n≥0.

It can be checked that the transition matrix P is a stochastic matrix.

Definition 0.1.4 (Stochastic Matrix). A matrix P = (pi,j)i,j is a stochastic matrix if
it has non-negative entries and unit row-sums:

pi,j ≥ 0 for all i, j ∈ I and
∑
j∈I pi,j = 1 for all i ∈ I. 4

Example 0.1.5. Consider the four-state Markov chain transition matrix

P =


1 0 0 0

1/6 1/3 1/2 0
0 1/6 1/3 1/2
0 0 0 1

 .

This is represented in the state diagram in Figure 0.1. In particular,

pi,j is the probability of going to j from i.

The rows are indexed by i and the columns by j. Eg, p2,1 = 1/6 and p1,2 = 0. 4
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Figure 0.1. Typical state diagram for four-state Markov chain.
Transitions are annotated with probabilities

0.2 Further Properties

Definition 0.2.1 (Communication). State i ∈ I leads to state j ∈ I, written i→ j, if

Pi{Xn = j for some n > 0} > 0.

States i, j ∈ I communicate, written i↔ j, if i→ j and j → i.
The relation ∼ on I is defined by requiring i↔ j or i = j, for i, j ∈ I. The relation

∼ is an equivalence relation on I (exercise) and thus partitions I into equivalence
classes, which are called communicating classes.

A chain is irreducible if there is only a single communicating class. 4

Lemma 0.2.2 (Chapman–Kolmogorov Equations). Let P be a stochastic matrix and
let X be the associated Markov chain. Then, for all i, j ∈ I and all n ≥ 0,

Pi{Xn = j} = (Pn)i,j =: pi,j(n),

where Pn is the n-th matrix power of P .

Definition 0.2.3 (Aperiodicity). i ∈ I is aperiodic if gcd{n ≥ 1 | pi,i(n) > 0} = 1. 4

Lemma 0.2.4. If a chain is irreducible and has at least one aperiodic state, then all
states are aperiodic.

We now move onto hitting times and recurrence/transience.

Definition 0.2.5 (Hitting Times). The hitting times of a state i ∈ I are given by

Hi := inf{n ≥ 0 | Xn = i} and H+
i := inf{n ≥ 1 | Xn = i}. 4

9



Definition 0.2.6 (Recurrence and Transience for States). Let i ∈ I be a state.

� It is recurrent if Pi{H+
i <∞} = 1; it is positive recurrent if Ei(H+

i ) <∞.

� It is transient if Pi{H+
i <∞} < 1. 4

Lemma 0.2.7. Let i ∈ I be a state. Then, the following equivalences hold:

Pi{H+
i <∞} = 1 ⇐⇒ Pi{|{n ≥ 0 | Xn = i}| =∞} = 1;

Pi{H+
i <∞} < 1 ⇐⇒ Pi{|{n ≥ 0 | Xn = i}| =∞} = 0.

In particular, Pi{|{n ≥ 0 | Xn = i}| =∞} ∈ {0, 1}.

Hint. Consider the probability of returning to the starting state and apply the strong
Markov property (Theorem 0.1.3) at the return time, if it is finite. 4

The following equivalence can also be shown.

Theorem 0.2.8 (Recurrence–Transience Dichotomy). Let i ∈ I be a state.

Pi{H+
i <∞} = 1 ⇐⇒ ∑

n≥1 pi,i(n) =∞;

Pi{H+
i <∞} < 1 ⇐⇒ ∑

n≥1 pi,i(n) <∞.

In particular, every state is either transient or recurrent.

Definition 0.2.9 (Recurrence and Transience for Chains). If a chain is irreducible—ie,
has a unique communicating class—then it is recurrent, respectively transient, if all
the states are recurrent, respectively transient. 4

Corollary 0.2.10. If a chain is on a finite state space with a unique communicating
class, then the chain is recurrent.

0.3 Invariant Distribution and Ergodic Theorem

Definition 0.3.1 (Invariant Distribution). A row vector π = (πi)i∈I is invariant wrt
P if πP = π—ie,

∑
i∈I πipi,j = πj for all j ∈ I. It is an invariant distribution

if, in addition, it is non-negative and has unit sum—ie, πi ≥ 0 for all i ∈ I and∑
i∈I πi = 1. The phrases equilibrium and stationary distribution are also used. 4

Definition 0.3.2 (Ergodicity). A chain is ergodic if it is irreducible and aperiodic. 4
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Theorem 0.3.3 (Ergodic Theorem). Suppose that X is an ergodic Markov chain.
Suppose it has an invariant distribution π. Let µ be any distribution on I. Then,

Pµ{Xn = j} → πj as n→∞ for all j ∈ I.

In particular, π is the unique invariant distribution and taking µ := δi
2 gives

pi,j(n)→ πj as n→∞ for all i, j ∈ I.

Exercise 0.3.4. 1. Prove directly that an ergodic (ie, irreducible and aperiodic),
positive-recurrent Markov chain has a unique invariant distribution.

2. Prove that “aperiodic” is not necessary in the above statement.

0.4 Detailed Balance and Reversibility

The equation πP = π for invariance of a distribution is sometimes referred to as
global balance. When detailed balance holds, more can be said.

Definition 0.4.1 (Detailed Balance and Reversibility). Let P be a transition matrix of
a Markov chain and π a measure, both on the state space I. If the chain satisfies the
detailed balance equations—ie, πipi,j = πjpj,i for all i, j ∈ I—then the chain is said
to be reversible (in equilibrium). 4

Exercise 0.4.2. If π satisfies detailed balance wrt P , then it is invariant wrt P .

Exercise 0.4.3. If π and P are in detailed balance, then

πi0pi0,i1 · . . . · pin−1,in = πinpin,in−1 · . . . · pi1,i0

for all integers n ≥ 1 and sequences (i0, . . . , in) of states.

Theorem 0.4.4 (Time-Reversed Chain). Suppose that π and P satisfy detailed bal-
ance. Let N ∈ N. Suppose that (Xn)Nn=0 is a Markov chain with transition matrix P
and initial state distributed as π. Set Yn := XN−n. Then, (Yn)Nn=0 is also a Markov
chain with transition matrix P and initial state distributed as π.

The concept of reversibility can be extended beyond chains satisfying the detailed
balance equations. Define P̂ by p̂i,j := πipi,j/πj for i, j ∈ I. Then, in the notation of

the previous theorem, the Markov chain (Yn)Nn=0 has transition matrix P̂ .

2δi is the point-mass at i: δi(i) = 1 and δi(j) = 0 for j 6= i

11



i− 1 i i+ 1

q q q q

p p pp
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Figure 0.2. State diagram for simple, asymmetric RW on Z

0.5 Examples

Exercise 0.5.1 (Simple Asymmetric Random Walk on Z). Let p ∈ (0, 1) and q := 1−p.
Let I = Z and let the non-zero entries of the transition matrix P be given by

pi,i+1 = p and pi,i−1 = q for all i ∈ Z.

This is represented in the state diagram in Figure 0.2. Suppose that p 6= q.

1. Show that the chain is irreducible.

2. Show that the chain is periodic—ie, is not aperiodic.

3. Is the chain recurrent or transient?

Hitting probabilities and times can be written as solutions to systems of linear
equations, fundamentally due to the Markov property. See [Nor97, §1.3] for details.

4. (Harder) Let i, j, k ∈ Z with i ≤ j ≤ k. What is the probability that the chain
started from j hits i before k? Hint. Adjust the chain to be absorbed at k and
ask for the probability that it ever hits i and use [Nor97, Theorem 1.3.2].

Exercise 0.5.2 (Simple Symmetric Random Walk on Z). Answer questions analogous
to those of the previous exercise in the symmetric case p = q.

Example 0.5.3 (Use of Strong/Markov Property for Hitting Probabilities). Let X be a
simple, asymmetric random walk on Z as above. By the Markov property,

α := P1{H0 <∞} = p · 1 + q · P2{H0 <∞}.

In order to get from 2 to 0, the walk must go through 1. So, by the strong Markov
property applied at the stopping time H1 and translational invariance of the system,

P2{H0 <∞} = P2{H1 <∞}P2{H2 <∞ | H1 <∞}

12



= P2{H1 <∞}P1{H0 <∞} = α2.

This means that we have reduced to solving the quadratic

α = p+ qα2, which has solutions {1, p/q}.

General theory from [Nor97, Theorem 1.3.2] tells us that α is the minimal solution:

α =

{
1 if p ≥ q,
p/q if p < q.

4
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1 Continuous-Time Markov
Chains

This module is about Markov chains in continuous time. In this chapter, we introduce
some general principles and some basic definitions. A fully rigorous survey of the the-
ory would take us much too far afield. We therefore make four Standing Assumptions
which allow us to cover many of the immediate applications of the theory.

Throughout, indices k, `,m, n ∈ N := {0, 1, ...} are discrete, whilst s, t, u, v ∈
R+ := [0,∞) are continuous. Indices i, j, x, y ∈ I are states in the state space I.

1.1 Intuitive Constructions and Discussion

We start with the simplest construction of a continuous-time Markov chain X =
(Xt)t≥0 from its discrete-time jump chain X̂ = (X̂n)n≥0, itself a Markov chain.

Definition 1.1.1 (Simplest Continuous-Time Construction). Suppose that X̂ is given.

1. Sample holding times T1, T2, ...:

T1, T2, ... ∼iid Exp(1).

2. From these, define jump times S0, S1, ...:

S0 := 0 and Sk := Sk−1 + Tk = ... = T1 + ...+ Tk for k ≥ 0.

3. Define X via X̂ from these:

Xt := X̂n for t ∈ [Sn, Sn+1).

In other words, Xt = X0 until the first jump time S1 = T1, at which it ‘jumps’ to
XS1

= X̂1. It is ‘held’ at X̂1 for a further T2 units of time (the holding time), ‘jumping’
to XS2

= X̂2 at the second jump time S2 = T1 + T2. The continues indefinitely. 4
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Remark. We detail later why it is the Exponential distribution which is used. But,
in short, it is because this is the only distribution with the memoryless property :

P{S > s+ t | S > s} = P{S > t} if and only if S ∼ Exp(λ) for some λ ≥ 0.

This is necessary for the Markov property to hold: “conditional on the present, the
future is independent of the past”. In particular, knowing how long it was since the
chain last jumped must not affect the law of the time until the next jump. 4

The parameter λ in Exp(λ) is called the rate. In essence, this is because

P{S < δ} = λδ + o(δ) as δ ↓ 0.

Using the memoryless property, S ∼ Exp(λ) can be approximated as follows.

� Discretise [0,∞) = [0, δ) ∪̇ [δ, 2δ) ∪̇ [2δ, 3δ) ∪̇ ....
� Sample B1, B2, ... ∼iid Bern(λδ).

� Set S := inf{k ≥ 1 | Bk = 1}.
The interpretation of Bk is “an attempt to ‘fire’ in the interval [(k− 1)δ, kδ)”. These
attempts are independent across intervals, by the memoryless property.

This is the most important viewpoint of the Exponential holding time: in every
infinitesimal interval of length δ, it tries to ‘fire’, succeeding with probability ≈ δ.

Jumping always at rate 1 is the simplest case. It is easy to change this (uniform)
rate to any λ > 0. However, we can also let the rate depend on the current state
i ∈ I—it cannot depend on the past, of course, by the Markov property.

� Sample holding times T
(i)
1 , T

(i)
2 , ... ∼iid Exp(qi) independently for each state i.

� Use holding time T
(i)
k for the k-th visit to state i ∈ I.

We have defined the continuous-timeX from the discrete X̂ along with the holding

times T = (T
(i)
k )i∈I,k≥0. However, it is more natural to construct the simultaneously.

Definition 1.1.2 (Vertex-Rate Construction). Let I be a finite set. Let Π = (πi,j)i,j∈I
be a transition matrix on I. Let q = (qi)i∈I ∈ (0,∞)I—ie, qi ∈ (0,∞) for all i ∈ I.

1. Suppose that the current time is t ≥ 0 and state is i ∈ I.

� Sample T ∼ Exp(qi).

� Sample J ∼ πi,·— ie, P{J = j} = πi,j for all j ∈ I.

2. Set Xs := Xt for s ∈ [t, t+ T ) and Xt+T := J .

All random variables sampled are independent of all others, across different steps. 4
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The interpretation is that the chain is continually trying to jump, at rate qi if it is
currently at state i, and moves according to the transition matrix P when it jumps.

Remark. A consequence of this lack of uniformity in (qi)i∈I is that it is no longer
possible to pre-define the jump times S1, S2, ... if where the chain will jump—ie,
X̂ = (X̂n)n≥0—is not known. This tends not to be so important in practice. 4

The Exponential distribution possesses another important property.

Lemma 1.1.3 (Competition of Exponentials). Let λ1, . . . , λn > 0 and let Ei ∼ Exp(λi)
independently for each i; let E := min{E1, . . . , En} and λ := λ1 + . . .+ λn. Then,

E ∼ Exp(λ) and P{E = Ei} = λi/λ for all i.

This allows us to decompose an Exponential random variable T with rate qi =∑
j qiπi,j into a minimum minj Tj where Tj ∼ Exp(qi,j := qiπi,j) independently.

Definition 1.1.4 (Edge-Rate Construction). Let I be a finite set. Let q = (qi,j)i,j∈I ∈
RI×I+ —ie, qi,j ≥ 0 for all i, j ∈ I—with qi :=

∑
j qi,j > 0 for all i.

1. Suppose that the current time is t ≥ 0 and state is i ∈ I.

� Sample Tj ∼ Exp(qi,j) independently for each j ∈ I.

� Set T := minj Tj and J := arg minj Tj—ie, T = TJ .

2. Set Xs := Xt for s ∈ [t, t+ T ) and Xt+T := J .

All random variables sampled are independent of all others, across different steps. 4

Competition of Exponentials implies that the jump rate is qi =
∑
i,j qi,j from state

i ∈ I, and that the resulting state J is distributed as qi,·—ie, P{J = j} = qi,j/qi.
Hence, the jump chain has transition matrix Π = (πi,j := qi,j/qi)i,j∈I .

A consequence of this construction is the following infinitesimal description:

pi,j(t+ δ) = pi,j(t) + qi,jδ + o(δ) as δ ↓ 0; equivalently, d
dtpi,j(t) = qi,j .

Some transitions may not be permitted: qi,j = 0 is allowed, provided qi =
∑
j qi,j > 0.

� The edge-rate construction is the important of a continuous-time Markov chain:

whilst at i ∈ I, it attempts to jump to j at (infinitesimal) rate qi,j
simultaneously (and independently) for each j ∈ I.

� The vertex-rate construction is the second most important:

whilst at i ∈ I, it attempts to jump at (infinitesimal) rate qi; when
it jumps, it moves according to the transition matrix Π.
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1.2 Basic Definitions and Terminology

We proceed with the fundamental definition of a Markov chain in continuous time.

Definition 1.2.1 (Markov Property). A random process X = (Xt)t≥0 with countable
state-space I has the Markov property if

P{Xt = j | Xs = i,Xu1
= k1, ..., Xun−1

= kn−1} = P{Xt = j | Xs = i}
whenever 0 ≤ u1 ≤ . . . ≤ un ≤ s ≤ t and k1, . . . , kn, i, j ∈ I.

This can be expressed more succinctly using its natural filtration:

P{Xt = j | Xs = i, σ((Xs)s≤t)} = P{Xt = j} whenever 0 ≤ s ≤ t and i, j ∈ I.

A stochastic process that has the Markov property is called a Markov chain, or process.
The probabilities P{Xt = j | Xs = i} are called its transition probabilities. 4

Definition 1.2.2 (Time Homogeneity). A Markov chain X is time-homogeneous if
P{Xt = j | Xs = i} = P{Xt−s = j | X0 = i} depends only on (s, t) via t− s. Then,

pi,j(t) := P{Xt = j | X0 = i} for t ≥ 0 and i, j ∈ I.

We often view P (t) := (pi,j(t))i,j∈I as a matrix or linear operator. 4

The Markov property says (Xt+s | Xt = i) ∼ (Xs | X0 = i) for deterministic
s, t ≥ 0 in the time-homogeneous set-up. The strong Markov property extends this
to allow t to be a stopping time for discrete-time chains. The set-up is more delicate
in continuous-time, but an analogous statement does hold under suitable regularity
conditions—including non-explosivity, which means that it is not possible for infin-
itely many steps to be taken in finite time. We do not detail these technical conditions
or give a proof; that would require a significant detour into measure theory.

Definition 1.2.3 (Stopping Time). A random time T ∈ [0,∞] is a stopping time for
X = (Xt)t≥0 if the event {T ≤ t} depends only on (Xs)s∈[0,t] for all t ≥ 0. 4

Theorem 1.2.4 (Strong Markov Property). LetX be a time-homogeneous, continuous-
time Markov chain I. Let T be a stopping time for X—ie, {T ≤ t} depends only
on (Xs)s≤t. Then, under certain regularity conditions, for all i ∈ I, conditional on
T < ∞ and XT = i, the process (XT+t)t≥0 is a Markov chain on I started from i
with the same transition probabilities (P (t))t≥0 as X and is independent of (Xs)s≤T .

We impose a simplifying Standing Assumption—the first of four—which makes
the theory much cleaner whilst covering many applications.
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Standing Assumption I. Markov chains in this course are continuous-time stochastic
processes with countable state-space and are time-homogeneous.

Here is a further simplifying Standing Assumption, which excludes the possibility
of some annoying and pathological behaviour.

Standing Assumption II. The functions t 7→ pi,j(t) are continuous at 0 for all i, j ∈ I:

lim
t↓0

pi,j(t) = pi,j(0) = 1{i = j} =

{
1 if i = j,

0 if i 6= j.

We can prove the Chapman–Kolmogorov (CK ) equations as in discrete time.

Theorem 1.2.5 (Chapman–Kolmogorov Equations). For all s, t ≥ 0 and all i, j ∈ I,

pi,j(s+ t) =
∑
k∈I pi,j(s)pk,j(t).

This can be summarised efficiently as a matrix product: P (s+ t) = P (s)P (t).

Proof. The proof is as in discrete time. Let s, t ≥ 0 and i, j ∈ I. We have

pi,j(s+ t) = P{Xs+t = j | X0 = i}
(law of total prob) =

∑
k∈I P{Xs+t = j, Xs = k | X0 = i}

(Bayes’s theorem) =
∑
k∈I P{Xs+t = j | Xs = k, X0 = i}P{Xs = k | X0 = i}

(Markov property) =
∑
k∈I P{Xs+t = j | Xs = k}P{Xs = k | X0 = i}

(time-homogeneity) =
∑
k∈I pk,j(t)pi,k(s).

The same formula holds for products of matrices, hence the final statement.

Corollary 1.2.6. Suppose that Standing Assumption II holds. For a given initial
state i ∈ I, the transition probabilities pi,j(t) are uniformly continuous in the time
t ≥ 0 and the final state j ∈ I.

It follows that the family (P (t))t≥0 of transition probability matrices forms a
semigroup of stochastic matrices.

1. (P (t))t≥0 forms a semigroup:

� P (0) is the identity matrix/operator on I;
� P (t+ s) = P (t)P (s) for all s, t ≥ 0.

2. P (t) is stochastic for each t ≥ 0:
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� pi,j(t) ≥ 0 for all i, j ∈ I;
�
∑
j∈I pi,j(t) = 1 for all i ∈ I.

The converse also holds: a semigroup of stochastic matrices defines a family of trans-
ition probability matrices.

Theorem 1.2.7. Suppose that Standing Assumption I holds. Suppose also that the
Markov chain X = (Xt)t≥0 is right-continuous: for all ω ∈ Ω and t ≥ 0, there exists
an ε > 0 such that

Xt(ω) = Xs(ω) for all s ∈ [t, t+ ε].

Then, the distribution of the Markov chain is fully characterised by its family of
transition probabilities (P (t))t≥0 and its initial distribution of X0.

Proof (Sketch). It is a standard result in measure theory that the probability of
any event depending on a right-continuous process can be determined from its finite-
dimensional distributions: the probabilities

P{Xt0 = i0, . . . , Xtn = in}
for any n ≥ 0, i0, . . . , in ∈ I and 0 ≤ t0 ≤ . . . ≤ tn. We take this as given; see
[Nor97, §6.6] for details. Now, the finite-dimensional distributions can be handled
using Bayes’s theorem, the Markov property and time-homogeneity:

P{Xt0 = i0, . . . , Xtn = in}
= P{X0 = i0}

∏n
k=1 P{Xtk = ik | Xtk−1

= ik−1, . . . , X0 = i0}
= P{X0 = i0}

∏n
k=1 P{Xtk = ik | Xtk−1

= ik−1}
= P{X0 = i0}

∏n
k=1 pik−1,ik(tk − tk−1).

This depends only on the law of X0 and on the transition probabilities (P (t))t≥0.

Exercise 1.2.8. Consider a two-state Markov chains X, say on I = {0, 1}. The two
states may represent “broken” or “working” for a machine. Let λ, µ ∈ (0,∞). We
propose the following model for the transition probabilities, for t ≥ 0:

P{Xt = 1 | X0 = 1} = e−λt;

P{Xt = 0 | X0 = 0} = e−µt.

Construct the family (P (t))t≥0 of transition matrices. Do they form a semigroup?

Exercise 1.2.9. Consider the set-up of the previous exercise. Suppose instead that
the transition probabilities are, for t ≥ 0, proposed by the following:

P{Xt = 1 | X0 = 1} = 1
2 (1 + e−2λt);
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P{X0 = 0 | X0 = 0} = 1
2 (1 + e−2λt).

Show that these form a semigroup.

1.3 From Discrete- to Continuous-Time Markov Chains

In this section, we study which of the concepts and properties of Markov chains from
transfer from discrete-time to continuous-time, and which do not.

1.3.1 The Jump Chain

First, show how to view a (suitably regular) continuous-time Markov chain contains
an embedded discrete-time Markov chain: essentially, sample the continuous-time
chain at the times at which it jumps.

Definition 1.3.1 (Holding and Jump Times). Let X = (Xt)t≥0 be a continuous-time
Markov chain with right-continuous paths. The jump times S = (Sn)n≥0 are

S0 := 0 and Sn := inf{t ≥ Sn−1 | Xt 6= XSn−1} for n ≥ 1.

The inter-arrival, or holding, times T = (Tn)n≥1 are

Tn :=

{
Sn − Sn−1 if Sn−1 <∞,
∞ if Sn−1 =∞.

It follows from right-continuity of paths that Sn, Tn > 0 for all n ≥ 1. 4

Definition 1.3.2 (Jump Chain). Given a Markov chain X = (Xt)t≥0 with jump times

S = (Sn)n≥0, define the jump chain to be the discrete-time process X̂ = (X̂n)n≥0 by

X̂n := XSn
for n ≥ 0.

This is a discrete-time Markov chain. Let Π = (πi,j)i,j denote its transition matrix1:

πi,j := P{XS1
= j | X0 = i} for i ∈ I.

This is the probability that it jumps to state j the first time it leaves state i. 4

We can study many of the properties of the continuous-time Markov chain by
studying the corresponding jump chain. In order to do so, we need to compute the
transition matrix Π—the jump matrix—with entries given by πi,j = Pi{XS1

= j}.
1recall from Standing Assumption I that the chain in time-homogeneous: its transitions do not

depend on the starting time
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Definition 1.3.3 (Transition Derivatives and Matrix). Define

qi,j := lim
δ↓0

1
δ

(
pi,j(δ)− pi,j(0)

)
for i, j ∈ I.

Set qi := −qi,i for i ∈ I. Define the transition-rates matrix Q := (qi,j)i,j∈I . 4

This leads us to the infinitesimal definition of a continuous-time Markov chain.

Definition 1.3.4 (Infinitesimal Definition). Suppose that P = (P (t))t≥0, with P (t) =
(pi,j(t))i,j∈I for all t ≥ 0, is a bona fied family of time-homogeneous transition prob-
abilities. Define the transition-rates matrix Q = (qi,j)i,j∈I as in Definition 1.3.3. The
infinitesimal definition of the associated continuous-time Markov chain is

pi,j(t+ δ) = pi,j(t) + qi,jδ + o(δ) as δ → 0. 4

We want to understand what it means for jumps to happen at certain rates.

Remark (Understanding Transition Rates). By Taylor’s theorem,

pi,j(δ) = pi,j(0) + qi,jδ + o(δ) as δ → 0.

In a tiny interval of length δ, the probability of jumping i→ j is approximately qi,jδ.
Equivalently, we can view the process as jumping somewhere from i at rate qi and,
upon jumping, choosing the location with probabilities proportional to (qi,j)j∈I . 4

Lemma 1.3.5 (Jump Matrix). The jump matrix Π = (πi,j)i,j∈I satisfies

πi,j =


qi,j/qi if i 6= j and qi 6= 0,

0 if i = j and qi 6= 0,

0 if i 6= j and qi = 0,

1 if i = j and qi = 0,

for all i, j ∈ I.

Proof. If qi = 0, then the chain never leaves i, so the claim is trivial. Assume qi 6= 0.
Let δ > 0 be small. Define Yn := Xnδ. Then, Y = (Yn)n≥0 is a discrete-time

Markov chain with transition matrix P = I+δQ+o(δ) as Pi{Y1 = j} = pi,j(δ). Now,

Pi{Y1 6= i} =
∑
j:j 6=i Pi{Y1 = j} = δ

∑
j:j 6=i qi,j + o(δ) = δqi + o(δ).

Define N := inf{n ≥ 0 | Yn 6= Y0}; then, N ∼ Geom1(δqi + o(δ)). Then,

Pi{YN = j} = qi,j/qi + o(1) where o(1)→ 0 as δ → 0 when i 6= j,
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by the Markov property for Y . Also by the Markov property for Y , the probability
that X jumps twice by time δ is O(δ2). This means that

P{δ(N − 1) < T < δN} = 1− o(1) where T := inf{t ≥ 0 | Xt 6= X0}.

In words, this is says that, with probability tending to 1 as δ → 0, the first jump for
X happens in the same interval as for Y . Hence,

πi,j = Pi{XT = j} ≈ Pi{YN = j} ≈ qi,j/qi when i 6= j,

where the “≈” sign hides additive o(1) errors. Taking δ → 0 proves the lemma.

1.3.2 Instantaneous Transition Rates

The first question we ask of a continuous-time Markov chain is,

“How long does it stay in its current state?”

We claimed in §1.1.1 that this is Exponentially distributed2, as a consequence of the
Markov property. We prove this now.

Definition 1.3.6 (Memoryless Property). T has the memoryless property if

P{T ≥ t+ s | X ≥ t} = P{T ≥ s} for all s, t ≥ 0. 4

We are looking at all the holding times. But, by the Markov property and time
homogeneity, we may re-index to assume that it is currently time 0.

Lemma 1.3.7 (Memoryless Property of Holding Time). The first jump time T1 has
the memoryless property given the initial state X0.

Proof. This is a consequence of the Markov property:

Pi{T1 ≥ t+ s | T1 ≥ s} = P{Xu = i ∀u ∈ [0, t+ s) | Xu = i ∀u ∈ [0, s)}
= P{Xu = i ∀u ∈ [s, t+ s) | Xu = i ∀u ∈ [0, s)}
= P{Xu = i ∀u ∈ [0, t) | X0 = i} = Pi{T1 ≥ t},

using the Markov property and time homogeneity in the penultimate equality.

The only continuous, non-negative random variable with the memoryless property
is the Exponential: T ∼ Exp(λ) for some λ.

2a random variable T has the Exponential distribution with rate λ if P{T > t} = e−λt

22



Lemma 1.3.8. Suppose that T is a continuous random variable taking values in
[0,∞). If T has the memoryless property, then it is exponentially distributed:

P{T ≥ t} = e−λt for some λ ≥ 0.

Proof. Write F̄ (t) := P{T ≥ t} for the complement of the cdf. Then, the memoryless
property says precisely that

F̄ (t+ s) = F̄ (t)F̄ (s) for all s, t ≥ 0.

It follows that (
F̄ (t+ s)− F̄ (t)

)
/s = F̄ (t)

(
F̄ (s)− 1

)
/s.

Taking s ↓ 0 gives

F̄ ′(t) = F̄ (t) · F̄ ′(0) = −λF̄ (t)

where λ := −F̄ ′(0) > 0. This DE is easy to solve:

F̄ (t) = Ae−λt for some constant A.

But, F̄ (0) = 1, so A = 1. Hence, F̄ (t) = e−λt as required.

Hence, (T1 | X0 = i) ∼ Exp(λ) for some λ. But, what is λ?

Lemma 1.3.9 (Exponential Rate). Let i ∈ I. Then, (T1 | X0 = i) ∼ Exp(qi).

Proof. The previous two lemmas give (T1 | X0 = i) ∼ Exp(λ) with λ = −F̄ ′(0),
where F̄ is the complementary cdf of T1. It remains to calculate the derivative

F̄ ′(0) = limδ↓0
(
F̄ (0)− 1

)
/δ = limδ↓0

(
Pi{T1 > δ} − 1

)
/δ.

Now, if δ is very small, then {T1 > δ} ≈ {Xδ = i}, given X0 = i. The error comes
from having at least two jumps before δ, which has probability order δ2 = o(δ). Thus,(

Pi{T1 > δ} − 1
)

=
(
Pi{Xδ = i}+ o(δ)− 1

)
/δ

=
(
pi,i(δ)− pi,i(0)

)
/δ + o(1) = p′i,i(0) + o(1) = −qi + o(1).

Taking δ ↓ 0 gives λ = qi. Hence, (T1 | X0 = i) ∼ Exp(qi).

We now know that the continuous-time chain X waits a time E ∼ Exp(qi), if it
is initially at i, then jumps to j with probability πi,j = qi,j/qi. The following lemma
shows that E can be written as minj Ej where Ej ∼ Exp(qi,j = qiπi,j) independently.

Lemma 1.3.10 (Competition of Exponentials). Let λ1, . . . , λn > 0 and Ei ∼ Exp(λi)
independently for each i; let E := min{E1, . . . , En} and λ := λ1 + . . .+ λn. Then,

E ∼ Exp(λ) and P{E = Ei} = λi/λ for all i.
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Exercise 1.3.11. Prove this lemma. See [Nor97, Theorem 2.3.3] for details. There,
the countably-infinite case is handled too, assuming that λ := λ1 + λ2 + . . . <∞.

We apply this with Tj ∼ Exp(qi,j = qiπi,j) independently for j ∈ I:∑
j qi,j = qi and qi,j/qi = πi,j for all i, j ∈ I.

The interpretation of this is that, in a short interval of length δ, all Tj try to ‘fire’
independently; Tj has probability ≈ qi,jδ of firing.

� If none fire, then the chain stays put.

� If precisely one fires—say, TJ—then the chain jumps to J .

� The probability that two or more fire is O(δ2), which is ignored when δ → 0.

This process is then repeated in the next (infinitesimal) interval of length δ.
This representation leads to the following naming convention.

Definition 1.3.12 (Instantaneous Transition Rates). We call qi,j the (instantaneous)
transition rate from i to j. The matrixQ = (qi,j)i,j∈I is the (instantaneous) transition-
rate matrix, or the generator of the transition semigroup P = (P (t))t≥0. 4

We want to rule out the possibility that the chain can leave a state infinitely fast.
This can lead to very pathological behaviour from the application point of view.

Standing Assumption III. We have qi <∞ for all i ∈ I. This implies that supi∈I qi <
∞ ifI is finite, but it does not require supi∈I qi <∞ if I is countably infinite.

We also want to rule out the possibility that the chain leaves a state at a rate
different to the sum of all the rates at which it jumps to other states. This may seem
obviously true, rather than requiring a Standing Assumption of its own. But, again,
there are pathological examples where this does not hold.

Standing Assumption IV. We have

qi =
∑
j∈I\{i} qi,j for all i ∈ I.

This holds whenever the state space I is finite.

The Standing Assumptions imply that the matrix Q is a Q-matrix.

Definition 1.3.13 (Q-Matrix). A matrix Q is a Q-matrix if it satisfies the following.

� Finite, non-positive diagonal entries: 0 ≤ −qi,i <∞ for all i ∈ I.
� Finite, non-negative off-diagonal entries: qi,j ≥ 0 for all i, j ∈ I with i 6= j.
� Zero row-sums:

∑
j∈I qi,j = 0 for all i ∈ I. 4
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1.3.3 Class Structure, Recurrence and Transience

The Markov chain dynamics can be used to classify the state space.

Definition 1.3.14 (Communication). State i leads to j, written i→ j, for i, j ∈ I if

P{Xt = j for some t ≥ 0 | X0 = i} > 0.

If i→ j and j → i, then i and j communicate, written i↔ j. This is an equivalence
relation. It partitions the space into equivalences classes called communicating classes.
A Markov chain is irreducible if it has a unique communicating class. 4

Theorem 1.3.15. Let X be a continuous-time Markov chain and let X̂ be its jump
chain. For all i, j ∈ I with i 6= j, the following are equivalent:

1. i→ j for X;

2. i→ j for X̂;

3. there exist m ≥ 1 and k1, ..., km ∈ I with πi,k1 , πk1,k2 , ..., πkm−1,km , πkm,j > 0;

4. pi,j(t) > 0 for all t > 0.

Exercise 1.3.16. Prove this theorem. See [Nor97, Theorem 3.2.1] for the details.

We want to distinguish between states that are visited at arbitrarily large times
and those which are eventually left unvisited forever. We have to adjust the definition
compared with discrete time: the continuous nature of time means that a vertex is
either never visited, or is visited at infinitely many distinct times; we replace “infin-
itely many” with “an unbounded set”. As in discrete-time, this is equivalent return-
ing almost surely—again, though, “return” means “return after stepping away”, not
“there exists a future time at which the chain is in the same state”.

Definition 1.3.17 (Hitting Times). Let X be a continuous-time Markov chain, and
T1 its first jump time. The hitting times of a state i ∈ I are given by

Hi := inf{t ≥ 0 | Xt = i} and H+
i := inf{t ≥ T1 | Xt = i}. 4

Definition 1.3.18 (Recurrence and Transience for States). Let i ∈ I be a state.

� It is recurrent if Pi{H+
i <∞} = 1; it is positive recurrent if Ei(H+

i ) <∞.

� It is transient if Pi{H+
i <∞} < 1. 4

Lemma 1.3.19. Let i ∈ I be a state. Then, the following equivalences hold:

Pi{H+
i <∞} = 1 ⇐⇒ Pi{{t ≥ 0 | Xt = i} is unbounded} = 1;
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Pi{H+
i <∞} < 1 ⇐⇒ Pi{{t ≥ 0 | Xt = i} is unbounded} = 0.

In particular, Pi{{t ≥ 0 | Xt = i} is unbounded} ∈ {0, 1}.

Exercise 1.3.20. Prove this lemma. Hint. Consider the probability of returning state
and apply the strong Markov property at the return time, if it is finite.

Hint. Consider the probability of returning to the starting state and apply the strong
Markov property (Theorem 1.2.4) at the return time, if it is finite. 4

Theorem 1.3.21. A state is recurrent for the continuous-time Markov chain X if
and only if it is recurrent for the discrete-time jump chain X̂.

The following dichotomy holds, analogous to discrete-time case: cf Theorem 0.2.8.

Theorem 1.3.22. Let i ∈ I. If qi = 0, then state i is recurrent. If qi > 0, then the
following recurrence–transience dichotomy holds:

� if Pi{H+
i <∞} = 1, then state i is recurrent and

∫∞
0
pi,i(t)dt =∞;

� if Pi{H+
i <∞} < 1, then state i is transient and

∫∞
0
pi,i(t)dt <∞.

Exercise 1.3.23. Prove this theorem. Hint. Compare the integral
∫∞

0
pi,i(t)dt with

the sum
∑∞
n=0 πi,i(n), where πi,i(n) = Pi{X̂n = i}, and use Theorem 0.2.8.

A full proof is given in [Nor97, Theorem 3.4.2]. “Fubini’s theorem” there is a
theorem justifying swapping the order of an integral and an expectation.

1.3.4 Small Exercises

Exercise 1.3.24. Let X be the three-state Markov chain with transition rates

Q =

−λ 1
3λ

2
3λ

2
3λ −λ 1

3λ
2
3λ

1
3λ −λ

 ,

for some λ > 0. This is represented by the state diagram in Figure 1.1.

1. Explain why this is a Q-matrix.

2. Construct the jump matrix Π.

3. Find the class structure of the Markov chain.

4. Decide which states are recurrent and which are transient.
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A

2
3λ

2
3λ

1
3λ

2
3λ

1
3λ

1
3λ

Figure 1.1. State diagram for three-state Markov chain

Exercise 1.3.25. Consider the Markov chain with the following transition rates:

Q =


−2 1 0 1
0 0 0 0
1 0 −4 3
0 0 0 0

 .

Construct its jump matrix. What is its class structure?

1.4 Invariant Distribution and Reversibility

1.4.1 Invariant Distribution and Stochastic Equilibrium

One highly important aspect of a stochastic process is whether it settles down into a
stochastic equilibrium. First, we introduce invariant, or equilibrium, distributions.

Definition 1.4.1 (Invariant Measure). A measure λ on I is invariant for a Q-matrix
Q if λQ = 0, where (λQ)j :=

∑
i∈I λiqi,j for all j ∈ I. A measure µ is invariant for a

stochastic matrix P if µP = µ. If the total mass of the measure is 1, then it defines
a probability measure which we call an invariant distribution. 4

Theorem 1.4.2. Let Q be a Q-matrix with jump matrix Π. Let λ be a measure on
I. Define the measure µ on I by µi := λiqi for i ∈ I. Then, λ is an invariant measure
for Q if and only if µ is an invariant measure for Π; ie λQ = 0 if and only if µΠ = µ.

Proof. From Lemma 1.3.5, the jump matrix Π = (πi,j)i,j∈I satisfies

qi,j = qi(πi,j − δi,j) where δi,j := 1{i = j} for all i, j ∈ I.
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Then,(
µ(Π− I)

)
j

=
∑
i µi(πi,j − δi,j) =

∑
i λiqi(πi,j − δi,j) =

∑
i λiqi,j = (λQ)j .

Hence, λQ = 0 if and only if µ(Π− I) = 0, ie µΠ = µ.

Theorem 1.4.3. An irreducible, continuous-time Markov chain on a finite state space
has a unique invariant distribution.

Proof. By Theorem 1.4.2, it suffices to prove uniqueness of the invariant distribution
for the jump chain X̂. First, irreducibility of X implies that X̂ is also irreducible;
finiteness of I then implies positive recurrence.

A measure µ satisfies µΠ = µ if and only if µ(I+Π)/2 = µ. Hence, Π has a unique
invariant distribution if and only if its lazy version Π′ := 1

2 (I+Π) does. Irreducibility
and positive recurrence is preserved under lazification. Hence, the lazy version is
ergodic. The ergodic theorem for discrete-time Markov chains (Theorem 0.3.3) then
implies that it has a unique invariant distribution, completing the proof.

Theorem 1.4.4. Suppose that Q is an irreducible and recurrent Q-matrix and let
(P (t))t≥0 be the transition-probabilities semigroup that it generates. Then,

λQ = 0 if and only if λP (t) = λ for all t ≥ 0.

Proof. By definition of Q and time-homogeneity,

pi,j(t+ δ) = pi,j(t) + qi,jδ + o(δ) for all i, j ∈ I and t ≥ 0.

For t ≥ 0, let f(t) := λP (t) ∈ RI—ie, fj(t) =
∑
i λipi,j(t) for j ∈ I. Then,

λP (t) = λ for all t ≥ 0 if and only if f ′(t) = 0 ∈ RI .

We now show that f ′j(t) = (λQ)j , from which the result immediately follows:

1
δ

(
fj(t+ δ)− fj(t)

)
= 1

δ

∑
i λi
(
pi,j(t+ δ)− pi,j(t)

)
=
∑
i λi
(
qi,j + o(1)

)
= (λQ)j + o(1).

Technically, we need uniformity of the first o(1) term to deduce this if |I| = ∞, and
to consider δ < 0 too; we ignore these subtleties. This completes the proof.

Theorem 1.4.5 (Ergodic Theorem). Suppose that Q is irreducible and recurrent on
a finite state space. Suppose that λ is an invariant distribution for Q. Then,

pi,j(t)→ λj as t→∞ for all i, j ∈ I.
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The ergodic theorem says that the invariant distribution λ gives a description of
the equilibrium behaviour, if it exists. The probability λj is the long-run probability
of ending up in state j, regardless of the initial state.

Remark. We often stated and proved results for finite-state Markov chains. Typically,
analogous results hold for countable state spaces, under the assumption of positive
recurrence. The results are often harder to prove, requiring the error terms to be
handled carefully, sometimes using the precision of measure theory. 4

Example 1.4.6 (Switcher Model Continued). Recall that the transition rates of the
switcher chain are given by

Q =

(
−λ λ
µ −µ

)
.

Solving αQ = 0 for α such that
∑
i αi = 1 gives

α1 =
µ

µ+ λ
and α2 =

λ

µ+ λ
. 4

1.4.2 Reversibility and Detailed-Balanced Equations

Informally, a Markov chain is reversible if, when started from equilibrium, it is stat-
istically impossible to tell whether it is being run forward or backward in time.

Solving the equilibrium, or global balance, equations
∑
j∈I πjqj,i = 0 for all i ∈ I

is often far from a pleasant experience. Many Markov chains satisfy an often-easier-
to-solve set of equations, called the detailed-balance equations:

πjqj,i = πiqi,j for all i, j ∈ I.
The detailed balance equations require the ‘probability flux’ to be balanced across
each pair of states; the global ones only require the total flux be balanced at each state.

We see later how detailed balance relates to a notion of reversibility. Before this,
we get acquainted with some fundamental consequences of detailed balance. First,
detailed balance implies global balance.

Definition 1.4.7 (Detailed Balance). A matrix Q and a measure λ are in detailed
balance if λiqi,j = λjqj,i for all i, j ∈ I. 4

Lemma 1.4.8 (Detailed Balance Implies Global Balance). If Q and λ are in detailed
balance, then λ is an invariant measure for Q.

Proof. This is a simple calculation, using detailed balance in the second equality:

(λQ)i =
∑
j∈I λjqj,i =

∑
j∈I λiqi,j = λi

∑
j∈I qi,j = 0 for all i ∈ I.
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This means that it is often worth looking for a solution to the detailed balance
equations directly when trying to find the equilibrium distribution. After all, they are
significantly simpler. Be warned, though: chains with a unique invariant distribution
may not satisfy detailed balance! Eg, if qi,j 6= 0 = qj,i for some i, j ∈ I, then detailed
balance can never be satisfied.

Example 1.4.9 (Equivalence Between Jump- and Continuous-Time Chain). Consider
a continuous-time Markov chain with transition-rates matrix Q. Assume that qi 6= 0
for all i ∈ I. Recall that the transition matrix Π of the jump chain satisfies

πi,j = qi,j/qi for all i, j ∈ I with i 6= j.

Let λ and µ be measures on I satisfying µi = λiqi for all i ∈ I. Then,

λiqi,j = λjqj,i ⇐⇒ µiπi,j = µjπj,i for all i, j ∈ I.

The latter are the detailed balance equations for discrete-time Markov chains. 4

Example 1.4.10 (Birth-and-Death Chains). A continuous-time Markov chain X on
N is called a birth-and-death chain if it can only increment by ±1—ie, qi,j = 0 if
|i− j| > 1. Such chains always have an invariant measure satisfying detailed-balance,
but may not be normalisable. Indeed, the detailed-balanced equations reduce to

πnqn,n−1 = πn−1qn−1,n for all n ≥ 1.

Rearranging this and iterating defines π:

πn = πn−1
qn−1,n

qn,n−1
= ... = π0

n∏
m=1

qm−1,m

qm,m−1
.

This defines an invariant distribution if it is normalisable: ie, if

∞∑
n=0

n∏
m=1

qm−1,m

qm,m−1
<∞, in which case π0 = 1

/ ∞∑
n=0

n∏
m=1

qm−1,m

qm,m−1
.

There are two typical examples of this:{
qm,m−1 = µ

qm−1,m = λ

}
and

{
qm,m−1 = mµ

qm−1,m = λ.

}
.

These areM/M/1 andM/M/∞ queues, respectively, to be encountered in Chapter 3.

M/M/1 Queue. Here, qm−1,m/qm,m−1 = λ/µ. So,

π−1
0 =

∑
n=0

∞(λ/µ)n <∞ if and only if λ < µ.
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M/M/∞ Queue. Here, qm−1,m/qm,m−1 = λ/(mµ). So,

π−1
0 =

∑
n=0

∞ 1
n! (λ/µ)n = eλ/µ <∞ for all λ, µ > 0. 4

We now discuss the concept of reversibility. It is analogous to the discrete-time
set-up. There is one minor technicality which we address upfront. Our continuous-
time Markov chains X = (Xt)t≥0 are defined to be right-continuous: Xt = lims↓tXs.

However, if we fix T > 0 and set X̂t := XT−t, then the process (Xt)0≤t≤T is left-
continuous. Instead, officially, we need to set Xt := lims↑tXT−s to obtain the right-
continuous version of the time-reversal of (Xt)t≥0. We ignore this technicality.

Theorem 1.4.11. Fix T ∈ (0,∞). Let X = (Xt)t≥0 be a Markov chain with instant-
aneous transition-rates matrix Q which is irreducible and non-explosive. Suppose
that the initial distribution π of X is invariant for Q. For i, j ∈ I and t ≥ 0, let

q̂j,i := πiqi,j/πj and p̂j,i(t) := πipi,j(t)/πj .

Let (X̂t := XT−t)t∈[0,T ] be the right-continuous version of the time-reversal of

(Xt)t∈[0,T ]. Then, (X̂t)t∈[0,T ] is a Markov chain with initial distribution π, instant-

aneous transition-rates matrix Q̂ and transition probabilities P̂ = ((p̂i,j(t))i,j∈I)t≥0.

Moreover, (X̂t)t∈[0,T ] is also irreducible, non-explosive and has initial distribution π.

We delay this proof until we can use Kolmogorov differential equations in §1.5.
A chain is reversible if Q̂ = Q—ie, (XT−t)0≤t≤T has transition-rates matrix Q.

Definition 1.4.12 (Reversibility). LetX = (Xt)t≥0 be a Markov chain with instantan-
eous transition-rates matrix Q which is irreducible and non-explosive. It is reversible
if its invariant distribution π is in detailed balance with Q:

πiqi,j = πjqj,i for all i, j ∈ I. 4

Remark (Why “Reversible”?). The ‘probability flux’ is equal in both directions.

� qi,j is the rate at which the chain jumps to j if it is at i.
� πi is the proportion of time that the chain is at i in equilibrium.
� So, πiqi,j is the i-to-j ‘rate’, or ‘flux’, in equilibrium.
� “Reversibility” simply means that the i-to-j flux equals the j-to-i flux. 4

Remark (Preservation of Reversibility Under Restriction). The following remark is of
major importance in applications—eg, when calculating conditional probabilities for
Bayesian posterior distributions using Markov chain Monte Carlo.
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The property of reversibility easily carries over to Markov chains X ′ which are
restrictions of the original chain X. If I ′ ⊆ I and we forbid the chain to leave I ′, by
setting q′i,j := qi,j1{i, j ∈ I ′} for i, j ∈ I and qi,i appropriately for i ∈ I, then the
new Markov chain X ′ is still reversible wrt the invariant distribution of X. 4

1.5 The Kolmogorov Differential Equations

We have constructed the transition-rates matrix Q from the transition probabilities
semigroup P by taking derivatives. We will see that the opposite also holds: un-
der favourable regularity conditions, typically satisfied in common applications, it
is possible to construct P from a Q-matrix. The law of the Markov chain is thus
characterised by just Q and the initial distribution. This is achieved by solving the

Kolmogorov Differential Equations (KDEs).

1.5.1 The KDEs and Examples

The following two theorems do appear in [Nor97, §2.8], but in a rather different form
and set-up to ours. See, instead, [Bré20, §13] for a more similar proof.

Theorem 1.5.1 (KBDE). Suppose that X is a continuous-time Markov chain with
transition probabilities P and corresponding transition rates Q. Then, P and Q
satisfy the Kolmogorov Backward Differential Equation (KBDE):

d
dtP (t) = QP (t), P (0) = I.

This is equivalent to the following by-entry version:

d
dtpi,j(t) =

∑
k∈I qi,kpk,j(t) for all i, j ∈ I;

pi,j(0) = 1{i = j} for all i, j ∈ I.

Proof (Sketch). Consider the time interval (0, t+ δ] = (0, δ] ∪̇ (δ, t+ δ] and suppose
that δ is small. By definition, qi,k = p′i,k(t). Thus, by Taylor’s theorem,

pi,k(δ) = pi,k(0) + qi,kδ + εi,k(δ)δ for δ > 0

for some function εi,k(·) with limδ→0 εi,k(δ) = 0. This can be written succinctly as

pi,k(δ) = pi,k(0) + qi,kδ + o(δ),

but this does hide dependence on the states. If |I| <∞, though, then the o(δ) error
is uniform over the states, as there are only finitely many to take a maximum over.
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Suppose that X0 = i and average over Xδ = k, using CK (Theorem 1.2.5):

pi,j(t+ δ) =
∑
k∈I pi,k(δ)pk,j(t)

=
∑
k∈I
(
pi,k(0) + qi,kδ + εi,k(δ)δ

)
pk,j(t)

= pi,j(t) + δ
∑
k∈I qi,kpk,j(t) + δ

∑
k∈I εi,k(δ)pk,j(t),

using pi,k(0) = 1{i = k}. Rearranging and taking the limit δ → 0 gives

p′i,j(t) =
∑
k∈I qi,kpk,j(t) + limδ→0

∑
k∈I εi,k(δ)pk,j(t).

Technically, we also need to look at δ < 0. We ignore this subtlety here.
If we can swap the limit and the sum, then we would be done as

lim
δ→0

εi,k(δ) = 0, so then d
dtpi,j(t) =

∑
k∈I qi,kpk,j(t).

If |I| < ∞, then we can always swap the limit and the now-finite sum. However,
for countably infinite I, it is not obvious. We do not explore this further. We simply
assume that the swapping is legitimate. It is in all the examples we care about.

A forward version also holds under typically-satisfied regularity conditions.

Theorem 1.5.2 (KFDE). Suppose that X is a continuous-time Markov chain with
transition probabilities P and corresponding transition rates Q. Assume that∑
k∈I pi,k(t)qk < ∞ for all i ∈ I and t ≥ 0. Then, P and Q satisfy the Kolmogorov

Forward Differential Equation (KFDE):

d
dtP (t) = P (t)Q, P (0) = I.

This is equivalent to the following by-entry version:

d
dtpi,j(t) =

∑
k∈I pi,k(t)qk,j for all i, j ∈ I;

pi,j(0) = 1{i = j} for all i, j ∈ I.

Proof (Sketch). The proof is similar to that of Theorem 1.5.1 except that more care
is required to justify an exchange of limit and sum. The main difference is that we
average over Xt = k, rather than Xδ = k. The Chapman–Kolmogorov equations give

pi,j(t+ δ) =
∑
k∈I pi,k(t)pk,j(δ).

The rest of the proof is analogous, but even more care is required in swapping the
limit and the sum in the case of infinite I; it is always fine for finite I, though.

Remark (Existence and Uniqueness of KDE Solutions). When choosing whether to
solve the forward or backward equations, bear in mind the following points.
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� The KBDEs have at least one solution: a solution always exists, but it need not
be unique. We are interested in the minimal solution if there are multiple.

We have uniqueness for finite state spaces and in general there is always a
minimal solution. Uniqueness can fail if the chain explodes.

� The KFDEs have at most one solution: a solution is unique if it exists.

We do not worry about lack of existence or uniqueness. In most cases we consider,
both KDEs have unique solutions, so the rates specify the Markov chain uniquely. 4

Now that we have introduced the KDEs, we can give the deferred proof of The-
orem 1.4.11 on time reversal. We also give an alternative proof of Theorem 1.4.4.

Proof of Theorem 1.4.11 (Assuming I Is Finite). By the KDEs and finiteness of I,
the semigroup P = (P (t))t≥0 of Q is the unique solution of the forward equation

P ′(t) = P (t)Q with P (0) = I.

Inputting p̂j,i(t) = πipi,j(t)/πj and using the forward equation,

P̂ ′(t) = Q̂P̂ (t) with P̂ (0) = I.

But, this is precisely the backward equation for Q̂, which is itself a Q-matrix. Thus,
P̂ = (P̂ (t))t≥0 is the semigroup of Q̂. Also, π is invariant for P̂ (t) for all t ≥ 0.

Finally, whenever 0 = t0 < . . . < tn = T , letting sk := tk − tk−1, we have

P{X̂t0 = i0, . . . , X̂tn = in} = P{XT−t0 = i0, . . . , XT−tn = in}
= πinpin,in−1

(sn) · . . . · pi1,i0(s1) = πi0 p̂i0,i1(s1) · . . . · p̂in−1,in(sn).

Hence, (X̂t)0≤t≤T is a Markov chain with transition probabilities P̂ = (P̂ (t))t≥0.

Alternative Proof of Theorem 1.4.4: “λQ = 0 ⇔ λP (t) = λ”. From the KBDE,

d
dt (λP (t)) = λ d

dtP (t) = λ(QP (t)) = (λQ)P (t).

If λQ = 0, then d
dt (λP (t)) = 0, so λP (t) = λP (0) = λ for all t ≥ 0. Conversely, if

λP (t) = λ for all t ≥ 0, then d
dt (λP (t)) = 0, so λQ = 0 by taking t = 0 above.

The KDEs allow us to compute P from the Q-matrix. This is easier said than
done, though. The equations are often note straightforward to solve, even when there
is a unique solution. The method of integrating factors is a useful tool for solving such
equations. To get some intuition for how this works, we consider a few examples.
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Working Broken

µ

λ

Figure 1.2. State diagram for the switcher model

Example 1.5.3 (Switcher Model). A two-state stochastic process is commonly re-
ferred to as the switcher model : it is used to model systems which switch between
two states—eg, “working” and “broken”. Its state diagram is shown in Figure 1.2.
The instantaneous transition-rate matrix for this model is

Q =

(
−λ λ
µ −µ

)
.

Since P (t) is a stochastic matrix for all t, it can be parametrised by just two unknowns:

P (t) =

(
φ(t) 1− φ(t)

1− ψ(t) ψ(t)

)
for all t ≥ 0.

Method 1: Using integrated factors to solve the KFDEs. The KFDE system is a
matrix product which we can write out in full:

P ′(t)︷ ︸︸ ︷(
φ′(t) −φ′(t)
−ψ′(t) ψ′(t)

)
=

P (t)︷ ︸︸ ︷(
φ(t) 1− φ(t)

1− ψ(t) ψ(t)

)
·

Q︷ ︸︸ ︷(
−λ λ
µ −µ

)
=

(
−λφ+ µ(1− φ) λφ− µ(1− φ)
−λ(1− ψ) + ψµ λ(1− ψ)− µψ

)
.

We thus get the following autonomous DEs3:

φ′(t) = −λφ(t) + µ
(
1− φ(t)

)
, φ(0) = 1;

ψ′(t) = −µψ(t) + λ
(
1− ψ(t)

)
, ψ(0) = 1.

The two equations are equivalent, up to swapping λ and µ, so it suffices to solve only
the first. Rearranging it gives

φ′(t) + (λ+ µ)φ(t) = µ with φ(0) = 1.

3an autonomous DE is one which involves only one function of time; compare this with coupled
DEs which have multiple functions of time, as is the case in Method 2
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In the method of integrating factors, one searches for some function f such that

d
dtφ(t) + (λ+ µ)φ(t) = f(t)−1 d

dt

(
f(t)φ(t)

)
.

This only defines f up to a constant factor. Expanding the derivative and simplifying,

f ′(t)/f(t) = λ+ µ, so we take f(t) := e(λ+µ)t.

Using these equations, we obtain

µ = d
dtφ(t) + (λ+ µ)φ(t)

= f(t)−1 d
dt

(
f(t)φ(t)

)
= e−(λ+µ)t d

dt

(
e(λ+µ)tφ(t)

)
;

ie,
d
dt

(
e(λ+µ)tφ(t)

)
= e(λ+µ)tµ.

Integrating both sides and using the initial conditions, we solve the equations:

φ(t) = λ
λ+µe

−(λ+µ)t + µ
λ+µ ;

ψ(t) = µ
λ+µe

−(λ+µ)t + λ
λ+µ .

Method 2: Solving the KBDE directly. The KBDE system is a matrix product
which we can write out in full:

P ′(t)︷ ︸︸ ︷(
φ′(t) −φ′(t)
−ψ′(t) ψ′(t)

)
=

Q︷ ︸︸ ︷(
−λ λ
µ −µ

)
·

P (t)︷ ︸︸ ︷(
φ(t) 1− φ(t)

1− ψ(t) ψ(t)

)
=

(
−λφ+ λ(1− ψ) −λ(1− φ) + λψ
µφ− µ(1− ψ) µ(1− φ)− µψ

)
.

This is equivalent to the following coupled, or linked, DEs:

φ′(t) = λ
(
1− φ(t)− ψ(t)

)
ψ′(t) = µ

(
1− φ(t)− ψ(t)

)
.

There are multiple ways of solving this. One way is to differentiate again:

φ′′(t) = −λφ′(t)− λψ′(t)
= −λφ′(t)− λ · µ

(
1− φ(t)− ψ(t)

)
= −λφ′(t)− µ · λ

(
1− φ(t)− ψ(t)

)
= −λφ′(t)− µφ′(t)
= −(λ+ µ)φ′(t).
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This can then be solved in the usual way, noting that

φ′(0) = −λ
(
1− φ(0)− ψ(0)

)
= −λ.

The same solution as before is obtained.

Special Case: λ = µ. Without loss of generality, λ = µ = 1. A trick for solving
coupled DEs which comes up surprisingly often is to look for linear combinations of
(φ, ψ) which decouple the DEs.4 Let (α, β) := (φ+ ψ, φ− ψ):

α′(t) = φ′(t) + ψ′(t) = 2− 2α(t), α(0) = φ(0) + ψ(0) = 2;

β′(t) = φ′(t)− ψ′(t) = 0, β(0) = φ(0)− ψ(0) = 0.

This is a set of decoupled DEs which can be solved easily for (α, β), then converted
into a solution for (φ, ψ). 4

Example 1.5.4. Suppose X is a continuous-time Markov chain with transition rates

Q =

−λ λ/2 λ/2
λ/2 −λ λ/2
λ/2 λ/2 −λ

 .

Our goal is to find the transition probabilities P .
Fix a time t ≥ 0. There are 9 unknowns: pi,j(t) for i, j ∈ {1, 2, 3}. The rates

depend only on whether we stay put or jump to another state. So, pi,i(t) does not
depend on i and pi,j(t) does not depend on either i or j if i 6= j. With this in mind, let{

φ(t) := p1,1(t)

ψ(t) := p1,2(t)

}
so that P (t) =

φ(t) ψ(t) ψ(t)
ψ(t) φ(t) φ(t)
ψ(t) ψ(t) φ(t)

 .

Additionally, P (t) has unit row-sums, so

φ(t) + 2ψ(t) = 1.

The forward equations give

φ′(t) = −λφ(t) + 1
2λψ(t) + 1

2λψ(t)

= −λφ(t) + λψ(t)

= −λφ(t) + 1
2λ
(
1− φ(t)

)
4Formally, this is equivalent to finding a basis in which a certain matrix is diagonal, which

corresponds to decoupled/autonomous differential equations: if x′(t) = Mx(t)+b andM = UDU−1

with D diagonal, then y′(t) = Dy(t) + c, ie y′i(t) = Di,iyi(t) + ci for all i, where y(t) := U−1x(t)
and c := U−1b

37



= 1
2λ− 3

2λφ(t).

We again look for an integrating factor:

f(t)−1 d
dt

(
f(t)φ(t)

)
= φ′(t) + 3

2λφ(t)

implies

f ′(t)/f(t) = 3
2λ, so we take f(t) = exp

(
3
2λt
)
.

Substituting this back in and integrating gives

φ(t) = 1
3 + 2

3 exp
(
− 3

2λt
)
.

Finally, using φ(t) + 2ψ(t) = 1, we get

ψ(t) = 1
3 − 1

3 exp
(
− 3

2λt
)
. 4

Exercise 1.5.5. Suppose that

Q =

 −λ pλ (1− p)λ
(1− q)µ −µ qµ
rγ (1− r)γ −γ

 .

Find P = (P (t))t≥0. This example is expanded upon in Example Sheet 1.

1.5.2 Solving KDEs Abstractly via Matrix Exponentials

Another way of constructing the transition probabilities semigroupP from aQ-matrix
is by computing the exponential of the matrix tQ, denoted by etQ.

Definition 1.5.6 (Matrix Exponential). For a square matrix A, the exponential eA is

eA :=

∞∑
k=0

Ak

k!
, where Ak is the k-th power of the matrix.

This always converges for finite-dimensional matrices. So, for finite I, we may set

etQ :=

∞∑
k=0

tkQk

k!
for all t ≥ 0. 4

We assume that I is finite for the rest of the section. The methods also apply for
the case where I is countable, provided that the series converges.

The following two theorems imply that (etQ)t≥0 is a semigroup of stochastic
matrices solving the KDEs. In other words, Q determines the transition-probabilities
semigroup P = (P (t))t≥0 of the Markov chain with transition rates Q.
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Theorem 1.5.7. Let Q be a Q-matrix5 on a finite set I. Set P (t) := etQ for t ≥ 0.
Then, P = (P (t))t≥0 has the following properties.

1. P is a semigroup: P (t+s) = P (t)P (s) for all s, t ≥ 0 and P (0) = I, the identity.

2. P is the unique solution to the KBDE:

P ′(t) = QP (t), P (0) = I.

3. P is the unique solution to the KFDE:

P ′(t) = P (t)Q, P (0) = I.

4. For k ∈ {1, 2, ...},
dk

dtk
P (t)

∣∣∣
t=0

= Qk.

Proof. We use the following two properties of matrix exponentials without proof.

� If A and B are square matrices that commute, ie AB = BA, then

eA+B = eAeB .

� The matrix-valued power series given by

t 7→∑
k≥0(tQ)k/k!

has infinite radius of convergence.

Clearly, P (0) = e0Q = I, the identity. The matrices sQ and tQ commute, so

P (t)P (s) = etQesQ = e(t+s)Q = P (t+ s).

Proving that P is a solution to the KDEs is straightforward:

d
dtP (t) = d

dt

(∑
k≥0 t

kQk/k!
)

=
∑
k≥0

(
d
dt t

k
)
Qk/k!

=
∑
k≥0 t

k−1Qk/(k − 1)!

=
∑
`≥0 t

`Q`+1/`!

But, Q` ·Q = Q`+1 = Q ·Q`. From this, it follows that

P (t)Q =
(∑

`≥0 t
`Q`/`!

)
Q = d

dtP (t) = Q
(∑

`≥0 t
`Q`/`!

)
= QP (t).

5see Definition 1.3.13 to recall the conditions for a matrix to be a Q-matrix
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We now need to show uniqueness. Suppose that R = (R(t))t≥0 is another family
of matrices satisfying the KBDE. Then,

d
dt (P (t)−1R(t)) = d

dt (e
−tQR(t)) = (−e−tQQ)R(t) + e−tQ(QR(t)) = 0.

It follows that t 7→ P (t)−1R(t) is constant—independent of t. But, P (0) = I = R0.
Thus, P (t) = R(t) for all t ≥ 0. Uniqueness for KFDE is proved similarly.

Iterating the KBDEs, using linearity and finiteness of the state space, gives

dk

dtk
P (t) = Q dk−1

dtk−1P (t) = . . . = QkP (t).

The final claim is established by taking t := 0 as P (0) = I.

Theorem 1.5.8. A matrix Q on a finite set I is a Q-matrix if and only if P (t) := etQ

is a stochastic matrix for all t ≥ 0.

Proof. We have seen that P (t) := etQ satisfies Q = P ′(0). So,

P (t) = I + tQ+O(t2) as t ↓ 0.

Thus, qi,j ≥ 0 if and only if pi,j(t) ≥ 0 for all t ≥ 0 sufficiently small, for i 6= j. But
P (t) = P (t/n)n for all n, so qi,j ≥ 0 if and only if pi,j(t) ≥ 0 for all t ≥ 0, for i 6= j.

IfQ has null row-sums, then 1—the vector consisting only of 1s—is an eigenvector
of Q with eigenvalue 0: Q1 = 0 = 01. Hence,

Qn1 = Qn−1Q1 = 0.

Null row-sums forQn for all n ≥ 0 implies that P (t) has unit row-sums for every t ≥ 0:

P (t)1 = (
∑
n≥0 t

nQn/n!)1 = I1 +
∑
n≥1 t

n(Qn1)/n! = 1.

1.5.3 Constructing Matrix Exponentials via Eigenstatistics

We have seen that the family of matrices (P (t) := etQ)t≥0 solves the KDEs. An
efficient way of computing all powers of Q is to diagonalise the matrix: try to write

Q = UΛU−1 where Λ is diagonal and U is invertible.

When this is possible, we can choose Λ = diag(λ1, . . . , λn) to be the diagonal matrix
of eigenvalues and U = (v1, . . . ,vn) to be the matrix of (right-)eigenvectors; that is,
Qvi = λivi for all i.6 Then, calculating Qk is easy:

Qk = (UΛU−1) · (UΛU−1) · · · (UλU−1) = UΛkU−1 for k ∈ N.
6Typically, we take {v1, ...,vn} to be an orthonormal set of eigenvectors so that U is a unitary

matrix—ie, U† = U−1—when diagonalising abstractly, but this is not necessary practically
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Plugging this into the power series,∑
k≥0 t

kQk/k! =
∑
k≥0 t

kUΛkU−1 = U
(∑

k≥0(tΛ)k/k!
)
U−1 = UetΛU−1

and Λk = diag(λk1 , . . . , λ
k
n) for k ≥ 0, so

etΛ = diag(etλ1 , . . . , etλn).

So, the (candidate) solution for P = (P (t))t≥0 is given by

P (t) := UetΛU−1 for t ≥ 0.

Finding all the eigenvalues and eigenvectors is often computationally intensive. It
is manageable for 2× 2 matrices, though, as in the Switcher Model (Example 1.5.3).

Example 1.5.9 (Switcher Model Continued). Recall that the transition matrix is

Q =

(
−λ λ
µ −µ

)
.

We need to compute the exponential etQ.
First, we compute the eigenvalues of Q, which involves solving

det(Q− θI) = 0 for θ.

This leads to the characteristic equation

θ(θ + λ+ µ) = 0.

Hence, the eigenvalues are θ1 = 0 and θ2 = −(λ+ µ). Solving for the eigenvectors,

v1 =

(
1
1

)
and v2 =

(
λ
−µ

)
.

Hence, our desired matrices are as follows:

Λ =

(
0 0
0 −(λ+ µ)

)
and etΛ =

(
1 0
0 e−t(λ+µ)

)
;

U =

(
1 λ
1 −µ

)
and U−1 =

1

λ+ µ

(
µ λ
1 −1

)
.

It follows that

P (t) = UetΛU−1 =
1

λ+ µ

(
µ+ λe−t(λ+µ) λ− λe−t(λ+µ)

µ− µe−t(λ+µ) λ+ µe−t(λ+µ)

)
. 4
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Remark. Usually, finding the eigenvalues for 2×2 matrices is easy but hard for 3×3
matrices, since there is no nice “cubic formula”. However, 1 is always an eigenvector
of a Q-matrix with eigenvalue 0, since it corresponds to taking row-sums. So, finding
the eigenvalues for 3× 3 matrices really only corresponds to solving a quadratic. 4

The simplification in the previous remark applies primarily to eigenvalues. Know-
ing that 1 is an eigenvector with eigenvalue 0 does not particularly help in finding
the other eigenvectors. Finding the remaining eigenvectors, possibly by inverting a
3× 3 matrix or using Gaussian elimination, is still tedious.

If one only desires some elements of P (t) = (pi,j(t))i,j∈I , then an alternative,
simultaneous-equations approach can be used. We describe this now via an example.

Example 1.5.10. Consider the three-state Markov chain with transition rates

Q =

−2 1 1
1 −1 0
2 1 −3

 .

Suppose that we only wish to know p1,1(t) for each t ≥ 0.
First, we compute the eigenvalues. The characteristic equation of Q is

−λ(λ+ 4)(λ+ 2) = 0.

Thus, the eigenvalues are λ1 = 0 (always an eigenvalue), λ2 = −2 and λ3 = −4. Now,

P (t) = UetΛU−1 where etΛ = diag(1, e−2t, e−4t)

for some matrix U . Rather than find and invert U , we just use the fact that p1,1(t) is
some linear combination, independent of t, of (1, e−2t, e−4t):

p1,1(t) = a+ be−2t + ce−4t for some constants a, b, c ∈ R.

We need to determine the constants. Initial conditions come from Theorem 1.5.7(4):

p1,1(0) = 1, p′1,1(0) = q1,1 = −2, p′′1,1(0) = (Q2)1,1 = 7.

This leads to the following system of equations:

a + b + c = 1,
− 2b − 4c = −2,

4b + 16c = 7.

Solving it gives (a, b, c) = (3
8 ,

1
4 ,

3
8 ) and hence

p1,1(t) = 3
8 + 1

4e
−2t + 3

8e
−4t. 4
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Remark. If the invariant distribution at j is known, say to be πj , then, under mild
assumptions, pi,j(t)→ π1 as t→∞. This often saves calculating the square (Q2)1,1.
It is tractable since pi,j(t)→ a as t→∞, so this immediately gives a = πj . 4

Remark. The final system of equations above is 3×3, which is often tedious to solve.
Notice, however, that the constant term is removed as soon as even one derivative is
taken. So, fundamentally, it is only 2×2, with the added definition a := 1−b−c. 4

The matrix-exponential approach is attractively powerful for small state-space
examples. However, it requires us to solve the characteristic equation, which is n-th
order if there are n states, and then do further work with n×nmatrices. Mathematical
software can handle modestly-sized n, though we would need to explore numerical
analysis methods to have practical ways of determining eigenvalues. But, n can be
very large indeed. For example, in image analysis, a small 128 × 128 black–white
pixel image leads to a state-space with 2128×128 = 216384 states, which is somewhere
near 105000. Realistic agent-based modelling for the COVID-19 pandemic involved
systems with a couple of million entities; again, in the simplest case, one expects k
entities to lead to 2k states.

We need to be able to understand properties of Markov chains without making
explicit computations. This is where theory trumps simple-minded computation.

From a theoretical point of view, it is possible to vastly to generalize the above ap-
proaches using the theory of semigroups of operators on infinite-dimensional Banach
spaces; see, in particular, the Hille–Yosida theorem. This offers the opportunity to
deal with applications where our Standing Assumptions may not all apply. An ex-
ploration of these results would take this module far too far off track.
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2 Birth–Death Processes

A birth-and-death, or birth–death, process is a continuous-time Markov chain with
state space N ∪ {∞} where the only non-zero transition rates qi,j have |i− j| ≤ 1:

� a “birth” corresponds to increasing the state by 1;
� a “death” corresponds to decreasing the state by 1.

The state space includes∞ /∈ N as we need to allow for the possibility of populations’
growing to infinite size in finite time: “explosion”.

A linear birth–death process is a birth–death process with rates qi,i±1 depending
linearly on the current state, with a possible added constant:

qi,i−1 = a− + b−i, for all i ∈ N,
qi,i+1 = a+ + b+i, for some a±, b± ∈ R.

We will study the linear birth–death process in detail. We start with the simplest
example: the Poisson process, which has qi,j = 1{j = i+ 1};

2.1 The Poisson Process

The Poisson process models the growth in a number of occurrences of an event occur-
ring by time t, as t increases. Events are suitable for modelling as a Poisson process if

� the probability of an event’s occurring in an interval of length δ is ∝ δ as δ ↓ 0,
� the occurrence of events is independent between intervals.

There are many, many applications: modelling times of child births, industrial
accidents, imperfections in cotton, alpha-particle decay, extreme weather incidents,
etc. Figure 2.1 shows an actual dataset which has been modelled by a Poisson process:
the cumulative totals of cyclones—storms with wind speeds exceeding 88km/h—in
the Bay of Bengal, recorded over a 100-year period. Additionally, the Poisson process
is highly significant as a building block for all kinds of other random processes, as we
will see later in the course—eg, that it is fundamental for queueing theory.
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Figure 2.1. Plot of cumulative numbers of cyclones in Bay of
Bengal as time varies from 1880 until 1979

2.1.1 Definition and Main Properties

Definition 2.1.1 (Poisson Counting Process). A continuous-time Markov chain taking
values in N is a Poisson (counting) process of rate λ, abbreviated PP(λ), if it satisfies
the Standing Assumptions1 and its only non-zero transition rates are

qi,i+1 = λ for all i ∈ N.

Its instantaneous transition-rates matrix is given by

Q =


−λ λ 0 0 · · · · · ·
0 −λ λ 0 · · · · · ·
...

...
. . .

. . . · · · · · ·
...

...
. . .

. . . · · · · · ·

 . 4

The following theorem gives an alternative interpretation of a PPs, which is very
useful for simulating its paths. It is really the jump-chain construction of §1.3.1.

Theorem 2.1.2. Let T1, T2, ... ∼iid Exp(λ). Define N = (Nt)t≥0 by

Nt :=

{
0 if t < T1,

n if T1 + ...+ Tn ≤ t < T1 + ...+ Tn+1.

1recall that the Standing Assumptions are the following:

I it has countable state-space and is time-homogeneous;

II transition probabilities are continuous at 0—ie,

pt(i, j)→ 1{i = j} as t→∞ for all i, j ∈ I;
III qi <∞ for all i;

IV qi =
∑
j 6=i qi,j for all i.
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Then, N ∼ PP(λ). Moreover, N has independent and stationary increments: (Ns+t−
Ns)t≥0 ∼ PP(λ) and is independent of (Nu)u≤s for all s ≥ 0.

Proof. We prove the independence of increments first, as this immediately implies
that N is a Markov process—in fact, not only does it say that Ns+t given Ns is
independent of the history (Nu)u≤s, but also that Ns+t −Ns is independent of Ns.

To this end, let Mt := Ns+t − Ns for t ≥ 0. Let S and T denote the jump and
holding times for N , respectively; define S′ and T ′ similarly. Let i ≥ 0 and condition
on {Ns = i}. Then, the following relations hold:

S′k = Si+k − s for all k ≥ 1;

T ′1 = Ti+1 − (s− Si) and T ′k = Ti+k for all k ≥ 2.

Now, by the memoryless property and the fact that

{Ns = i} = {Si ≤ s} ∩ {Si+1 > s} = {Si ≤ s} ∩ {Ti+1 > s− Si},

the law (T ′1 | Xs = i) ∼ Exp(λ). Moreover, the times (T ′k)k≥2 are independent of
(T ′k)k≤i, and hence of (Nu)u≤s. This proves the independence of increments.

Stationarity of increments also follows from the above argument, along with the
fact that the times (T ′k)k≥2 are Exp(λ)-s, by definition. So, (Mt)t≥0 ∼ (Nt)t≥0.

We now prove that N is indeed a PP(λ). We must show that

pi,j(t+ δ) = pi,j(t) + δλ1{j = i+ 1}+ o(δ) as δ → 0. (?)

Using stationarity of increments and the cdf of T1, T2 ∼iid Exp(λ), the following hold:

P{Nt+δ = Nt | Nt = i} = P{Nδ = 0} = P{T1 > δ} = e−λδ = 1− λδ + o(δ);

P{Nt+δ ≥ Nt + 1 | Nt = i} = P{Nδ ≥ 1} = P{T1 ≤ δ} = 1− e−λδ = λδ + o(δ);

P{Nt+δ ≥ Nt + 2 | Nt = i} = P{T1 + T2 ≤ δ}
≤ P{T1 ≤ δ}P{T2 ≤ δ} = (1− e−λδ)2 = o(δ).

This verifies (?), since {Nt+δ −Nt = 1} = {Nt+δ −Nt ≥ 1} \ {Nt+δ −Nt ≥ 2}.

We now show that Nt ∼ Pois(λt), which is what gives the name “Poisson”. This
gives us an opportunity to practice using the KDEs, and solving the resulting DE.

Proposition 2.1.3. The transition probabilities (P (t))t≥0 of (Nt)t≥0 ∼ PP(λ) are

pi,j(t) = (λt)j−ie−λt/(j − i)! · 1{j ≥ i} for all i, j ∈ N and t ≥ 0.

In particular, Nt −N0 ∼ Pois(λt) for all t ≥ 0.
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Proof. The lower triangle of the matrix P (t) vanishes because i → j if and only if
j > i. Thus, pi,j(t) = 0 whenever j < i. On the other hand, the transition rates are
translation invariant, so pi,j(t) depends on (i, j) through j − i only. Hence,

P (t) =


Φ0(t) Φ1(t) Φ2(t) · · ·

0 Φ0(t) Φ1(t) · · ·
0 0 Φ0(t) · · ·
...

...
...

. . .

 where Φk(t) := p0,k(t).

The KFDE—ie, P ′(t) = QP (t) with P0 = I—becomes{
Φ′0(t) = −λΦ0(t) with Φ0(0) = 1,

Φ′k(t) = −λΦk(t) + λΦk−1(t) with Φk(0) = 0 for k ≥ 1.

We can solve this inductively. First, clearly, Φ0(t) = e−λt. Next, using the method
of integrating factors, we write the equation for k ≥ 1 as

d
dt

(
eλtΦk(t)

)
= eλtλΦk−1(t) with Φk(0) = 0.

Integrating both sides, we obtain the recurrence relation

Φk(t) = λe−λt
∫ t

0
eλsΦk−1(s)ds for k ≥ 1 with Φ0(t) = e−λt.

Eg,

Φ1(t) = λe−λt
∫ t

0
eλsΦ0(s)ds = λe−λt

∫ t
0

1ds = λte−λt.

The claimed formula can then be verified by induction on k ≥ 0.

Exercise 2.1.4. Verify that the KBDE is satisfied by this solution.

The above proposition says that the number of jumps made by a PP(λ) in time
t is Pois(λt). The ‘inverse problem’ is to determine at what time the n-th jump is
made. The next proposition shows that this time is Γ-distributed.

Proposition 2.1.5. Let T1, T2, ... ∼iid Exp(λ). Then, for all n ≥ 1, the sum T1 + ...+
Tn ∼ Γ(λ, n)—ie, it is a non-negative, continuous random variable with pdf

t 7→ λ(λt)n−1e−λt/(n− 1)!.

Proof (Exercise). This can be proved by induction using the convolution formula for
the pdf of the sum of independent random variables. Alternatively, it can be proved
by computing the mgf of the independent sum T1 + ...+Tn and of the given pdf.
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The independence of increments and Poisson distribution just proved will be of
fundamental importance. We restate them in their own theorem for ease of reference.

Theorem 2.1.6 (Independent, Poisson-Distributed Increments of a Poisson Process). If
N ∼ PP(λ), then the increment Nt+s−Nt ∼ Pois(λs) and is independent of (Nu)u≤t.

2.1.2 Further Properties

The Markov property says that ((Xs+t)t≥0 | Xs = i) ∼ ((Xt)t≥0 | X0 = i) for
deterministic s, t ≥ 0, in the time-homogeneous set-up. The strong Markov property
extended this to allow t to be a stopping time under certain regularity conditions.

Recall from Definition 1.2.3 that a random time T is a stopping time forX if {T ≤
t} depends only on (Xs)s≤t for all t ≥ 0. Informally, a random time T is a stopping
time if its occurrence (or not) by time t can be determined only by information
available up to time t. Typically, it will be the “time that an event happens”. Eg,
it may be the “time of the first jump” or the “time that a process first crosses a
threshold”. The “time of the last jump before s” is not a stopping time, though: this
cannot be determined by the information up until time t if t < s; it is not known
whether another jump happens in the interval (t, s).

The Poisson process is a Markov chain which satisfies the appropriate regularity
conditions for the strong Markov property to hold.

Theorem 2.1.7 (Strong Poisson Increments). Let N ∼ PP(λ). Let T be a stopping
time for N . Then, conditional on T <∞, the process (NT+t−NT )t≥0 ∼ PP(λ) and
is independent of (Ns)s≤T .

We now give an example of data which can be modelled via a Poisson process.

Example 2.1.8 (Coal-Mining Disasters in the UK). Consider the specific decade 1933–
1942 in the plot of coal-mining disasters illustrated by Figure 2.2, taken from Jar-
rett [Jar79]. Do disasters cluster in time?

Reference to the generating dataset shows that there are 14 disasters in the decade
1933–1942 (outlined in red), which suggests that we estimate the rate λ for that decade
by λ := 14/10 = 1.4. Let us define, somewhat arbitrarily, a clustered incident as a
disaster which is followed by another disaster less than δ := 0.25 years later. Then,
we expect about λt(1−e−λδ) ≈ 4.1 clustered incidents in this period of length t = 10
years, on the basis of Poisson variation; see below for justification of this expression.
Data inspection shows that there are 5 clustered incidents, which is near enough to
the expected value to mean that it is not strong evidence of any clustering.

Considering the entire range, from 1851 to 1962, it is clear that it is unreasonable
to consider the intensity to be constant in time. A more sophisticated analysis, not

48



0

50

100

150

0 10000 20000 30000 40000
Days since 15 March 1851

C
um

ul
at

iv
e 

nu
m

be
r

of
 a

cc
id

en
ts

Figure 2.2. Cumulative numbers each year of coal-mining dis-
asters in the UK over the period 15 March 1851 to 22 March
1962, taken from [Jar79]. The portion bracketed by red vertical
lines highlights the decade 1933–42

taken in this course, is required.
The calculation of the expectation claimed above follows from Theorem 2.1.7.

If N ∼ PP(λ) describing the incidents and Sn is the time of the n-th incident, then
(NSn+s−NSn

)s≥0 ∼ PP(λ). Then, the probability that the n-th incident is clustered is

P{n-th incident is clustered} = P{T1 < δ} = P{Exp(λ) < δ} = 1− e−λδ.
Thus, the expected number E(Ct) of clustered incidents before time t is given by∑

n P{Sn ≤ t, Sn+1 − Sn ≤ δ} =
∑
n P{Sn ≤ t}(1− e−λδ).

Now, Nt is the number of incidents which happen by time t. So,

Nt =
∑
n 1{Sn ≤ t} and so E(Nt) =

∑
n P{Sn ≤ t}.

But, Nt ∼ Pois(λt), so E(Nt) = λt. Hence,

E(Ct) = λt(1− e−λδ). 4

The following theorem extends the previous increment-theorem to disjoint sets
that are deterministic, but not necessarily intervals.

Theorem 2.1.9 (Poisson Counts). Let N ∼ PP(λ). Let A and B be disjoint (meas-
urable) subsets of R+, of Lebesgue measure (‘size’) a and b respectively. Then, the
number N(A) of incidents counted by the process N in A has law Pois(λa) and,
moreover, N(A) and N(B) are independent.

Proof. We first show that N(A) ∼ Pois(λa). We prove this for sets of the form

A = ∪̇nk=1(sk, tk) where s1 < t1 < s2 < t2 < ... < sn < tn.
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t

Figure 2.3. Illustration of Poisson counts

More general sets require measure theory that we do not cover here. We have

N(A) =
∑n
k=1N(sk, tk) =

∑n
k=1(Ntk −Nsk).

Now, Theorem 2.1.6 says that Ntk − Nsk ∼ Pois
(
λ(tk − sk)

)
independently of k.

Sums of independent Poisson random variables are Poisson, so N(A) is also Poisson-
distributed. Its mean is

∑n
k=1 λ(tk − sk) = λa. Hence, N(A) ∼ Pois(λa).

Independence also follows from this proof, for sets which are unions of intervals.
Indeed, Ntk −Nsk is independent of (Nu)u≤sk , by Theorem 2.1.6, and of (Nu)u>tk ,
trivially. So, the number of arrivals in disjoint intervals is independent.

Example 2.1.10. Consider the hatched regions in Figure 2.3, making up A. Cross-
marks × indicate individual Poisson counts. Here, N(A) = 2. 4

The following two theorems describe superposition of (‘adding together’) Poisson
processes and thinning of (‘removing arrivals from’) Poisson process.

Theorem 2.1.11 (Superposition of Poisson Processes). If N ∼ PP(λ) and M ∼ PP(µ)
independently, then N +M := (Nt +Mt)t≥0 ∼ PP(λ+ µ).

Proof. The main part of the work lies in showing the Markov property. Let A and
B be arbitrary events depending only on (Nu)u≤s and (Mu)u≤s, respectively. The
Markov property follows if (Ns+t +Ms+t)− (Ns +Ms) is independent of A and B.

By independence of N and M first, then independence of increments second,

P{Ns+t −Ns = i, Ms+t −Ms = j | A, B}
= P{Ns+t −Ns = i | A}P{Ms+t −Ms = j | B} = P{Nt = i}P{Mt = j}.

Now, summing over (i, j) such that i+ j = k, we obtain

P{(Nt+s +Mt+s)− (Nt +Mt) = k | A ∩B} =
∑

(i,j):i+j=k P{Nt = i}P{Mt = j}.
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This does not depend on (A,B), which establishes the Markov property—in fact, it
establishes stationary and independent increments.

We now use the infinitesimal definition of a PP to to determine the rates:

P{(Nt+δ +Mt+δ)− (Nt +Mt) = 0}
= P{Nt+δ −Nt = 0, Mt+δ −Mt = 0} = P{Nδ = 0}P{Mδ = 0}
=
(
1− λδ + o(δ)

)(
1− µδ + o(δ)

)
= 1− (λ+ µ)δ + o(δ);

P{(Nt+δ +Mt+δ)− (Nt +Mt) = 1}
= P{Nt+δ −Nt = 1, Mt+δ −Mt = 0}+ P{Nt+δ −Nt = 0, Mt+δ −Mt = 1}
=
(
λδ + o(δ)

)(
1− µδ + o(δ)

)
+
(
µδ + o(δ)

)(
1− λδ + o(δ)

)
= (λ+ µ)δ + o(δ).

Hence, the rates are qi,j = 1{j = i+ 1}, as required.

Theorem 2.1.12 (Poisson Thinning). If N ∼ PP(λ) and it is thinned by independent
removal of events with probability 1−p, for some p ∈ (0, 1), then the thinned process
M ∼ PP(pλ), counting the remaining incidents. Also, N − M ∼ PP((1 − p)λ).
Moreover, M and N −M are independent.

Proof. Let T be the holding times of N . Let B1, B2, ... ∼iid Bern(p). Let K1,K2, ...
be the indices of successive 1-s in the sequence of 0-s and 1-s generated by the B-s:

K0 := 0 and Km := min{m > Kn−1 |Mm = 1} for m ≥ 1.

The K1,K2, ... are themselves random variables. Then, the holding times T ′ of M are

T ′n :=
∑Kn

m=Kn−1+1 Tm.

The theorem then follows from the jump-chain construction in Theorem 2.1.2 if we can
show that the new holding times T ′ are in fact independent Exp(pλ) random variables.

Their mutual independence follows easily: T ′n and T ′n′ depend on disjoint sets of
Tm-s if n 6= n′; hence, they are independent.

We now show that T ′n ∼ Exp(pλ). T ′n is a sum over Zn := Kn − Kn−1 random
variables Tm (m ∈ {Kn−1 + 1, ...,Kn}). Now, Zn is defined in terms of M , so is
independent of S. Moreover, Zn ∼ Geom1(p):

P{Zn = k} = (1− p)k−1p for k ∈ {1, 2, ...}.
It is left as an exercise to deduce that T ′n ∼ Exp(pλ). The easiest way is via mgfs:

E
(
exT

′
n
)

= E
(
E
(
e
x
∑

Kn−1<m≤Kn
Tm | Zn

))
= E

(
E
(
exT1

)
Zn
)

for all x ∈ R.

One can also directly compute the distribution using Proposition 2.1.5 or use the
memoryless property for the T -s to deduce that T ′n has the memoryless property,
which gives the Exponential distribution, then find the mean.
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Now that we have shownM ∼ PP(pλ), it is immediate, analogously, thatN−M ∼
PP((1− p)λ) since N −M is a thinning on N with probability 1− p.

It remains to prove that M and N−M are independent. Both processes are right-
continuous and increasing, so it suffices to check that the finite-dimensional marginals
are independent: ie, that

P{Mt1 = m1, ...,Mtk = mk, Nt1 −Mt1 = n1, ..., Ntk −Mtk = nk}
= P{Mt1 = m1, ...,Mtk = mk}P{Nt1 −Mt1 = n1, ..., Ntk −Mtk = nk}

whenever t1 ≤ ... ≤ tk, m1 ≤ ... ≤ mk and n1 ≤ ... ≤ nk.

We only show this for k = 1, but the general case follows similarly. First, observe that

{Mt = m,Nt −Mt = m} = {Nt = n+m,Mt = m}.

This event happens if and only if there are n + m arrivals in the full process and
precisely m of them are retained—ie, m of the B1, ..., Bn+m ∈ {0, 1} are equal to 1,
or, equivalently, B1 + ... + Bn+m = m. Now, Nt ∼ Pois(λt) and B1 + ... + Bn+m ∼
Bin(n + m, p). Hence, using the pdf of the Poisson and Binomial distributions and
the independence of the B`-s from Nt, we have

P{Mt = m,Nt −Mt = m} = P{Nt = n+m,Mt = m}

= e−λt
(λt)n+m

(n+m)!
·
(
n+m

m

)
pm(1− p)n

=
(
e−pλt(pλt)m/m!

)
·
(
e−(1−p)λt((1− p)λt)n/n!

)
= P{Mt = m}P{Nt −Mt = m},

sinceMt ∼ Pois(pλt) andNt−Mt ∼ Pois((1−p)λt). This shows thatMt andNt−Mt

are independent for all t.

Exercise 2.1.13. Show that the thinned process M from the previous theorem is a
PP(λp) via the infinitesimal definition of a Poisson process.

Example 2.1.14. Customers arrive at a refreshment stall according to a Poisson
process of rate 2 per minute. Each individual customer, independently of everything
else, wants a cup of tea with probability 1

4 , wanting a cup of coffee otherwise. Thus,
the system of arrivals wanting tea is obtained by independent thinning of a Poisson
process of rate λ = 2 using retention probability p = 1

4 .
Theorem 2.1.12 shows that these arrivals form a Poisson process of rate pλ = 1

2
per minute. Similarly, the system of arrivals wanting coffee forms a Poisson process
of rate 3

2 . Further, the tea- and coffee-arrival processes are actually independent. 4
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2.1.3 A Brief Return to Instantaneous Transition Rates

Poisson thinning and superposition was briefly hinted at as far back as §1.3, albeit in
disguise. There, we discussed ways of sampling continuous-time Markov chains.

� The most basic approach was to sample T ∼ Exp(qi) and J ∼ (qi,j)j∈I\{i}.

� The more refined approach was to sample Tj ∼ Exp(qi,j) for each j ∈ I \ {i},
then set T := minj Tj and J := arg minj Tj , so T = TJ .

� In either case, Xt := i for t < T and XT := J .

Competition of exponentials (Lemma 1.3.10) established the equivalence of these.

We now frame this in the manner of (thinned/superimposed) Poisson processes.
A discrete-time Markov chain can be seen as following a set of (random) instructions:

� every state has an infinite stack of (random) cards with instructions on them;
� upon arriving at a state, the next card is looked at to see where to jump next.

A continuous-time chain could be viewed similarly:

� when at state i, it waits Exp(qi) to turn over the next instruction;
� alternatively, instructions arrive as PP(qi) and are read upon arrival.

This alternative is better than the first, but there is an even better way:

� cards with instruction “jump to j” arrive as independent PP(qi,j)-s for each j.

This means that the instruction “jump to j” is arriving to i at rate qi,j . Hence, the
continuous-time Markov chain at i “attempts to jump (from i) to j at rate qi,j”.

All this fundamentally boils down to the fact that if T1, T2, ... ∼iid Exp(λ) and

N ∼ Geom1(p) independently, then
∑N
n=1 Tn ∼ Exp(pλ).

2.2 Birth Processes

Birth processes are processes on N∪{∞} where only positive jumps are permitted—
ie, they are counting processes. These simplest of these is the Poisson process, just
discussed, where the birth rate is constant. Next, we study pure-birth processes, where
the jump rate is allowed to vary from state to state.

2.2.1 Pure-Birth Processes

We start with the precise definition of a pure-birth process.
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Definition 2.2.1 (Pure-Birth Process). A continuous-time Markov chain taking values
in N ∪ {∞} is a pure-birth process with rates λ = (λi)i≥0, abbreviated PBP(λ), if its
only non-zero transition rates are

qi,i+1 = λi for all i ∈ N.

Its instantaneous transition-rates matrix is given by

Q =


−λ0 λ0 0 0 · · · · · ·

0 −λ1 λ1 0 · · · · · ·
...

...
. . .

. . . · · · · · ·
...

...
. . .

. . . · · · · · ·

 . 4

This definition is identical to that for Poisson processes, except that the jump-rate
is allowed to depend on the location and we allow ∞ ∈ I.

Remark. We take the state space to be I = N ∪ {∞}. However, it is sometimes
natural to exclude 0 and start from X0 = 1—ie, one individual alive. In particular,
when λ0 = 0, starting from X0 > 0 is necessary to get a non-trivial process—ie, one
which does not remain at 0 forever. Eg, a population cannot grow if it has 0 members.

We include∞ ∈ I as it is possible for the chain to reach∞ in a finite time. Eg, if
qi = 2i, then the expected time to transition i→ i+1 is 2−i. Thus, the expected time
to transition 0→ n is

∑n−1
i=0 2−i = 2− 2−n+1 < 2. So, the chain reaches∞ in 2 units

of time, in expectation. This is a phenomenon called explosion. We discuss it more
later, but was already mentioned when discussing the strong Markov property. 4

Exercise 2.2.2. Cosmic rays arrive at atmosphere top at height y km and with
vertical velocity v km/s. They collide with atmosphere molecules occasionally as
they fall and give birth to other particles; this happens at rate α Hz (per second).
These, in turn, collide and give birth. All particles travel with constant vertical
velocity v km/s.

Assume that X0 particles arrive simultaneously at atmosphere top at time 0 and
set the number of particles at t seconds to be Xt. Show that X = (Xt)t≥0 forms a
pure-birth process and find its rates.

Pure-birth processes can be constructed via exponentials, as for Poisson processes.

Theorem 2.2.3. Let Tn ∼ Exp(λn−1) independently for all n ≥ 1. Let m ∈ N. Set

Xt :=

{
m if t < Tm+1,

n if Tm+1 + ...+ Tn ≤ t < Tm+1 + ...+ Tn+1.
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Figure 2.4. Cosmic rays’ arriving at atmosphere top, colliding
occasionally with molecules to give rise to further cosmic rays

Then, X is a pure-birth process with rates λ = (λn−1)n≥1 started from X0 = m.

Proof. The proof of this theorem is very similar to that for the jump-chain construc-
tion of a Poisson process, Theorem 2.1.2. We just need to check the rates. The rates
which were 0 before are still 0: the process only jumps +1, so cannot go down, and
the chance of having two jumps in time δ is o(δ). For n ≥ 1,

P{Xt+δ −Xt ≥ 1 | Xt = n} = P{Xδ ≥ 1 | X0 = n} = P{Tn ≤ δ} = λδ + o(δ).

Corollary 2.2.4. The holding times (Tn)n≥1 of a pure-birth process with rates λ =
(λn−1)n≥1 are independent and have law Tn ∼ Exp(λn−1) for all n ≥ 1.

Several of the properties of Poisson processes also hold for general pure-birth
processes. The following theorem generalises Theorem 2.1.6 for Poisson processes
and it can be proved in exactly the same way.

Theorem 2.2.5 (Strong/Markov Property). Let X ∼ PBP(λ). Then, conditional on
Xt = i, the process (Xt+s)s≥0 ∼ PBP(λ) starting from i and independent of (Xs)s≤t.
Moreover, the same holds if the deterministic time t is replaced by a stopping time T .

Exercise 2.2.6 (Hard!). Let X be a pure-birth process with rates λ = (λi)i≥0 such
that λi 6= λj whenever n 6= m. Show that

P0{Xt ≤ j} =
∑

k∈{0,...,j}

e−λkt
∏

`∈{0,...,j}\{k}

λ`
λ` − λk

.
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Figure 2.5. Illustration of explosion for a pure-birth process

2.2.2 Explosion

An interesting phenomenon in continuous-time Markov chains is the possibility for
the process to explode. We describe this in the set-up of pure-birth processes.

Definition 2.2.7 (Explosion). Let X be a pure-birth process with rates (λn−1)n≥1

and holding times (Tn)n≥1. Let Sn :=
∑n
m=1 Tm, the time of the n-th jump. Define

ζ := limn↑∞ Sn =
∑
n≥1 Tn.

If ζ < ∞, then we say that the pure-birth process has exploded ; ζ is the random
explosion time—ie, the time at which the chain reaches ∞. 4

Figure 2.5 illustrates explosion. We are interested in the probability of explosion—
ie, P{ζ <∞}. It turns out that {ζ <∞} is a 0–1 event.

Theorem 2.2.8 (Explosion Dichotomy; [Nor97, Theorem 2.3.2]). Let (Tn)n≥1 be a
sequence if independent random variables with Tn ∼ Exp(λn−1) where λn−1 ∈ (0,∞)
for all n. Recall that ζ =

∑
n≥1 Tn. Then, the following explosion dichotomy holds:∑

n≥1 1/λn−1 <∞ =⇒ P{ζ <∞} = 1;∑
n≥1 1/λn−1 =∞ =⇒ P{ζ =∞} = 1.

We now rephrase this in terms of explosion for pure-birth processes.

Corollary 2.2.9. Let X ∼ PBP
(
(λn−1)n≥1

)
. Then, with probability 1, the process
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explodes if
∑
n≥1 1/λn <∞; otherwise, with probability 1, it does not explode.

Example 2.2.10. If λn−1 = nλ for some λ > 0—this is the simple birth process and is
discussed in the next section—then, with probability 1, the process does not explode.

If λn−1 = n2λ for some λ > 0, then, with probability 1, the process explodes. 4

Remark. The possibility of explosion is the reason why we include ∞ in the state
space. It was not included for Poisson processes, but there λn−1 = λ for all n, so∑
n≥1 1/λ =∞, and hence there is no explosion. It is possible to avoid including∞,

but then the transition-probability matrix P (t) becomes sub-stochastic: its rows sum
to at most 1, the difference to 1 being the probability of “escaping to ∞”. 4

2.2.3 Simple Birth Processes

We now focus on linear birth processes: those whose transition rates depend linearly
on the current state. The simplest of them is the following.

Definition 2.2.11 (Simple Birth Process, aka Yule Process). A pure-birth process with
rates λn = nλ for some λ > 0 is called a simple birth process, abbreviated SBP(λ),
or a Yule process, with parameter λ, if its only non-zero transition rates are

qi,i+1 = λi for all i ∈ I.

Its instantaneous transition-rates matrix Q is given by

Q =



0 0 0 0 · · · · · ·
0 −λ λ 0 · · · · · ·
0 0 −2λ 2λ · · · · · ·
...

...
. . .

. . . · · · · · ·
...

...
. . .

. . . · · · · · ·

 . 4

We showed previously that the minimum of Exponential random variables is Ex-
ponentially distributed. This allows us to construct a SBP in an alternative manner.

Lemma 2.2.12 (Alternative Construction of SBP). Consider bacteria in a colony.
Assign to each bacterium an independent Exp(λ) splitting timer:

� when this timer ‘rings’, the bacterium splits into two new bacteria;
� each is assigned a new, independent Exp(λ) timer.

Let Xt count the number of bacteria in the colony at time t. Then, X ∼ SBP(λ).

Proof. We can take λ := 1 for simplicity without loss of generality.
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Suppose that a jump happens at time t, and Xt = n. Then, there are n bacteria,
each with an independent Exp(1) timer. Some of the timers have already been running
for an unknown length of time. However, the memoryless property of the Exponential
distribution implies that the time until they ring is an independent Exp(1). Hence, the
time until the first rings is the minimum of these n iid Exp(1)-s, which is distributed
as Exp(n). Moreover, the jump times are independent. So, X ∼ SBP(1).

Analogously, if we suppose that Xt = n, and that the previous jump-time was at
s < t, then we can again apply the memoryless property at time t to deduce that the
time until the next jump is the minimum of iid Exponentials.

A superposition result, analogous to that for PPs (Theorem 2.1.11), holds for SBPs.

Theorem 2.2.13 (Superposition of Simple Birth Processes). If Y,Z ∼iid SBP(λ), then
X = (Xt := Yt + Zt)t≥0 ∼ SBP(λ) with X0 = Y0 + Z0.

The independent-evolution construction gives an intuitive proof.

Proof: Intuitive. We prove this for Y0 = 1 = Z0; the proof generalises easily (exer-
cise). Lemma 2.2.12 implies that a SBP(λ) can be viewed as independent evolution of
bacteria. This way, if we start with two bacteria, then we can evolve their processes—
namely, the time at which they split, then the time at which their children split,
etc—independently. Each is a SBP(λ) started with one individual. Looking at the
processes combined takes us back to a SBP(λ) with two initial bacteria.

The proof for PPs (Theorem 2.1.11) can also be followed, but it is less informative.

Proof: Technical. The proof of the Markov property follows that for PPs (The-
orem 2.1.11). We just need to check the rates. Remember that a birth process is
increasing, so Xt = X0 implies Yt = Y0 and Zt = Z0. Thus,

Pr{Xt = X0} = P{Yt = Y0, Zt = Z0 | X0 = r}
=
∑r
k=0 P{Yt = Y0, Zt = Z0 | Y0 = k, Z0 = r − k}P{Y0 = k | X0 = k}

=
∑r
k=0 Pk{Yt = Y0}Pr−k{Zt = Z0}P{Y0 = k | X0 = r}

=
∑r
k=0 e

−λtke−λt(r−k)P{Y0 = k | X0 = r} = e−λrt.

Hence, qr,r = d
dte
−λrt

∣∣
t=0

= −λr. But,X makes jumps of unit size: two jumps in time

δ has order δ2 probability. Thus, qr,s = 0 if s /∈ {r, r+1} and qr,r+1 = −qr,r = λr.

The next couple of results are not needed later, but rather are examples of how
to perform calculations with the SBP. First, we look at the mean and variance.
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Lemma 2.2.14 (Mean and Variance of Simple Birth Process). Let X ∼ SBP(λ) for
some λ > 0. Find a differential equation satisfied by µk(t) := E1(Xk

t ) for t ≥ 0 and
k ∈ {1, 2}. Solve these and deduce expressions for the mean and variance of Xt:

E1(Xt) = eλt and Var1(Xt) = e2λt − eλt.

Proof. We take λ := 1 without loss of generality: replacing t by tλ at the end retrieves
the general-λ statement. Also, we abbreviate pn(t) := p1,n(t).

We start with µ1(t) = E1(Xt) =
∑
n≥1 npn(t). Using the KFDEs,

µ′1(t) =
∑
n≥1 np

′
n(t)

=
∑
n≥1 n

(
(n− 1)pn−1(t)− npn(t)

)
=
∑
n≥1

(
(n− 1)2pn−1(t)− n2pn(t) + (n− 1)pn−1(t)

)
=
∑
n≥1(n− 1)pn−1(t) =

∑
n≥1 npn(t) = µ1(t),

where we wrote n = (n− 1) + 1 and used an index shift, and p1,0(t) = 0, to cancel∑
n≥1

(
(n− 1)2pn−1(t)− n2pn(t)

)
= 0.

Solving this simple differential equation, using µ1(0) = 1, gives the mean:

E1(Xt) = µ1(t) = et.

This exponential increase with rate 1 is natural when viewed in the independent-
reproductive manner of Lemma 2.2.12. Each member of the population is reproducing
at constant rate λ. So, the rate of increase of the population is equal to the current
population: µ′1(t) = λµ(t); hence, µ1(t) = eλt.

We now turn to µ2(t) = E1(X2
t ) =

∑
n≥1 n

2pn(t). The same ideas give

µ′2(t) =
∑
n≥1 n

2p′1,n(t)

=
∑
n≥1 n

2
(
(n− 1)pn−1(t)− npn(t)

)
=
∑
n≥1

(
(n− 1)3pn−1(t)− n3pn(t) + 2(n− 1)2pn−1(t) + (n− 1)pn−1(t)

)
= 2µ2(t) + µ1(t).

Solving this, after inputting µ1(t) = et, gives

µ2(t) = 2e2t − et.

Finally, we combine µ2 and µ1 to find the variance:

Var1(Xt) = µ2(t)− µ1(t)2 = (2e2t − et)− (et)2 = e2t − et.
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We can find the transition probabilities of a simple birth process using the KDEs.

Proposition 2.2.15. The transition probabilities of SBP(λ) are given by

pm,n(t) =


(
n−1
m−1

)
e−λmt(1− e−λt)n−m if 0 ≤ m < n,

1 if m = n = 0,

0 if otherwise.

Proof: Technical. First, clearly, 0 is an absorbing state and m 6→ n if m > n. Thus,
the transition-probabilities matrix P (t) can be written as

P (t) =


1 0 0 0 · · ·
0 p1,1(t) p1,2(t) p1,3(t) · · ·
0 0 p2,2(t) p2,3(t) · · ·
...

...
...

...
. . .

 .

Then, the KFDE lead to the following equations for pm,n:

d
dtpm,m(t) = −λmpm,m(t) with pm,m(0) = 1;
d
dtpm,n(t) = −λnpm,n(t) + λ(n− 1)pm,n−1(t) with pm,n(0) = 0 for n > m.

The first line is straight-forward to solve:

pm,m(t) = e−λmt using pm,m(0) = 1.

The method of integrating factors gives a recurrence relation for the second line:

d
dt

(
eλntpm,n(t)

)
= eλnt

(
d
dtpm,n(t) + λnpm,n(t)

)
= λ(n− 1)eλntpm,n−1(t),

so,

eλntpm,n(t) = λ(n− 1)
∫ t

0
eλnspm,n−1(s)ds.

We now use induction to establish the claimed form of pm,n(t). Indeed, by hypothesis,

pm,n(t) = λ(n− 1)e−λnt
∫ t

0
eλnspm,n−1(s)ds

= λ(n− 1)e−λnt
∫ t

0
eλns

(
n−2
m−1

)
e−λms(1− e−λs)n−1−mds

= λ(n− 1)e−λnt
(
n−2
m−1

) ∫ t
0
eλs(eλs − 1)n−1−mds

= λ(n− 1)e−λnt
(
n− 2

m− 1

)
(eλt − 1)n−m

λ(n−m)

=
n− 1

n−m

(
n− 2

m− 1

)
· e−λnt(eλt − 1)n−m

=
(
n−1
m−1

)
e−λmt(1− eλt)n−m.
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The above proof used induction: this requires knowing, or guessing, the final an-
swer already. This is somewhat unsatisfactory. We now give a direct proof of Propos-
ition 2.2.15, based on intuitive probabilistic arguments, rather than technical details.

Proof: Intuitive. First, we analyse casem = 1—ie, starting with 1 individual. We will
then use the superposition theorem (Theorem 2.2.13) to deduce Proposition 2.2.15.
As always, by homogeneity, there is no loss of generality if we assume that λ = 1.

Let X ∼ SBP(1) with X0 = 1. Let Hn−1 := inf{t ≥ 0 | Xt = n}. Then,

Hn−1 = T1 + ...+ Tn−1 where Tm ∼ Exp(m) independently.

Now, we must determine the law of Hn−1. We claim that

Hn−1 ∼ max{S1, ..., Sn−1} where S1, ..., Sn−1 ∼iid Exp(1).

This has an intuitive proof. Consider n−1 independent Exp(1) timers, S1, ..., Sn−1 ∼iid

Exp(1). Then, the time until the first timer rings is min{S1, ..., Sn−1} ∼ Exp(n− 1).
Once this has rung, the time until the next ring is an independent Exp(n − 2), by
the memoryless property. In general, the time between the k-th and (k + 1)-th is an
independent Exp(n− 1− k). Hence, the time of the last ring is an independent sum

max{S1, ..., Sn−1} ∼ Exp(n− 1) + ...+ Exp(1) ∼ Tn−1 + ...+ T1 = Hn−1.

Lemma 2.2.18 below extends this result. Using this representation of Hn−1,

P1{Xt ≥ n} = P{Hn−1 ≤ t} = P{max{T ′1, ..., T ′n−1} ≤ t}
= P{Exp(λ) ≤ t}n−1 = (1− e−λt)n−1.

We can now find p1,n(t):

p1,n(t) = P1{Xt = n} = P1{Xt ≥ n} − P1{Xt ≥ n+ 1} = e−t(1− e−t)n−1.

In particular, (Xt | X0 = 1) ∼ Geom1(e−t). Another method for showing this, going
via mgfs, is given in Example Sheet 3; there, the mean and variance are also found.

The superposition theorem (Theorem 2.2.13) says that

Xt ∼
∑m
i=1X

(i)
t where X ∼ SBPm(1) and X(1), ..., X(m) ∼iid SBP1(1),

where the subscript indicates the initial value, as usual. We have just proved that

X
(i)
t ∼ Geom1(e−t). It is well known that a sum of independent Geometric random

variables with the same parameter follows the Negative Binomial distribution, which
has pmf as in Proposition 2.2.15. This completes the proof.
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Exercise 2.2.16. Show that a sum of iid Geometrics has the Negative Binomial
distribution. That is, suppose that X1, ..., Xm ∼iid Geom1(p), for some p ∈ (0, 1).
Show that

P{∑m
i=1Xi = n} =

(
n−1
m−1

)
pm(1− p)n−m.

This exercise is typically proved by induction or by calculating the mgf of the
sum and of the given pdf. Either proof requires knowing, or guessing, the desired for-
mula, which is not particularly satisfying. However, this is a classical result regarding
independent sums of standard random variables.

The formula can also be derived directly using a convolution, starting with a few
base cases, then guessing the (relatively simple) formula.

Corollary 2.2.17 (Memoryless Property of the Simple Birth Process). X ∼ SBP(λ)
with X0 = 1 satisfies the discrete memoryless property: for all m,n ≥ 0 and all t ≥ 0,

P1{Xt ≥ 1 +m+ n | Xt ≥ 1 +m} = P1{Xt ≥ 1 + n}.

Proof. This is an immediate consequence of the fact that (Xt | X0 = 1) is Geomet-
rically distributed. Indeed, if X ∼ Geom1(p)—eg, with p = e−λt—then

P{X ≥ 1 +m+ n | X ≥ 1 +m}

=
P{X ≥ 1 +m+ n}
P{X ≥ 1 +m} =

(1− p)m+n

(1− p)m = (1− p)n = P{X ≥ 1 + n}.

During the proof that (Xt | X0 = 1) ∼ Geom1(e−λt) we found the law of the
independent sum Exp(1) + ...+ Exp(n− 1). We now extend this, as promised there.

Lemma 2.2.18. Let T1, ..., Tn be independent with Tm ∼ Exp(m) for each m. Let
S1, ..., Sn ∼iid Exp(1). Then,

(Tn, Tn + Tn−1, ..., Tn + ...+ T1) are the order statistics2of (S1, ..., Sn).

Proof. We are going to use the memoryless property repeatedly.
By competition of Exponentials (Lemma 1.3.10), min{S1, ..., Sn} ∼ Exp(n). Give

n objects an independent Exp(1) timer. Then, Tn ∼ Exp(n) ∼ min{S1, ..., Sn}.
Suppose that I1 := arg mini Si is the first timer to ring—ie, SI1 = min{S1, ..., Sn}.

We wait for the second to ring: I2 := arg mini 6=I1 Si. Then, SI2 = mini6=I1 Si is the
minimum over n− 1 Exp(1) random variables each conditioned to be larger than SI1 .
But, by the memoryless property, we can remove this conditioning by shifting by SI1 :
SI2 ∼ SI1 + En−1 where En−1 ∼ Exp(n− 1) is an independent random variable.

2The order statistics of a sequence (s1, ..., sn) is simply the sequence written in increasing order
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Iterating this shows that the k-th smallest element of {S1, ..., Sn} is distributed
as En + ...+ En−k+1 where Em ∼ Exp(m) independently, as required.

We emphasise that the ‘best’ way to find the transition probabilities pm,n(t) given
in Proposition 2.2.15 is to first find p1,n(t) using Lemma ??. Then, decompose an
SBP with initial state m > 1 into m independent SBPs with initial state 1. Finally,
find the pdf for the sum of m independent Geometric random variables.

Exercise 2.2.19. We found differential equations for µk(t) := E(Xk
t ) where X ∼

SBP1(λ) in Lemma 2.2.14. Another method for finding a differential equation for µ1

is given in [Nor97, Example 2.5.1]. It is very clever, not using the KFDEs, but rather
the superposition property. Read that method, then apply it to µ2 to obtain

µ′2(t) = µ2(t) + 2µ1(t)2.

Plug in the value of µ1(t) already found and solve this DE.

2.3 Linear Birth–Death Processes

Our final section on birth–death processes allows deaths, but restricts to linear rates.

Definition 2.3.1 (Linear Birth–Death Process). A continuous-time Markov chain tak-
ing values in N ∪ {∞} is a linear birth–death process with birth rate λ, death rate µ,
immigration rate α and emigration rate β, abbreviated LBDP(λ, µ;α, β), if its only
non-zero transition rates are

qi,i+1 = λi+ α and qi,i−1 = µi+ β for all i ∈ N.

We always require λ, µ, α, β ≥ 0. Its instantaneous transition-rates matrix is

Q =


−α α 0 0 · · ·
µ+ β −(µ+ λ)− (α+ β) λ+ α 0 · · ·

0 2µ+ β −2(µ+ λ)− (α+ β) 2λ+ α · · ·
...

...
...

. . .
. . .

 .

When α = β = 0, it is a simple birth–death process, abbreviated SBDP(λ, µ). 4

Remark. If the birth rate λ and death rate µ are non-zero, then the SBDP (α = β = 0)
has two communicating classes: {0}, corresponding to the absorbing state 0, and
{1, 2, ...}. If also α > 0, then the LBDP has only one communicating class. 4

There are some natural and important questions to ask.
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� What is the extinction probability?—ie, what is P{Xt = 0 for some t <∞}?
� Is there explosion?—and is explosion a 0–1 event, as with SBPs?

� Under what conditions does the population reach a stochastic equilibrium?

We give some answers to these questions in the remainder of the chapter.

Proposition 2.3.2 (Extinction). Let X = (Xt)t≥0 ∼ SBDP(λ, µ). Then,

Pk{Xt = 0 for some t <∞} =

{
1 if µ ≥ λ,
(µ/λ)k if µ ≤ λ.

Proof. Let X̂ = (X̂n)n≥0 be the jump chain of the SBDP. Its transition matrix is

Π =


1 0 0 0 · · ·
q 0 p 0 · · ·
0 q 0 p · · ·
...

...
...

. . .
. . .


where p = λ/(λ+ µ) and q = µ/(λ+ µ) = 1− p. Evidently,

{Xt = 0 for some t > 0, X0 = k} = {X̂n = 0 for some n > 0, X̂0 = k}.

The latter is the “Gambler’s Ruin” problem: the probability is min{(q/p)k, 1}. See
Example 0.5.3, or [Nor97, Example 1.3.3] for a more detailed exposition.

Next, we calculate the mgf of the SBDP using a clever argument; cf Exercise 2.2.19.

Lemma 2.3.3. Let X ∼ SBDP(λ, µ) with λ 6= µ. Its (negative) mgf is given by

φt(r) := E1(e−rXt) =
(µ− λe−r)− µ(1− e−r)e−(µ−λ)t

(µ− λe−r)− λ(1− e−r)e−(µ−λ)t
.

Proof. Let r > 0 and suppose that X0 = 1. Set ψr(t) := E1(e−rXt). The function ψr
is not the mgf: it is a function of time t, not the dummy variable r. Clearly, though,
if we solve it for any (r, t), then we easily construct the mgf via φt(r) = ψr(t).

Let T1 be the time of the first birth or death. Then, T1 ∼ Exp(λ + µ) as X0 = 1
and q1 = λ+ µ. Averaging over T1, using the (continuous) law of total probability,

ψr(t) =
∫∞

0
E1(e−rXt | T1 = s)(λ+ µ)e−(λ+µ)sds.

We consider two cases in the integral: s < t and s ≥ t.
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Suppose that s > t. This case is trivial as the first jump happens after time t:

E1(e−rXt | T1 = s) = e−r as {T1 = s} ⊆ {Xu = 1 ∀u ∈ [0, t]}.

Suppose that s ≤ t. We divide according to the first birth/death event: let

B := {first event is a birth} and D := Bc = {first event is a death}.

Then, Pk{B | T1 = s} = λ/(λ+ µ) for all k and s, by independence. Then,

X2 =

{
2 on {T1 = s} ∩B.
0 on {T1 = s} ∩D.

This, together with the Markov property applied at s, gives

E1(e−rXt | T1 = s) = E(e−rXt | Xs = 2)P{B}+ E(e−rXt | Xs = 0)P{D}
= E2(e−rXt−s) λ

λ+µ + µ
λ+µ .

Next, we use a superposition property analogous to Theorem 2.2.13 for SBP(λ):

if Y,Z ∼iid SBDP(λ, µ), then X = (Xt := Yt + Zt)t≥0 ∼ SBDP(λ, µ);

see Example Sheet 3. So, we can separate X into independent Y and Z when X0 = 2:

E2(e−rXt−s) = E(e−r(Yt−s+Zt−s) | Y0 = Z0 = 1)

= E1(e−rYt−s)E1(e−rZt−s) = ψr(t− s)2.

We now combine these two cases, using the substitution u = t− s:

ψr(t) =
∫∞
t

(λ+ µ)e−(λ+µ)se−rds

+
∫ t

0
(λ+ µ)e−(λ+µ)s

(
ψr(t− s)2 λ

λ+µ + µ
λ+µ

)
ds

= e−(λ+µ)t−r + e−(λ+µ)t
∫ t

0
e(λ+µ)u(µ+ λψr(u)2)du.

We turn this into a DE, then solve it. First, multiply both sides by e(λ+µ)t:

e(λ+µ)tψr(t) = e−r +
∫ t

0
e(λ+µ)u(µ+ λψr(u)2)du.

Differentiating both sides wrt t, using the Fundamental Theorem of Calculus, gives

e(λ+µ)t
(
(λ+ µ)ψr(t) + ψ′r(t)

)
= e(λ+µ)t

(
µ+ λψr(t)

2
)
.

Simplifying and rearranging gives

ψ′r(t) = µ− (λ+ µ)ψr(t) + λψr(t)
2 =

(
1− ψr(t)

)(
µ− λψr(t)

)
.
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Solving this DE with initial condition ψr(0) = e−r gives the result, as we now show.
This is a non-linear DE, so we cannot use the method of integrating factors to

solve it. Instead, partial fractions should be used when λ 6= µ:

ψ′ = (1− ψ)(µ− λψ) ⇐⇒ ψ′

1− ψ −
λψ′

µ− λψ = µ− λ.

Integrating both sides with respect to t and using ψ(0) = e−r,

log(1− ψ)− log(µ− λψ) = −(µ− λ)t+ log(1− e−r)− log(µ− λe−r).

Combining the logs and inverting them (ie, applying exp),

1− ψ
µ− λψ = e−(µ−λ)t 1− e−r

µ− λe−r .

Rearranging this gives the claimed formula (exercise).

Corollary 2.3.4 (cf Proposition 2.3.2). Let X ∼ SBDP(λ, µ) with λ 6= µ. Then,

lim
t→∞

P1{Xt = 0} =

{
1 if µ ≥ λ,
µ/λ if µ < λ.

Proof. First, suppose that λ 6= µ. We can write the mgf of X has

E1(e−rXt) = P1{Xt = 0}+
∑∞
k=1 e

−rkP1{Xt = k}.

Taking the limit r →∞, the infinite sum disappears:

0 ≤∑k≥1 e
−rkP1{Xt = k} ≤∑k≥1 e

−rk = e−r/(1− e−r)→ 0.

Thus, using this and the (negative) mgf formula (Lemma 2.3.3), we obtain

P1{Xt = 0} =
µ− µe−(µ−λ)t

µ− λe−(µ−λ)t
=
µ− µe−(λ−µ)t

λ− µe−(λ−µ)t
.

Taking t→∞ proves the claim for λ 6= µ: if µ > λ, then e−(µ−λ)t → 0; if µ < λ, then
e−(λ−µ)t → 0. The claim for λ = µ holds by monotonicity, squeezing λ−µ→ 0.3

Exercise 2.3.5. Solve the last DE in the proof of Lemma 2.3.3 when λ = µ = 1:

solve f ′(t) =
(
f(t)− 1

)2
for the function f.

Use it to find limt→∞ P1{Xt = 0} in this case, verifying Corollary 2.3.4 for λ = µ.

3Formally, a coupling is required. This is detailed in §4.3.4; see, particularly, Example 4.3.8
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3 Queueing Theory

This chapter introduces the vast area of queueing theory. We can think of a queue as
produced when a sequence of customers arrives at a system and wait to be served.
The inter-arrival times are typically random and the customers are served according
to some scheme: typically, this is “first in, first out”, abbreviated FIFO.

A queue is characterised by several components.

� Arrival process; often, a Poisson process

� Service time distribution; often, an Exponential distribution

� Number of servers; often, one

� Waiting capacity; often, infinite

� Queue scheme or discipline; often, FIFO

A common notation used to describe queues takes the form ·/··/···, such asM/M/1
or M/G/1, or sometimes ·/ · ·/ · · ·/ · · · ·, such as M/M/K1/K2. This notation encodes,
in sequence, the arrival process, the service process and the server characteristics.
The first letter describes the arrival process; eg, M stands for Markovian input or
memoryless inter-arrival times and G for general input. The second letter describes
the service process: eg,M stands for Markovian/memoryless andG for general service
time. The third symbol is an integer specifying the number of servers and the fourth an
integer specifying the capacity of the system; the fourth is assumed infinite if omitted.

The three most common examples are these.

� M/M/1: Markovian input and service times, one server and infinite capacity;

� M/M/K1/K2: Markovian input and service times, K1 servers and K2 capacity;

� M/G/1: Markovian input, general service time, one server and infinite capacity.

We study these three examples. We mainly consider equilibrium behaviour :

� Is there a limiting equilibrium? If so, what is the equilibrium distribution?
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� What are the values of various measures of effectiveness for these queues, such
as mean queue length, probability of an empty queue or mean waiting time?

Before proceeding with the formal introduction of queues, we introduce termino-
logy.

We typically denote the process by X = (Xt)t≥0. It is a birth–death chain: a
+1/−1 transition corresponds to the arrival/departure of a customer.

Inter-arrival time A: time between the arrivals of customers

Service time S: time from arrival at front of queue to departure from the system

Queue length X: the number of people waiting for service or being served—ie, the
number of people in the system. Queue length 1 means that 1 person is being
served and no-one is waiting for service

Queueing/waiting time Tq: time between a customer’s arrival and the start of their
service. If there is no-one in the system when they arrive, their queueing time is 0

Sojourn/total time Ts: entire time that the customer spends in the system—ie, the
sum of their queueing and service times

Caution. There is a small conflict in terminology here: the queue length does include
the person being served, but the queueing time does not include the service time.

3.1 The Single-Server Markovian Queue

This section is dedicated to the most fundamental queue: the M/M/1 queue.

Definition 3.1.1 (M/M/1 Queue). The M/M/1 queue is characterised as follows.

� Customers arrive according to a Poisson process of rate λ, for some λ > 0. That
is, the inter-arrival times of customers are independent Exp(λ)-s.

� Service times are independent, Exponentially distributed with rate µ, for some
µ > 0, and independent of the arrival process.

� Customers are served in order of arrival.

There is a single communicating class {0, 1, 2, ...} when λ, µ > 0. 4

Applying the results of the previous chapters gives the following theorem.

Theorem 3.1.2. The queue length X = (Xt)t≥0 is a birth–death chain with constant
birth rate λ and death rate µ. See Figure 3.1 for the corresponding state diagram.
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0 1 2 . . .

λ λ λ

µ µ µ

Figure 3.1. State diagram for M/M/1 queue

Proof. The proof follows the usual pattern. The jump times are Exponentially dis-
tributed and with constant rate—ie, their rate does not even depend on the current
state, never mind the history. So, the Markov property of the process X follows from
the memoryless property of the Exponential distribution. An arrival causes X to
increment +1 and a departure −1. Hence, qn,n+1 = λ and qn+1,n = µ for n ≥ 0.

The queue uses a FIFO discipline, but this is actually somewhat inconsequential.

Exercise 3.1.3. Consider two possible adjustments to the queue discipline.

1. When a customer enters the system, they join the back of the queue. When
they reach the front of the queue, if they are not served within the next 1 unit
of time, then they return to the back of the queue.

2. When a customer enters the system, they start their service immediately. If
a customer was already being served, then that customer is displaced, being
moved to second in the queue (ie, next to be served).

Show that both these adaptations lead to a queue length X with the M/M/1 law.

3.1.1 Limiting Behaviour

We now consider the limiting behaviour of an M/M/1 queue. In particular, we want
to understand when a limiting equilibrium exists and, if it does, what the equilibrium
distribution is. Recall from §1.4 that we must search for a distribution π which solves
the (global) balance equations πQ = 0—ie,

∑
j∈I πjqj,i = 0 for all i ∈ I. In the specific

case of an M/M/1 queue, this boils down to the following system of equations:

−λπ0 + µπ1 = 0; −(λ+ µ)πn + λπn−1 + µπn+1 = 0 for n ≥ 1.

Lemma 3.1.4. The number of customers in an M/M/1 queue has an equilibrium
distribution if and only if λ < µ. When λ < µ, this equilibrium distribution π
satisfies πn = ρn(1− ρ) for all n ≥ 0, where ρ = λ/µ < 1 is the utilisation (factor).
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Proof. The first balance equation gives π1 = (λ/µ)π0 = ρπ0. Plugging this into

−(λ+ µ)π1 + λπ0 + µπ2 = 0 gives µπ2 = (λ+ µ)λµπ0 − λπ0 = (λ2/µ)π0,

and so π2 = (λ/µ)2π0 = ρ2π0. We now guess πn = ρnπ0 for all n ≥ 0 and prove it by
induction. We have already verified the two base cases. By hypothesis,

µπn+1 = (λ+ µ)ρnπ0 − λρn−1π0 =
(
(λ+ µ)λµ − λ

)
ρn−1π0 = (λ2/µ)ρn−1π0,

and so πn+1 = (λ/µ)2ρn−1π0 = ρn+1π0, completing the induction.
This defines a distribution if and only if

∑
n≥0 ρ

n <∞—ie, ρ < 1. If ρ < 1, then

π0 = 1/
∑
n≥0 ρ

n = 1− ρ, so πn = ρn(1− ρ) for all n ≥ 0.

We also encountered the detailed balance equations in §1.4. These often make it
easier to find the invariant distribution. This is the case here.

Exercise 3.1.5. Use the detailed balance equations to prove Lemma 3.1.4.

Remark. It is interesting to note that the equilibrium distribution is Geometric:

πn = ρn(1− ρ) = P{Geom0(ρ) = n}.

Hence, the queue length in equilibrium has the discrete memoryless property: knowing
that the queue has length at least n does not tell you how much longer than n it is.

We see later in Burke’s theorem (Theorem 3.3.1) a rather stronger version of
this: in equilibrium, the departure process, measuring the times at which service is
completed, is also a Poisson process and is independent of the arrival process. In
particular, knowing how many customers have been served in a certain period gives
no information on the number of customers queuing at the end of that period. 4

Exercise 3.1.6 (Discrete Memoryless Property). Let N ∼ Geom(ρ) for some ρ ∈ (0, 1).
Show that (N − k | N ≥ k) ∼ Geom(ρ) for all k ∈ N.

Exercise 3.1.7. Let X = (Xt)t≥0 denote the queue length of an M/M/1 queue. Spot
an embedded random walk with reflecting barrier and use theory from discrete-time
Markov chains to show the following.

1. If µ ≤ λ, then the queue length visits 0 infinitely often.

2. If µ > λ, then the queue length visits 0 finitely often.
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3.1.2 Measures of Effectiveness

We now consider measures of effectiveness for the M/M/1 queue, such as mean queue
length and waiting times. We always suppose that the queue is in equilibrium when
studying these; in particular, ρ = λ/µ < 1.

Definition 3.1.8 (Queue Lengths). Let N denote the number of customers in an
M/M/1 system in equilibrium. Let N ′ denote the number of customers in the queue
who are not being served; so, N ′ = N − 1{N > 0}. 4

Lemma 3.1.9 (Queue Lengths in Equilibrium). The following hold:

P{N = 0} = 1− ρ and E(N) = ρ/(1− ρ) = λ/(µ− λ);

P{N ′ = 0} = 1− ρ2 and E(N ′) = ρ2/(1− ρ) = ρλ/(µ− λ).

Proof. The equilibrium distribution π satisfies πn = ρn(1− ρ). Thus,

E(N) =
∑
n≥0 nπn =

∑
n≥0 nρ

n(1− ρ).

A standard trick for calculating such sums is to write the summand as a derivative:

E(N) = ρ(1− ρ) ddρ
∑
n≥0 ρ

n = ρ(1− ρ) ddρ (1− ρ)−1 = ρ
1−ρ = λ

µ−λ .

The probability that the system is empty in equilibrium is simply

P{N = 0} = π0 = 1− ρ.

On the other hand, the probability that the queue is empty is

P{N ′ = 0} = P{N ∈ {0, 1}} = π0 + π1 = (1− ρ) + ρ(1− ρ) = 1− ρ2.

If no customer is being served, then N ′ = N ; if one is, then N ′ = N − 1. Hence,

N ′ = N − 1{N > 0} and so E(N ′) = E(N)− P{N > 0} = ρ
1−ρ − ρ = ρ2

1−ρ .

Definition 3.1.10 (Waiting Times). Let Ts denote the sojourn time of a new arrival
to an M/M/1 system in equilibrium—ie, the total time the customer spends in the
system, from arrival to departure. Let Tq denote its queueing time—ie, not including
its service time. So, Ts = Tq +S, where S is the service time (independent of Tq). 4

Lemma 3.1.11 (Waiting Times in Equilibrium). The following hold:

E(Ts) = 1
µ−λ and E(Tq) = ρ

µ−λ .
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Proof. Conditional on N ≥ 1 customers in the system at arrival, the queueing time
Tq can be written as a sum of N = N ′ + 1 iid Exp(µ) service times:

Tq =
∑N
j=1E

(j)
µ where E(1)

µ , E(2)
µ , . . . ∼iid Exp(µ).

Now, conditional on N = m ≥ 1, the length of this sum is non-random—it is m. So,

E
(
etTq | N = n

)
= E

(
exp
(
t
∑n
j=1E

(j)
µ

))
= E

(
etExp(µ)

)n
for n ≥ 1

since the E
(j)
µ are iid. Now, recall the mgf of Exp(µ): for t < µ,

E
(
etExp(µ)

)
=
∫∞

0
µe−µsestds = µ

µ−t
∫∞

0
(µ− t)e−(µ−t)sds = µ

µ−t .

Using the memoryless property for Geometrics (Exercise 3.1.6), provided t < µ− λ,

E(etTq | N ≥ 1) =
∑
m≥1 E(etTq | N = m)P{N = m | N ≥ 1}

=
∑
m≥1

(
µ
µ−t
)m

(1− ρ)ρm−1

= (1−ρ)µ
µ−t

∑
m≥1

(
λ
µ−t
)m−1

= µ−λ
µ−t

(
1− λ

µ−t
)−1

= µ−λ
µ−λ−t .

The mgf characterises the distribution, so (Tq | N ≥ 1) ∼ Exp(µ− λ). Hence,

E(Tq) = E(Tq | N ≥ 1)P{N ≥ 1} = ρ
µ−λ

as P{N ≥ 1} = ρ and Tq = 0 if N = 0—the arrival is served immediately in this case.
Finally, the sojourn time is Ts = Tq + S, where S ∼ Exp(µ). Hence,

E(Ts) = E(Tq) + E(exp(µ)) = 1
µ + ρ

(1−ρ)µ = 1
µ

(
1 + ρ

1−ρ
)

= 1
(1−ρ)µ = 1

µ−λ .

Corollary 3.1.12 (Little’s Law). Little’s law holds for M/M/1 queues:

E(N) = λE(Ts).

Little’s law actually holds in much more generality than M/M/1 queues. We en-
counter it again when discussing M/G/1 queues—ie, queues with Markovian inputs,
but general service times. The same applies to the Pollaczek–Khintchine formula.

Exercise 3.1.13 (Pollaczek–Khintchine Formula). Show that the Pollaczek–Khintchine
holds for M/M/1 queues:

E(Tq) =
λE(S2)

2(1− ρ)
=
λ(Var(S) + E(S)2)

2(1− ρ)

where S has the service time distribution—so, S ∼ Exp(µ) for M/M/1 queues.
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0 1 2 . . . c1 . . . c2

λ λ λ λ λ λ

µ 2µ 3µ c1µ c1µ c1µ

Figure 3.2. State diagram for M/M/1 queue

3.2 Multi-Server Queues with Finite Capacity

Multi-server queues possess K1 ≥ 1 servers. The capacity may be some finite integer
K2 ∈ [K1,∞), in which case there is a waiting room for K2 − K1 ≥ 0 additional
customers, or it may be infinite. Customers who arrive to a full waiting room are
turned away and never return. Always, service times and arrivals are independent.

Our interest focusses primarily on the probability that a customer is turned away
when the queue is in statistical equilibrium.

Example 3.2.1 (Old-Fashioned Telephone Exchange). In an old-fashioned telephone
exchange, calls arrive accordion to a Poisson process of rate λ, for some λ > 0. There
are c servers and calls are lost if they arrive when all servers are occupied: there is no
waiting room. In the above notation, K1 = K2 = K. 4

Definition 3.2.2 (M/M/K1/K2 Queue). The M/M/K1/K2 queue is characterised
as follows.

� Customers arrive according to a Poisson process of rate λ, for some λ > 0.

� There are K1 servers, each serving (independently) at rate µ, for some µ > 0.

� Arriving customers are directed to an arbitrary free server if one exists and to
the waiting room otherwise, provided there are at most K2 −K1 customers in
the waiting room already. Otherwise, the customer is turned away.

� When a server becomes free, a customer moves from the waiting room to it. 4

Following arguments analogous to those for the M/M/1 determines the rates.

Theorem 3.2.3. The number of customers in an M/M/K1/K2 queue is a birth–
death process with the following non-zero transition rates, summarised in Figure 3.2:

qn,n+1 = λ for n ∈ {0, . . . ,K2 − 1};

qn,n−1 =

{
nµ for n ∈ {1, . . . ,K1},
K1µ for n ∈ {K1 + 1, . . . ,K2}.
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The main result of this section, which is Erlang’s formula (Theorem 3.2.5), is for
multi-server queues with no waiting room: K1 = K2 = K.

Exercise 3.2.4 (See Example Sheet 3). Let K ∈ N and define π by

πn :=
1

n!

(
λ

µ

)n/ K∑
m=0

1

m!

(
λ

µ

)m
for n ∈ {0, 1, ...,K}.

� Show that π is a distribution and that it satisfied the detailed-balanced equa-
tions associated to the queue length of an M/M/K/K queue.

� Show that the expected number of servers in use in equilibrium is λ
µ (1− πK).

Theorem 3.2.5 (Erlang’s Formula). For an M/M/K/K queue with service rate µ
and arrival rate λ, the equilibrium probability of being turned away is

πK =
1

K!

(
λ

µ

)K
π0 =

1

K!

(
λ

µ

)K/ K∑
m=0

1

m!

(
λ

µ

)m
.

Proof. A customer is turned away if and only if all K servers are in use. This has
equilibrium probability πK , which is given by Exercise 3.2.4.

Remark. Remarkably, Erlang’s formula generalises to M/G/K/K queues—ie, those
with Markovian input and iid, but not necessarily Exponential, service times. 4

3.3 Reversibility and the Departure Process

Recall that a Markov chain is reversible if, when started from equilibrium, it is statist-
ically impossible to tell whether it is being run forward or backward in time. Formally,
the detailed-balance equations must hold:

πiqi,j = πjqj,i for all i, j ∈ I.

A key application of reversibility for queueing theory is that it allows us to study
the departure process in equilibrium. The following theory holds for M/M/c queues,
for any c ∈ N, as well as M/M/∞ queues. We prove it for M/M/1 queues.

Theorem 3.3.1 (Burke’s Theorem). Suppose λ < µ. In equilibrium, the departure
process of an M/M/1 queue with arrival rate λ and service rate µ is a PP(λ).
Further, the number of customers in the queue at a fixed time t is independent of
the departure process before time t.
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µ1 > λ

service rate µ2

µ2 > λp

service rate µ3

µ3 > λ(1− p)

λ

λp

λ(1− p)

λp

λ(1− p)

Figure 3.3. Illustration of network of queues

Proof. Let X denote the queue length. Then, X is reversible, by Exercise 3.2.4; that
is, for a given T > 0, the processes (Xt)0≤t≤T and (X̂t := XT−t)0≤t≤T have the same

distribution, whenX0 ∼ π. Hence, X̂ experiences jumps of size +1 at constant rate λ.
But, X̂ has a jump of size +1 at time t if and only if a customer departs the queue at
time T − t. Therefore, departures from X becomes arrivals for X̂. The time-reversal
of a PP(λ) is a (negative) PP(λ). Hence, the departure process is a PP(λ).

For the independence, let A denote the arrival times and D the departure times.
Clearly, the state of the queue up to time T − t is independent of future arrivals:

(Xs)0≤s≤T−t is independent of A ∩ (T − t, T ].

Arrivals for the forward process are departures for the backward process. So,

(X̂s)0≤s≤T−t = (Xs)t≤s≤T is independent of D ∩ [0, t),

by the same logic. Hence, (Xs)s≥t is independent of departures up to time t.

It is crucial, here, that the process is in equilibrium in order to apply reversibility.
Indeed, if we impose X0 = 5, then the first departure will happen after Exp(µ), not
Exp(λ). It also imposes λ < µ: otherwise no equilibrium state exists.

3.4 Queues in Tandem

We can use Burke’s theorem to justify feeding the output (departures) of one queue
into the input (arrivals) of another queue. We can even get a network of queues by
sending some of the departures to one queue and some to another; see Figure 3.3.

The network need not be a tree. However, each customer should only pass through
a single server once, so that arrivals and departures are independent. We next study
the simplest network: a series of M/M/1 queues. The Advanced Topics for ST406
includes study of more elaborate networks of queues called Jackson Networks (§3.6*).
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Definition 3.4.1 (Queues in Tandem). We study a sequence of J queues in tandem:

� customers arrive as a PP(λ) to queue 1;

� the j-th server serves at rate µj ;

� upon leaving queue j ∈ {1, . . . , J − 1}, they join the queue for queue j + 1;

� upon leaving queue J , they leave the system.

Service times are independent, including those of the same customer in different
queues, as are arrivals to queue 1. 4

Theorem 3.4.2. Let Xj = (Xj
t )t≥0 denote the queue length in the j-th queue, for

j ∈ [J ]. Suppose that λ < minj∈[J] µj . Then, the invariant distribution of X is

π(x1, . . . , xJ) =
∏
j∈[J](1− ρj)ρx

j

j where ρj := λ/µj for j ∈ [J ];

that is, if (X 1, . . . ,X J) ∼ π, then X j ∼ Geom0(ρj) marginally for each j ∈ [J ] and
the components are jointly independent. Moreover, X is reversible wrt π.

Proof. The case J = 1 corresponds to a single M/M/1 queue; the invariant distri-
bution was found in Lemma 3.1.4. We now prove the theorem for J = 2.

The possible transitions are

(x1, x2)→


(x1 + 1, x2) with rate λ,

(x1 − 1, x2 + 1) with rate µ1 if x1 ≥ 1,

(x1, x2 − 1) with rate µ2 if x2 ≥ 1;

these correspond to an arrival to queue 1 entering the system, a departure from queue
1 causing an arrival to queue 2 and a departure from queue 2 leaving the system. We
can check by direct computation that πQ = 0 if and only if π has the claimed form.

A more elegant and conceptual proof uses Burke’s theorem. The first server be-
haves marginally as anM/M/1 queue. But, Burke’s theorem says that, at equilibrium,
the departure process of the first M/M/1 queue is a PP(λ). Hence, marginally, both
are M/M/1 queues, so have the claimed invariant distribution. It remains to check
independence. This holds because X2

t depends only on X2
0 and the departure process

from the first queue, which is independent of X1
t by Burke’s theorem.

Exercise 3.4.3. Extend the second argument to a general number J ≥ 2 of queues
using induction and Burke’s theorem (Theorem 3.3.1).

Remark. If X0 ∼ π, then the random variables Xj
t are independent for different

j ∈ [J ] for a fixed t. The processes Xj = (Xj
t )t≥0 cannot be independent, though: a

jump −1 for Xj with j < J implies a jump +1 for Xj+1. 4
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The technique can establish independence of waiting times in successive queues.

Exercise 3.4.4. Argue that the sojourn time—ie, queueing plus service time—of
a customer in queue 1 is independent of departures from queue 1 prior to their
departure. Deduce that, in equilibrium, the sojourn times of a customer at each of
the queues are independent.

The same idea can be extended to a tree-like network of queues. The technique is
fragile, however: it does not allow a customer to leave a later queue and return to an
earlier one. This scenario is studied in the Advanced Topics for the ST406 variant of
this course. The set-up is more general, but the results are somewhat less general.

3.5 Queues with Non-Markovian Service Times

We now consider queues where the number of customers in the system is no longer
Markovian. The example on which we concentrate is a modification of an M/M/1
queue where the service times are still iid, but no longer need be Exponential.

Definition 3.5.1 (M/G/1 Queue). Customers arrive according to a Poisson process of
rate λ. There is a single server whose service time has some specified distributed, which
need not be exponential, with mean 1/µ. Services and arrivals are independent. 4

The number of customers in the system is no longer Markovian. Eg, imagine the
case in which service times are deterministically one unit of time. If we know that the
queue length X satisfies Xt = 3 for all t ∈ [1, 1.9999], then the chance that X2 = 2 is
very high: there is a departure and no arrival. On the other hand, if it were Markovian,
then the overwhelmingly most likely scenario would be X2 = X1.9999 = 3.

Not all hope is lost, however. There is an embedded Markov chain, obtained by
considering this random process at a countable sequence of random times.

Definition 3.5.2 (Embedded Chain). Given a jump process X = (Xt)t≥0 on N, with
jumps of size ±1, define Yn to be the value of X after the n-th −1 jump. Set Y0 := X0.
Then, Y = (Yn)n≥0 is the embedded chain. In the case of queues, Yn is the number
of customers in the system immediately after the n-th departure. 4

The embedded chain Y of an M/G/1 queue X is a Markov chain in discrete time.

Theorem 3.5.3. Let X be an M/G/1 queue and Y its embedded chain. Then,
Y = (Yn)n≥1 is a discrete-time Markov chain.
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Proof. We need to show that

P{Yn+1 = yn+1 | Yn = yn, ..., Y1 = y1}

does not depend on (y1, ..., yn−1). This follows from Theorem 2.1.7 (Strong Poisson
Increments): take T there to be the time at which the n-th service is completed;
arrivals are independent of service, so we can take t to be the (n+ 1)-th time.

Definition 3.5.4. Let An denote the number of customers which arrive during the
service of the n-th customer. Let S denote the typical service time of a customer—ie,
a random variable with distribution given by the service time—and

kn := P{n customers arrive during S}. 4

If there are Yn = y > 0—ie, there are y > 0 customers in the queue immediately
after the n-th service—and An+1 customers arrive during the (n+1)-th service, then
Yn+1 = Yn + An+1 − 1; the −1 term accounts for the fact that one person as just
departed. If Yn = 0, then we must wait for someone to join the queue before the
(n+ 1)-th service can commence; we then proceed as if Yn = 1. Hence,

Yn+1 =

{
Yn +An+1 − 1 if Yn ≥ 1,

An+1 if Yn = 0.

This can be written succinctly as

Yn+1 = Yn +An+1 − 1{Yn > 0} = Yn +An+1 − 1 + 1{Yn = 0}.

Thus, the transition matrix P for the embedded chain Y is

P =


k0 k1 k2 k3 · · ·
k0 k1 k2 k3 · · ·
0 k0 k1 k2 · · ·
0 0 k0 k1 · · ·
...

...
...

...
. . .

 .

Eg, if there are 4 customers in the queue just after a service, then the probability that
there are 6 just after the next service is k3; indeed, 3 must have arrived in this period.

Lemma 3.5.5. We have

kn = E
(
(λS)n exp(−λS)/n!

)
and

∑
n≥0 nkn = λE(S) = λ/µ.
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Proof. Applying the tower property, conditioning on the service length S,

kn = E(P{n customers arrive during S | S}).

Now, the service and arrival times are independent. So, this inner probability is simply

P{n customers arrive during S | S} = P{Pois(λS) = n | S} = (λS)n exp(−λS)/n!.

Plugging this into the expectation gives the claimed form of kn.
Turning to the second part, we can sum nkn over n ≥ 0 (or n ≥ 1), then exchange

expectation and summation. This cancels the exp(−λS), as we now show:∑
n≥0 nkn =

∑
n≥1 E

(
(λS) · (λS)n−1 exp(−λS)/(n− 1)!

)
= E

(
λS exp(−λS)

∑
m≥0(λS)m/m!

)
= λE(S) = λ/µ.

We emphasise that this did not require that the system be Markovian.

If the embedded Markov chain (Yn)n≥1 is irreducible and aperiodic, then it is
natural to ask if an equilibrium distribution (πn)n≥1 exists. If it does, then, π = πP :

πn = π0kn +
∑n+1
m=1 πmkn−(m−1) for n ≥ 0.

This can be expressed in terms of generating functions.

Definition 3.5.6. WriteK and Π for the generating functions of (kn)n≥0 and (πn)n≥0:

K(z) :=
∑
n≥0 knz

n and Π(z) :=
∑
n≥0 πnz

n for z ∈ R. 4

Formally differentiating, justified rigorously by Abel’s theorem, gives

K ′(1) =
∑
n≥0 nkn = λE(S) = λ/µ.

Lemma 3.5.7. If (Yn)n≥1 admits an equilibrium distribution (πn)n≥0, then

Π(z) =
Π(0)(1− z)K(z)

K(z)− z .

Proof. Applying the equilibrium equations and manipulating the sums,

Π(z) =
∑
n≥0 π0knz

n +
∑
n≥0

(∑n+1
m=1 πmkn−m+1

)
zn

= π0K(z) +
∑
m≥1 πmz

m−1∑
n≥m−1 kn−(m−1)z

n−(m−1)

= Π(0)K(z) +
∑
m≥1 πmz

m−1∑
`≥0 k`z

`

= Π(0)K(z) +K(z)
(
Π(z)−Π(0)

)
/z.

Rearranging and solving for Π(z) gives the claimed equality.
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If the embedded Markov chain (Yn)n≥1 is positive recurrent, which is the case
when λ < µ—ie, K ′(1) < 1—then it turns out that the M/G/1 queue has an
equilibrium distribution. This equilibrium distribution satisfies Little’s law and the
Pollaczek–Khintchine formula; see Theorems 3.5.8 and 3.5.9, respectively. We explain
why this is true for the remainder of the section. Recall that we already met these
formulas when discussing M/M/1 queues.

We sketch the proof for both results under the following assumption.

The number of customers and the sojourn time for a virtual arrival in
the embedded Markov chain are the same in distribution as for a typical
arrival in the PP(λ) stream of incoming customers.

This simply means that we prove the results for the embedded Markov chain and
assume that they carry over to the M/G/1 queue itself.

Proving that the results transfer requires ergodic theory. It allows the use of time
averages, for which the embedded Markov chain gives information, to give information
about statistical averages or expectations on the M/G/1 queue. Ergodic theory lies
(well) beyond the scope of this course, however.

Recall from Definitions 3.1.8 and 3.1.10 that N is the number of customers and
Ts is the sojourn time—ie, the time until completion of service in the queue.

Theorem 3.5.8 (Little’s Law). Suppose that λ < µ. Then, in equilibrium,

E(N) = λE(Ts).

Proof. Consider a time at which a customer leaves the system. They leave behind
N customers, all of whom arrived during the wait time Ts of the exiting customer, as
using FIFO. During that time, conditional on the value of Ts, Pois(λTs) new customers
arrived—arrivals before and after the customer who just left are independent, by The-
orem 2.1.7 (Strong Poisson Increments). Therefore, the mean number of customers
in the system E(N) can also be expressed as

E(Pois(λTs)) = E(E(Pois(λTs) | Ts)) = λE(Ts).

Little’s law actually holds in much more generality; see, eg, [KY14, Theorem 2.13].
We now turn to the Pollaczek–Khintchine formula. Recall that 1/µ = E(S) is the

expectation of the typical service time S. Let σ2 := Var(S) be its variance. Recall
also, from Definition 3.1.10, that Tq is the queueing (not sojourn) time.

Theorem 3.5.9 (Pollaczek–Khintchine Formula). Suppose that λ < µ. Let ρ := λ/µ
be the utilisation factor; so, ρ < 1. Then, in equilibrium,

E(Tq) =
λ(σ2 + 1/µ2)

2(1− ρ)
=

λE(S2)

2(1− ρ)
.
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The proof of this theorem builds on a number of auxiliary results. We assume that
the service time S has a (negative) mgf in an interval around 0: there exists r0 > 0 such
that supr∈(−r0,r0) E(e−rS) <∞. This allows us to swap derivatives and expectations.

Lemma 3.5.10. Suppose that ρ = λ/µ < 1. Then,

1− ρ = 1−K ′(1) = π0.

Proof. The embedded Markov chain is positive recurrent and has an equilibrium
distribution π since ρ < 1. Taking z ↑ 1 in Lemma 3.5.7 gives

Π(1) = lim
z↑1

Π(0)(1− z)K(z)

K(z)− z .

Both the numerator and denominator vanish when z = 1. Applying l’Hôpital’s rule,

1 = Π(1) = π0 lim
z↑1

d
dz

(
(1− z)K(z)

)
d
dz

(
K(z)− z

)
= π0 lim

z↑1

−K(z) + (1− z)K ′(z)
K ′(z)− 1

= π0
−1

K ′(1)− 1
=

π0

1− ρ ,

since K(1) = Π(1) = 1 and K ′(1) = ρ. Rearranging proves the claim.

The next result is given as an exercise.

Exercise 3.5.11. Use differentiation and l’Hôpital’s rule (twice) to show that

E(N) = Π′(1) =
2Π(0)K ′(1) +K ′′(1)

2(1−K ′(1))
.

There is one final ingredient required to prove Pollaczek–Khintchine formula.

Lemma 3.5.12. Suppose that ρ = λ/µ < 1. Then,

K ′′(1) = λ2E(S2) = λ2
(
σ2 + 1/µ2

)
.

Proof. The distribution of the service time S is characterised by its (negative) mgf

φ(r) := E(e−rS) for r ∈ R.

Differentiating twice and setting r = 0 gives

φ′′(0) = lim
r↓0

d2

dr2E(e−rS) = lim
r↓0

E(S2e−rS) = E(S2).
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Let A be the typical number of customers arriving during the service of a single
customer; so, K(z) = E(zA). Then, (A | S = t) ∼ Pois(λt), and hence

K(z) = E(zA) = E(E(zA | S)) = E(E(zPois(λS) | S))

= E
(∑

m≥0 e
−λS(λS)mzm/m!

)
= E

(
e−λS

∑
m≥0(zλS)m/m!

)
= E(e−λSezλS) = E(e−(1−z)λS) = ρ

(
(1− z)λ

)
.

Consequently,

K ′′(1) = λ2 φ′′
(
(1− z)λ

)∣∣
z=1

= λ2φ′′(0) = λ2E(S2).

We can now prove the Pollaczek–Khintchine formula.

Proof of Theorem 3.5.9. Using the previous three results,

E(N)
3.5.11

=
Π(0)K ′(1)

1−K ′(1)
+

K ′′(1)

2(1−K ′(1))

3.5.10, 3.5.12
= ρ+

λ2E(S2)

2(1− ρ)
.

By Little’s law (Theorem 3.5.8) and the fact that ρ = λ/µ = λE(S), we deduce that

E(Ts) =
1

λ
E(N) = E(S) +

λ(Var(S) + E(S)2)

2(1− ρ)
.

The result follows from the fact that Ts = S + Tq.

Example 3.5.13. Jobs arrive at a computer’s central processing unit (CPU) according
to a Poisson process of rate λ = 1

2 . The CPU serves at an average of one unit of time
per job. If the service times are Exponential—ie, we are in an M/M/1-queue set-
up—then ρ = 1

2 and the expected queueing time is

E(Tq) = λ/(1− ρ) = 1.

On the other hand, if the service times are not Exponential and have variance σ2—for
reference, Var(Exp(1)) = 1—then we still have ρ = λ = 1

2 , but now

E(Tq) = 1
2 (1 + σ2).

Reducing the variance thus reduces the expected queueing time. 4

Using (negative) mgfs, also known as Laplace transforms, we can find statistics
such as the expectation or variance of the length of a busy period in an M/G/1 queue.

Definition 3.5.14 (Busy Period). Suppose that a customer arrives at an empty queue.
The busy period is the interval of time from that customer’s arrival until the next
time the queue is empty. We denote the length of the busy period by B. 4

82



⋆

1

2

3

4

5

1.1

1.2

1.3

...1

...2

2.1

5.1 ...1

Figure 3.4. Depth-first search (lexicographic) for busy period:

� ? served first and (1, 2, 3, 4, 5) arrive during their service;
� 1 served next and (1.1, 1.2, 1.3) arrive during their service;
� 1.1 served next and no-one arrives during their service;
� 2 (next lowest lexicographically) served next; etc.

We now find an expression for the law of B which is useful for evaluating the mgf.
The motivation is “run until the first person is served and see what happens”—or,
equivalently, “take one step of the embedded chain and see what happens”.

Lemma 3.5.15. Let S denote the service time of the customer who arrives at the
empty queue. Then, conditional on S = t, we have

B ∼ t+B1 + . . .+BA

where A is the number of customers arriving whilst the first customer is served and
B1, B2, . . . ∼iid B, independently of A. Note that (A | S = t) ∼ Pois(λt).

Proof. The key observation is that in order to determine the busy time B, it does not
matter in which order the customers are served. All that matters is that somebody is
being served whilst the system is non-empty. We use a different queue discipline.

We assume that each of the customers arriving during the first service starts a
separate queue. Once the service of the first customer has been completed, move onto
a customer who arrived during the service, iterating the process: any arrivals during
the service of the second customer join the queue started by the second customer.

One the queue started by the second customer is emptied, which takes time B1 ∼
B, we proceed in the same way for another customer who arrived during the original
service. The busy period ends once all these sub-busy periods have been handled.

Remark. The previous proof uses a depth-first search (DFS); see Figure 3.4.

� If no customers arrive during the first busy period, then stop.

� If customers do arrive, then handle each of their busy periods in turn. 4
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We use this to find the (negative) mgf, then differentiate to find moments.

Lemma 3.5.16. Let ψ(r) := E(e−rB) and φ(r) := E(e−rS) for r ∈ R. Then,

ψ(r) = ψ
(
r + λ(1− φ(r))

)
.

Proof. Using the previous lemma and the tower property, we have

ψ(r) = E(E(e−rB | S)) = E(e−rSE(ψ(r)A | S)).

Now, (A | S) ∼ Pois(λS), so E(ψA | S) = exp(λS(ψ − 1)) for all ψ ∈ R. Hence,

ψ(r) = E
(
exp
(
−rS + λS(ψ(r)− 1)

))
= φ

(
r + λ(1− ψ(r))

)
.

This is only an implicit relation for ψ(r), which is not easy to solve. However, we
can find the expectation and variance of the busy-period length by differentiating.

Lemma 3.5.17. Suppose that ρ < 1. Then,

E(B) = E(S)/(1− ρ) and E(B2) = E(S2)/(1− ρ)3.

Proof. Derivatives of the (negative) mgf evaluated 0 correspond to moments:

φ′(0) = −E(S) and φ′′(0) = E(S2), so Var(S) = φ′′(0)− φ′(0)2;

ψ′(0) = −E(B) and ψ′′(0) = E(B2), so Var(B) = ψ′′(0)− ψ′(0)2.

Differentiating the formula from the previous lemma gives the following:

ψ′(r) =
(
1− λψ′(r)

)
φ′
(
r + λ(1− ψ(r))

)
;

ψ′′(r) =
(
1− λψ′(r)

)2
φ′′
(
r + λ(1− ψ(r))

)
− λψ′′(r)φ′

(
r + λ(1− ψ(r))

)
.

Plugging r = 0 into the first equation, using φ(0) = ψ(0) = 1, we obtain

E(B) = −ψ′(0) = −
(
1− λψ′(0)

)
φ′(0) =

(
1 + λE(B)

)
E(S);

rearranging,

E(B) =
1

1− λ/µE(S) =
1

1− ρE(S) =
1

λ

ρ

1− ρ .

Plugging all this into the second equation,

E(B2) = ψ′′(0) =
(
1 + λE(B)

)
2E(S2) + λE(B2)E(S);

rearranging,

E(B2) =
(1 + λE(B))2

1− λE(S)
E(S2) =

1

(1− ρ)3
E(S2).

84



The additive formulation of Lemma 3.5.15 actually gives the expectation directly.

Lemma 3.5.18. Suppose that ρ := λ/µ = λE(S) < 1. Then,

E(B) = E(S)/(1− ρ).

Proof. Conditioning on A and using the previous formula,

E(B | A) = E(S | A) +AE(B),

since B1, B2, . . . ∼iid B, independently of A. Taking expectation over A,

E(B) = E(E(B | A)) = E(S) + E(A)E(B).

Now, (A | S = t) ∼ Pois(λt). So, E(A) = E(E(Pois(λS) | S)) = λE(S). Hence,

E(B) = E(S)
(
1 + λE(B)

)
, so E(B) = E(S)/(1− ρ).

The second moment can be found via a similar method. The variance can be
calculated in a similar manner, using the Law of Total Variance.

Exercise 3.5.19. Use the Law of Total Variance to find Var(B).

3.6* Jackson Networks—Advanced Topics for ST406

This section discusses Jackson networks: after passing through one queue, the cus-
tomer joins another or leaves the system. These were alluded to at the end of §3.3,
after Burke’s theorem. The special case of queues in tandem was studied in §3.4.
Migration processes, where the M/M/1 queues below are generalised, are studied in
[KY14, Chapter 2]. This section can be seen as a warm-up for that chapter.

The material in this section (§3.6*) is only examinable for the
ST406 fourth-year variant, not the ST333 third-year variant.

To emphasise, this section is not the only examinable content for the
ST406 Advanced Topics; parts of [KY14, Chapter 2] are as well.

Burke’s theorem (Theorem 3.3.1) says that the output of an M/M/1 queue is
a Poisson process and the queue length at time t is independent of the departure
process up to time t. We used this to analyse queues in tandem in §3.4. This could be
extended to any directed-tree-like structure. It was a fairly fragile technique, though:
a customer was not allowed to enter the same queue twice.

We develop a set of tools that does not give such fine-detail results as before, but
can tolerate more general flow patterns. We focus on Jackson networks.
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We start with an informal definition of a Jackson network. Consider a network
of N single-server, Markovian queues. The arrival rate into queue i from outside the
system is λi; the service rate of each queue is µi. Upon completion of service, each
customer can either exit the system or move to another queue: the customer moves
to queue j with probability pi,j and exists with probability pi,0 = 1−∑j∈[N ] pi,j .

We now give the formal definition.

Definition 3.6.1. Let N ∈ N. A Jackson network is a Markov chain on Ω = NN0 ; if
n ∈ Ω, then ni denotes the number of customers in queue i. Let ei ∈ Ω be defined by
ei,j := (ei)j := 1{i = j}—the i-th unit vector. The non-zero transition rates are

q(n, n+ ei) = λi,

q(n, n+ ej − ei) = µipi,j if ni ≥ 1,

q(n, n− ei) = µipi,0 if ni ≥ 1.

We assume that pi,0 > 0 and pi,i = 0 for all i ∈ [N ]. We also assume that (λi)i∈[N ]

and (pi,j)i,j∈[N ] are such that the Markov chain is irreducible. 4

What can be said about equilibrium for Jackson networks? The interaction between
the queues destroys the independence that we had in the queues-in-tandem case. Nev-
ertheless, we are going to see some surprisingly explicit and simple answers.

The key is to introduce the quantity λ̄i (i ∈ [N ]) which will be the effective rate
at which customers enter queue i—that is, the rate from outside (ie, λi) plus the rate
from the other queues. These will satisfied the so-called traffic equations.

Definition 3.6.2. A vector λ̄ = (λ̄1, . . . , λ̄N ) ∈ RN≥0 satisfy the traffic equations if

λ̄i = λi +
∑
j:j 6=i λ̄jpj,i for all i ∈ [N ]. 4

We make this guess based on Burke’s theorem: the effective output rate of a queue
should be the same as the effective input rate, in equilibrium. Thus, if (λ̄i)i∈[N ] are
the effective input rates, then they should satisfy the traffic equations.

Importantly, there exists a unique solution to the traffic equations.

Lemma 3.6.3. There exists a unique solution to the traffic equations.

Proof. We prove existence first. The matrix P := (pi,j)i,j∈[N ] with p0,0 := 1 defines
a stochastic matrix on {0, . . . , N}. The corresponding discrete-time Markov chain Z
is eventually absorbed at 0; so, the number Vi of visits to i by Z satisfies E(Vi) <∞.

Impose the initial law P{Z0 = i} = λi/λ for i ≥ 1, where λ :=
∑
i≥1 λi. Then,

E(Vi) = P{Z0 = i}+
∑
n≥0 P{Zn+1 = i}
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= λi/λ+
∑
n≥0

∑
j∈[N ] P{Zn = j, Zn+1 = i}

= λi/λ+
∑
j∈[N ]

∑
n≥0 P{Zn = j}pj,i

= λi/λ+
∑
j∈[N ] E(Vj)pj,i.

So, multiplying through by λ > 0, if λ̄i = λE(Vi), then the traffic equations are solved:

λ̄i = λi +
∑
j∈[N ] λ̄jpj,i for all i ∈ [N ].

We now prove uniqueness. Let λ′ be a solution to the traffic equations:

λ′i = λi +
∑
j∈[N ] λ

′
jpj,i for all i ∈ [N ].

We need to show that λ′ = λ̄. To this end, let ∆ := λ′i − λ̄i for i ∈ [N ]: we show that
∆ = 0. Cancelling the λi term, we need to show that the only solution to

∆i =
∑
j∈[N ] ∆jpj,i for all i ∈ [N ] is ∆ = 0.

But, pi,0 > 0 for all i, so the matrix P\0 := (pi,j)i,j≥1 is sub-stochastic: its row-sums
are strictly less than 1. Thus, the operator norm1 ‖P\0‖ < 1. Hence, if ∆ 6= 0, then

‖∆‖ = ‖∆P\0‖ ≤ ‖∆‖‖P\0‖op < ‖∆‖,

a contradiction. Hence, ∆ = 0, so the traffic equations have a unique solution.

We now come to the main theorem of this section. It frequently appears in lists
of the most useful mathematical results for industry.

Theorem 3.6.4 (Jackson’s Theorem, 1957). Assume that the traffic equations have
a solution (λ̄i)i≥1 such that λ̄i < µi for all i ≥ 1. Define ρ̄i := λ̄i/µi for i ≥ 1—the
effective utilisation. Then, the Jackson network has invariant distribution π given by

π(n) :=
∏
i≥1(1− ρ̄i)ρ̄ni

i for n ∈ Ω.

So, the queue lengths in equilibrium are independent and Geometrically distributed.

This theorem was proved relatively recently—1957, compared with Erlang whose
studies, including M/M/K queues, took place in the early 1900s. There are two likely
reasons. One is that the system is not reversible. Indeed, there is no assumption that
pi,j > 0 if and only if pj,i > 0, or even that λi > 0. This always makes computations

1the operator norm is a norm on linear operators A:

‖A‖op := inf
{
λ ≥ 0 | ‖Av‖ ≤ λ‖v‖ for all v ∈ V

}
;

when A is a square matrix, it is equal to the modulus of the largest eigenvalue in modulus
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vastly more complicated, a priori. When reversibility does not hold, typically, a dis-
tribution is proposed and checked, rather than solving πQ = 0 to find π. Second, it
is a pretty bold proposal that queue lengths are independent at equilibrium!

We are going to see that there is a partial form of reversibility.

Definition 3.6.5 (Partial Balance). A measure π and a matrix Q on a state space Ω
are in partial balance if, for all x ∈ Ω, we can find a partition of Ω \ {x}, say into
Ωx1 ,Ω

x
2 , . . ., such that∑

y∈Sx
i
π(x)q(x, y) =

∑
y∈Sx

i
π(y)q(y, x) for all i ≥ 1. 4

Remark. Global balance means that the total probability flux into and out of a state
is the same. Detailed balance requires equal flux between any pair of states. Partial
balance means that, for each state, there is a subset of the states for which the total
flux between that state and the subset is equal in each direction. 4

Partial balance implies global balance, as the name suggests.

Exercise 3.6.6. If π and Q are in partial balance, then they are in global balance.

We are going to show that partial balance holds for the Jackson network. This in-
cludes choosing appropriate partitions. Ignoring the outside, transitions occur between
queues j and k with j 6= k. The checking global balance requires summing over all
pairs (j, k) ∈ [N ]2 with j 6= k. In essence, we are going to fix a queue j and sum over
all k. This will show that the flux in and out of a given queue is equal.

Proof of Theorem 3.6.4. Let us define π(n) :=
∏
i≥1 ρ̄

ni
i for n ∈ Ω; this is a constant

multiple off what is in the theorem. Let us then define

q̂(n,m) := π(m)
π(n) q(m,n) for n,m ∈ Ω;

these are the transitions for the time-reversal of the Jackson network.
We now choose the partitions for partial balance. Let

A := {ei | i ∈ [N ]};
thus, if n ∈ Ω and m ∈ A, then n+m denotes any possible state after the arrival of
a customer from outside to some queue. Let

Dj := {ei − ej | i ∈ [N ] \ {j}} ∪ {−ej} for j ∈ [N ];

thus, if n ∈ Ω and m ∈ Dj , then n+m denotes any possible state after the departure
of a customer from queue j. We show, for all n ∈ Ω, that∑

m∈E q(n, n+m) =
∑
m∈E q̂(n, n+m) if E = A or E = Dj for some j. (?)
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These are a set of partial balance equations, so this implies that π is invariant.
We first handle arrivals: E = A. The left-hand side of (?) is∑

m∈A q(n, n+m) =
∑
i≥1 λi.

To evaluate the right-hand side of (?), we first calculate

q̂(n, n+ ei) = π(n+ei)
π(n) · q(n+ ei, n) = ρ̄i · µipi,0 = λ̄ipi,0.

Plugging this into the right-hand side of (?), we get∑
m∈A q̂(n, n+m) =

∑
i≥1 λ̄ipi,0 =

∑
i≥1 λ̄i

(
1−∑j≥1 pi,j

)
=
∑
i≥1 λ̄i −

∑
j≥1

∑
i≥1 λ̄ipi,j =

∑
i≥1

(
λ̄i −

∑
j≥1 λ̄jpj,i

)
,

swapping the i–j indices in the double sum to get
∑
i,j≥1 λ̄ipi,j =

∑
i,j≥1 λ̄jpj,i. We

now apply the traffic equations (Definition 3.6.2) to this last sum over j to get∑
m∈A q̂(n, n+m) =

∑
i≥1

(
λ̄i − (λ̄i − λi)

)
=
∑
j≥1 λj .

We now turn to departures: E = Dj for arbitrary j ∈ [N ]. We have

q(n, n+m) = µjpj,0 if m = −ej and q(n, n+m) = µjpj,i if m = ei − ej .

The left-hand side of (?) is∑
m∈Dj

q(n, n+m) = µjpj,0 +
∑
i:i6=j µjpj,i = µj ;

this makes sense as the service rate at queue j is µj . Now,

q̂(n, n+ ei − ej) =
π(n+ei−ej)

π(n) · q(n+ ei − ej , n) = ρ̄i
ρ̄j
· µipi,j = µj λ̄ipi,j/λ̄j

and

q̂(n, n− ej) =
π(n−ej)
π(n) · q(n− ej , n) = λj/ρ̄j = µjλj/λ̄j .

Using this and the traffic equations, we deduce that the right-hand side of (?) is∑
m∈Dj

q̂(n, n+m) =
(
λj +

∑
i:i 6=j λ̄ipi,j

)
· µj/λ̄j = µj .

This completes the proof of partial balance and hence of invariance.

In equilibrium, the departure process from an M/M/1 queue is a Poisson process,
by Burke’s theorem. This used reversibility. A Jackson network is not reversible,
however its time-reversal is also a Jackson network. We use this to show that the
departures to outside—those governed by pi,0—form independent Poisson processes.
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Corollary 3.6.7. Consider a Jackson network with arrival rates (λi)i≥1, service rates
(µi)i≥1 and transition probabilities (pi,j)i,j≥1:

q(n, n+ ei) = λi, q(n, n+ ej − ei) = µipi,j , q(n, n− ei) = µipi,0.

Its time-reversal is itself a Jackson network with arrival rates (λ̂i := λ̄ipi,0)i≥1,
service rates (µ̂i := µi)i≥1, transition probabilities (p̂i,j := λ̄jpj,i/λ̄i)i,j≥1 and exit
probabilities (p̂i,0 := 1−∑j≥1 p̂i,j = λi/λ̄i)i≥1:

q̂(n, n+ ei) = λ̄ipi,0, q̂(n, n+ ej − ei) = µiλ̄jpj,i/λ̄i, q̂(n, n− ei) = µiλi/λ̄i.

Moreover, (λ, p) and (λ̂, p̂) satisfy the same traffic equations.

Proof. We need to determine the time-reversed rates

q̂(n,m) := π(m)
π(n) q(m,n) for m,n ∈ Ω.

But, we already did this in the previous proof, obtaining the required expressions. The
fact that p̂i,0 = 1−∑j≥1 p̂i,j = λi/λ̄i ∈ [0, 1] implies that the p̂i,j-s are probabilities.

Departures become arrivals in reverse-time and vice versa. The final part follows
as the effective arrival rate equals the effective departure rate in equilibrium.

Corollary 3.6.8. At equilibrium, the processes of departures (to outside) form inde-
pendent Poisson processes; the rate of departures from queue i is λ̄ipi,0. Further, the
state of the Jackson network at time t is independent of the departures up to time t.

Proof. The departure process (to outside) from queue i for the Jackson network X
is the arrival process to queue i (from outside) in the time-reversal X̂. But, as we just
showed, these are independent Poisson processes, the i-th with rate λ̄ipi,0. Hence, the
departures form independent Poisson processes of the claimed rates.

The final independence follows analogously to that in Burke’s theorem. Indeed,
the length of the queues at time 0 is independent of the arrival process between times
0 and t. By time reversal, Xt is independent of departures up to time t.

Remark. These last two corollaries have intuitive justifications, too, via time-reversal
arguments and the fact that λ̄ is the vector of effective arrival rates.

� In equilibrium, the rate at which customers arrive at a particular queue must
be the same as the rate at which they depart. Arrivals become departures when
time is reversed, and vice versa. So, the effective arrival/departure rate is λ̄k
for queue k both in forward- and reverse-time.

� An external arrival in reverse-time is an external departure in forward-time. So,
the external-arrival rate in reverse-time is the effective arrival rate times the
departure probability in forward-time: λ̂i = λ̄ipi,0. Analogously, λi = λ̄ip̂i,0.
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� A transition from queue i to queue j in reverse-time is a transition from j to i
in forward-time. So, a j-to-i transition happens at rate λ̄jpj,i in forward-time.
This must be balanced in reverse-time: λ̄ip̂i,j = λ̄jpj,i.

� The service rate at queue i is the reciprocal of the mean time between when a
customer starts and finishes being served. Start and finish swap roles in forward-
versus reverse-time. So, the service rate is unchanged: µ̂i = µi. 4
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4 Epidemic Models

An epidemic is a widespread occurrence of an infectious disease in a community.
The cycle of events for an individual in an epidemic can be broken down as follows.

1. Start off as susceptible.

2. Be exposed to infection: become infected and infectious.

3. Exhibit symptoms: become symptomatic.

4. Be removed from the system: become immune, or die.

The intervals between events have the following names.

� Between exposure to infection and becoming infected: latent period

� Between exposure to infection and exhibiting symptoms: incubation period

� Between becoming infectious and removal: infectious period

Infectious individuals are sometimes called infectives, and susceptible susceptibles.
We consider a number of simplifications.

� Infections arise from contact with other infectives and the whole population
mixes homogeneously: any individual is equally likely to interact with any other

� An individual becomes infectious and symptomatic immediately after infection

� Removed individuals cannot become susceptible again

Based on these simplifications, we consider three different models.

§4.1 Deterministic without removals: Susceptible → Infected

§4.2 Stochastic without removals: Susceptible → Infected

§4.3 Stochastic with removals: Susceptible → Infected → Removed

These simplifications and models are, of course, far from the truth for any real epi-
demic. However, the theory has to start somewhere! Dealing with simplified situations
provides insights so long as one remembers to be thoughtful about their application.

The classic text on epidemics is the book by Bailey [Bai75].
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4.1 Deterministic SI Model

Deterministic models are used to model population averages. They are easier to
implement and can be useful for getting an overall picture. However, they are often
not as accurate as stochastic models, particularly in the crucial starting stages. For
example, stochastic models often have some probability that an epidemic actually
gets going; deterministic models, naturally, have no such probabilistic events.

We start with a simple example in order to build some intuition. Suppose that the
infectious period extends indefinitely—there are no removals—and that the overall
population size n is large, with just one initial infective. Let Xt and Yt denote the
number of susceptible and infectives at time t, respectively; so, Y0 = 1 andXt+Yt = n.

Example 4.1.1. Under the assumption of homogeneous mixing, we expect the num-
ber of newly infected individuals in a short interval of length ∆t to be given by

∆Xt = −αXtYt∆t

where α is the rate at which individuals come in contact with each other. Indeed, each
of the Yt infectives is mixing with each of the Xt susceptibles, giving rise to Xt · Yt
possible pairs of contacts; the mixing rate is α, so a proportion α∆t interact. Thus,

d
dtXt = −αXtYt = −αXt(n−Xt) with X0 = n− 1,

by taking ∆t→ 0. Solving this DE, using partial fractions, gives

Xt =
n(n− 1)

n− 1 + eαnt
and Yt = n−Xt =

neαnt

n− 1 + eαnt
=

n

(n− 1)e−αnt + 1
.

So, Xt → 0 as t→∞. Thus, eventually, the whole population will be infected.
It is often informative to look at the epidemic curve:

dYt
dt

= −dXt

dt
= αXtYt =

n2(n− 1)eαnt

(n− 1 + eαnt)2
.

This models the rate of infections. Figure 4.1 shows two epidemic curves—one with
n = 40 and one with n = 60—with α = 1.

� The infection rate gets higher as the population size n grows.

� The time until almost all the population is infected decreases as n increases.

Can you explain why these hold in words? 4

One obvious limitation of this model is that Xt is modelled as a positive real,
tending to 0 as t → ∞—but never equal to 0. In reality, Xt ∈ N = {0, 1, 2, . . .}. To
address this issue, we next model Xt as a random process, taking values in N.
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Figure 4.1. The epidemic curve for a rate-1, deterministic epi-
demic with no removals, starting from a single infective: blue
curve has population size n = 40; red curve has n = 60

4.2 Stochastic SI Model

Let Xt and Yt be the number of susceptibles and infectives at time t, respectively.
We assume there are no removals. Let n = Xt + Yt be the total population size.

There are XtYt possible pairs of contacts at a given time t. The deterministic
model said that a proportion α∆t of these interact in a (short) interval of length ∆t.
The stochastic model says that each interacts with probability α∆t, independently.
Thus, a proportion α∆t interact on average in the stochastic model.

Definition 4.2.1 (SI Model). Let Y = (Yt)t≥0 be the (non-linear) birth process with

qi,i+1 =

{
αi(n− i) if 0 < i < n,

0 otherwise.

In other words, it increases by 1 each time an individual gets infected, which happens
at rate αXtYt = αYt(n−Yt) whenXt > 0. This is homogeneous mixing at rate α. 4

Example 4.2.2. In the stochastic SI model with homogeneous mixing at rate α, what
is the expected time until everyone becomes infected?—ie, what is

E(τ1) where τ1 := inf{t ≥ 0 | Yt = n}?

Without loss of generality, we take α = 1, scaling time by α at the end. The jump
from i to i+ 1 takes time Exp(i(n− i)), independent of everything else. So,

τ1 = T1 + . . .+ Tn−1 where Ti ∼ Exp
(
i(n− 1)

)
independently.
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Hence,

E(τ1) =
∑n−1
i=1 E(Ti) =

∑n−1
i=1

1
i(n−i) .

Using partial fractions,

E(τ1) = 1
n

∑n−1
i=1

(
1
i + 1

n−i
)

= 2
n

∑n−1
i=1

1
i .

Using the standard expression for partial sums of the harmonic series,

E(τ1) = 2
n

(
log n+ γ +O(1/n)

)
≈ 2 log n/n,

where γ ≈ 0.5772 is the Euler–Mascheroni constant. 4

Exercise 4.2.3. Compute the variance Var(τ1) of the total time until the epidemic
runs its course. How does it behave as n→∞? Does τ1 concentrate as n→∞?

Example 4.2.4. What is the law of the half life of the epidemic?—ie, what is the law of

τ1/2 := inf{t ≥ 0 | Yt/n > 1
2}?

As in the previous exercise, letting m := bn/2c,
τ1/2 = T1 + . . .+ Tm where Ti ∼ Exp

(
i(n− i)

)
independently.

Exercise 2.2.6 showed that the law of τ1/2 is given by

P{τ1/2 > t} = P{T1 + . . .+ Tm > t} =
∑m
i=1 e

−λit
∏
j:j 6=i

λj

λj−λi

where λk := k(n− k). We also observe that, if n is even, then m = n/2 and

T1 + . . .+ Tm =d Tn + . . .+ Tm+1 since λk = λn−k.

So, the lifetime τ1 has the same law as the sum of two independent half-lifes τ1/2. 4

4.3 Stochastic SIR Model

The final section of the course concerns the stochastic SIR model: infectious in-
dividuals are removed from the system—either by dying or becoming immune—
autonomously (independent of everything else) at rate β; immunity is never lost.

There is a deterministic model, akin to that of §4.1 except with removals at rate βi
if there are i infectives. We leave analysis of this deterministic model as an exercise.

Exercise 4.3.1. Let St, It and Rt denote the number of susceptible, infected and
removed individuals at time t, respectively. Let n denote the population size; so,
n = St + It +Rt for all t ≥ 0. Derive and solve a DE in the deterministic case.

We emphasise that immunity is indefinite: a removed individual cannot become
susceptible or infected ever again. We now define the process precisely.
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4.3.1 Definition and Markov Property

We start with the precise definition of the stochastic SIR dynamics.

Definition 4.3.2 (SIR Model). Let St, It and Rt denote the number of susceptible,
infected and removed individuals at time t, respectively. The dynamics are as follows:

� each infective infects each susceptible one at rate α independently;
� each infective is removed at rate β independently.

We denote such a model SIR(α, β). Let n denote the total population size; so, n =
St+It+Rt for all t ≥ 0. Such independent removal is called autonomous removal. 4

Exercise 4.3.3. Argue that (St, It, Rt)t≥0 is a Markov chain on N3 with non-zero rates

(s, i, r)→
{

(s− 1, i+ 1, r) at rate αsi,

(s, i− 1, r + 1) at rate βi.

Give ‘physical’ interpretations for each of the transitions.

The rates in the previous exercise are often written in interaction form:

(S, I)→ (S − 1, I + 1) at rate αSI;

(I, R)→ (I − 1, R+ 1) at rate βI.

The process (It)t≥0 looks like a birth–death process: indeed, it increases/decreases
by 1 in each step. However, it is not actually a Markov chain, considered alone. In order
to know the rate at which it goes up/down, the number of susceptible and removed
individuals is needed. Looking into the past gives an estimate on the previous jump
rates, and hence number of susceptibles. Since Rt = n − St − It, we can reduce the
number of degrees of freedom from three to two, so (St, It)t≥0 is a Markov chain.

The main question we address in this section is that of relating (It)t≥0 to a birth–
death process in a useful way. Particularly, what can we say about the probability
of an epidemic becoming widespread? Naturally, we do not expect It = n for some
t ≥ 0 when starting with I0 = 1: this would require all the other individuals to get
infected before any are removed. So, for example, what is

P1{supt≥0 It ≥ γn} for γ > 0 independent of n.

The subscript in P indicates I0. We always start with no-one removed, so S0 +I0 = n.
We answer this by drawing a comparison with birth–death processes: we make

a simultaneous ‘microscopic’ construction of a birth–death process and an epidemic
with removals in such a way that we can gets bounds on the above probability.
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Figure 4.2. The microscopic construction of birth–death process

4.3.2 Microscopic Construction of a Birth–Death Process

We use the following construction of a birth–death process.

Definition 4.3.4 (Microscopic Birth–Death). Let Xt and Yt denote the number of
infected and removed individuals at time t, respectively.

Suppose that we have an infinite population, indexed by N = {1, 2, . . .}. Let
(ti,n)n≥1 be a sequence of iid Exp(α)-s and Ti ∼ Exp(β) independently, for each i ∈ N
independently. The sequence (ti,n)n≥1 controls the infections that individual i makes,
whilst Ti is the length of its infectious period.

We represent collections of individuals as subsets of N = {1, 2, . . .}. Let {1, . . . , i0}
represent the set of originally-infected individuals and {i0 + 1, . . .} represent the
remainder, which are initially susceptible. Infections and removals follow these rules.

� If individual i becomes infected at time si, then remove i at time si +Ti. So, si
is the infection time and si + Ti the removal time for i.

� At times τi,j = si +
∑j
n=1 ti,n between the infection and removal times—ie, in

[si, si + Ti)—use individual i to infect the individual ` with the lowest number

who is susceptible at time τi,j . Then, s` = τi,j = si +
∑j
n=1 ti,n.

Set si := 0 for i ≤ i0, corresponding to individuals who are initially infected. 4

The above construction is illustrated in Figure 4.2. We now show that this con-
struction does indeed give a birth–death process with birth rate α and death rate β.

Theorem 4.3.5. The process X = (Xt)t≥0 from Definition 4.3.4 is an SBDP(α, β):

qn,n+1 = αn, qn,n−1 = βn and qn = (α+ β)n for all n.
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Proof. We need to show that the times between jumps are independent and Expo-
nentially distributed, with rates which depend only on the current state, not the past.
The memoryless property is crucial in ensuring this in the statements below.

Infections. By the memoryless property, each currently-infected individual is waiting
an Exp(α) time until it causes an infection. So, the next infection is at the
minimum of these Exp(α)-s, which is distributed as Exp(αn) if there are n
currently-infected individuals. Hence, the time-t infection rate is αn if Xt = n.

Removals. Similarly, the time until removal for each infected individual is still Exp(β).
So, the next removal is at the minimum of these Exp(β)-s. Again, minimum of
n Exp(β)-s is Exp(βn). So, the time-t removal rate is βn if Xt = n.

4.3.3 Microscopic Construction of the SIR Model

We now construct the SIR model in an analogous manner. We have to reduce the infec-
tion rate as the epidemic progresses, to take account of there being fewer susceptibles.
We attach to each infection incident a ‘censoring’ random variable to do this.

Definition 4.3.6 (Microscopic SIR). Let St, It and Rt denote the number of suscept-
ible, infected and removed individuals at time t, respectively.

Suppose that we have a population of size n, indexed by {1, . . . , n}. Let (ti,n)n≥1 be
a sequence of iid Exp(α)-s, (Ui,j)j≥1 be a sequence of iid Unif([0, 1])-s and Ti ∼ Exp(β)
independently, for each i independently. The sequence (ti,n)n≥1 controls the infections
that individual i makes, whilst Ti is the length of its infectious period.

We represent collections of individuals as subsets of N = {1, 2, . . .}. Let {1, . . . , i0}
represent the set of originally-infected individuals and {i0 + 1, . . .} represent the
remainder, which are initially susceptible. Infections and removals follow these rules.

� If individual i becomes infected at time si, then remove i at time si + Ti.

� At times τi,j = si +
∑j
n=1 ti,n ∈ [si, si + Ti), use individual i to attempt to

infect the individual ` with the lowest number who is susceptible at time τi,j .
This particular infection attempt is successful if and only if (n− i0)Ui,j ≤ Sτi,j .
This last event has probability Sτi,j/(n− i0) conditional on (Su, Iu, Ru)u≤τi,j .

Set si := 0 for i ≤ i0, corresponding to individuals who are initially infected. 4

The above construction is illustrated in Figure 4.3. We now show that this con-
struction does indeed give an SIR process with infection rate α

n−i0 and death rate β.

Theorem 4.3.7. The process (St, It, Rt)t≥0 from Definition 4.3.6 is an SIR( α
n−i0 , β):

(S, I)→ (S − 1, I + 1) at rate αSI/(n− i0);

(I, R)→ (I − 1, R+ 1) at rate βI.
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Figure 4.3. The microscopic construction of an SIR process. No-
tice how the same random variables are used: eg, individual 3
has the same lifetime (T3) in both cases. It would be tempting
to simply delete the lines, and their descendants, from BD cor-
responding to censored infection attempts to obtain SIR. But,
this would mean that 3 has lifetime T5 in SIR. This would be a
legitimate construction, by iid nature of the random variables,
but it is not what we do. This is crucial for monotonicity later

Proof. They key difference here compared with the last proof is that some contacts
are censored. The censoring is done by a Unif([0, 1]) random variable, which is inde-
pendent of everything else. This does not affect the Exp(β)-length removal times.

Without censoring, the infection time is the first arrival of a collection of inde-
pendent Poisson processes. The censoring simply thins the Poisson processes; but, we
know that this simply leads to another Poisson process. Thus, the new infection rate
is α times the conditional probability St/(n − i0) that the Poisson incident is kept.
This thinning probability depends only on the current state St, not on the history.

Alternatively, looking at the rates as derivatives, we see that the probability of
having an infection in the SIR model by time δ is equal, up to an o(δ) error, to that
in the BD model multiplied by the probability that the infection is accepted. Hence,

qSIR(s,i),(s−1,i+1) = qBDi,i+1 · P(s,i){accept infection} = αis/(n− i0).

Remark. We emphasise that having a state-dependent probability of accepting an
infection does not break the Markov property. If the probability depends on the
history—eg, if a second attempt by the same individual were more likely to succeed
than the first, all else the same—then the Markov property would clearly be broken.

This can be thought of as a ‘thinning of Poisson process of infections’. Such a
viewpoint can be helpful for intuition, but care must be taken: the thinning probability
changes, and in a way which depends on the process. 4
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4.3.4 Coupling

We have now seen how to build an epidemic and a birth–death process in an essentially
analogous way. There is nothing stopping us from using the same random variables
to construct both simultaneously. The only thing that is different is that the epidemic
requires the extra uniform random variables to thin the infections.

We can use this single source of randomness to prove results about the sizes of the
two processes. A similar approach was used in Example Sheet 2 to compare Poisson
processes. We consider basic birth–death models as a warm-up.

Example 4.3.8. Let Xλ = (Xλ
t )t≥0 ∼ SRWN(λ, 1) on N = {0, 1, ...} with λ > 0:

qλx,x+1 = λ and qλx+1,x = 1 for x ≥ 0.

We construct couplings which establishes the following monotone properties:

λ 7→ Px{Xλ
t = 0} is weakly decreasing for all x ≥ 0.

x 7→ Px{Xλ
t = 0} is weakly decreasing for all λ > 0.

Fix λ ≥ µ > 0. Let X := Xλ and Y := Xµ. Let A ∼ PP(λ). Define B by thinning
the Poisson process A, keeping with probability µ/λ < 1. Then, B ∼ PP(µ)—it is not
independent of its ‘parent’ process A. Let D ∼ PP(1). Use the following dynamics:

� on incidents of D, step both X and Y down by 1, with a barrier at 0;
� on incidents of A, step X up by 1; on incidents of B, step Y up by 1.

These dynamics have X ∼ SRWN(λ, 1) and Y ∼ SRWN(µ, 1)—not independently.
The incidents of B are a subset of those of A. Thus, if Y moves up, then so does

X. The two move down together, unless one is already at 0, the lowest point. This
means that if Y starts below X, then there is no way that it can ever get above: if
X0 ≥ Y0, then Xt ≥ Yt for all t ≥ 0. In particular, Xt = 0 implies Yt = 0. Thus,

P1{Xt = 0} ≤ P1{Yt = 0}.

For the second statement, we move X,Y ∼ SRWN(λ, 1) together: if one is at 0
and the other is not, then an attempted move down by the one at 0 is censored. This
way, if X0 ≥ Y0, then Xt ≥ Yt for all t ≥ 0. In particular, Xt = 0 implies Yt = 0. 4

Exercise 4.3.9 (Coupling for SBDP(λ, µ)). We showed in Corollary 2.3.4 that

lim
t→∞

P1{Xt = 0} =

{
1 if µ ≥ λ,
µ/λ if µ < λ.

We proved this for λ 6= µ by using the (negative) mgf from Lemma 2.3.3.
Use a monotone coupling to deduce that λ = µ case from the λ 6= µ case.
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We now move onto the main purpose of our couplings: to show that the number
of individuals infected in the birth–death chain dominates that in the epidemic. This
is intuitive: the two process are the same, except that some infections are censored.

Theorem 4.3.10 (BD Dominates SIR). Let (X,Y ) ∼ SBDP(α, β) and (S, I,R) ∼
SIR( α

n−i0 , β) with X0 = i0 = i0 and Y0 = 0 = R0. Then, I+R . X+Y : there exists
a coupling of (X,Y ) and (S, I,R) such that

It +Rt ≤ Xt + Yt for all t ≥ 0.

Proof. The coupling we use is given by Definitions 4.3.4 and 4.3.6: use the same
source of randomness for both processes, except for the extra, iid Unif([0, 1])-s.

We would like to say, “Every accepted infection in SIR happens at the same time
as one in BD. Hence, SIR ≤ BD.” However, this is not true: individuals get infected at
different times in the two models, so the (attempted) infection times τi,j are different
in the two models. This is crucial, though: each individual attempts the same number
of infections in each model, but with delays in SIR. See Figure 4.4.

We look at times si at which individuals get infected:

sSIRi = inf{t ≥ 0 | It +Rt ≥ i} and sBDi = inf{t ≥ 0 | Xt + Yt ≥ i}.

The result follows if sSIRi ≥ sBDi —ie, it takes longer for the i-th individual to be
infected in the SIR than in the BD model—for all i. We prove this by induction on i.

Clearly, sSIRi = 0 = sBDi for all i ≤ i0. Let j > i0 and suppose that sSIRi ≥ sBDi for
all i ≤ j − 1. Remember that individuals are infected in numerical order. Let

Nj−1(t) := #{k ∈ N | individual k infected by one of 1, . . . , j − 1 by time t}.

Key is the coupling between the (attempted) infection times: for individual i, they

are at τi,j = si+
∑j
n=1 ti,n for j such that si+ τi,j ∈ [si, si+Ti); see Figure 4.4. This

means that, by time t, the number of (attempted) infections by i in SIR is at most
that for BD; some are rejected in SIR. Summing over all i ∈ {1, . . . , j − 1} gives

NSIR
j−1(t) ≤ NBD

j−1(t) for all t ≥ 0.

But,

s
SIR/BD
j = inf{t ≥ 0 | NSIR/BD

j−1 (t) = j − i0}.

Hence, sSIRj ≥ sBDj , which completes the inductive step and the proof.

Example 4.3.11. Suppose that we say there is an epidemic if the total number ever
infected exceeds a predetermined threshold γn, with γ ∈ (0, 1). From the coupling,

maxt≥0{Xt + Yt} < γn =⇒ maxt≥0{It +Rt} < γn.
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sBDi

sSIRi

sBDi + Ti

sSIRi + Tit

BD

SIR

Figure 4.4. Infection attempts are shown on a timeline by filled
squares; only those in [si, si + Ti) are shown, the boundary of
which is shown by vertical lines. This interval is different in BD vs
SIR. The infection attempts in both occur at the same times after
si; their coupling is illustrated via the diagonal dashed lines. The
number of infection attempts in SIR by t (at the dotted vertical
line) is at most that in BD; some are rejected in SIR

Thus, taking the limit n→∞ and using Proposition 2.3.2, we have

lim
n→∞

P{no epidemic} ≥ P{SBDP(α, β) dies out} = min
{(

β
α

)
i0 , 1

}
.

We can actually get a lower bound on the limiting probability of having an epi-
demic, too. Before passing the threshold γn, at least (1− γ)n are susceptible. Thus,

αItSt/(n− i0) ≥ (1− γ)αnIt/(n− i0).

Adjusting the censoring, we get a lower bound

I +R & X ′ + Y ′ where (X ′, Y ′) ∼ SBDP(α(1− γ), β).

This gives the complementary bound

lim
n→∞

P{no epidemic} ≤ P{SBDP(α(1− γ), β) dies out} = min
{(

β
α(1−γ)

)
i0 , 1

}
. 4

Exercise 4.3.12. Verify the lower bound I +R & X ′ + Y ′, checking the rates.

The previous example is formalised in the following theorem.

Theorem 4.3.13 (Whittle’s Threshold Theorem, [Whi55]). Let (S, I,R) ∼ SIR( α
n−i0 , β)

with (S0, I0, R0) = (n− i0, i0, 0). Let γ ∈ (0, 1), independent of n. Say that there is
an epidemic if the total number of infected ever exceeds γn. Then,

min
{(

β
α

)
i0 , 1

}
≤ lim
n→∞

P{no epidemic} ≤ min
{(

β
α(1−γ)

)
i0 , 1

}
.

Furthermore, if we let γ = γn depend on n, then

lim
n→∞

P{no epidemic} = min
{(

β
α

)
i0 , 1

}
if lim

n→∞
γn = 0 and lim

n→∞
γnn =∞.
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Example 4.3.14 (Influenza in a Finite Population). Suppose that an influenza out-
break proceeds as an SIR model. Suppose that the infectious period averages three
days and the initial rate of infection is such that an individual comes in contact with
one person per day, on average. So, we are studying SIR(α = 1, β = 1/3).

Suppose that there is initially one infected person. Show that the probability of
having an epidemic does not exceed 2

3 in the limit as the population size n→∞.
From Whittle’s threshold theorem,

lim
n→∞

P{epidemic} = 1− lim
n→∞

P{no epidemic} ≤ 1− β
α = 1− 1

3 ≤ 2
3 . 4

Coupling theory is an extremely important tool in probability theory. In particu-
lar, the idea of coming up with a monotone coupling between two random processes
X and Y on R such that Xt ≥ Yt for all t ≥ 0 is a technique which comes up all the
time in research. In epidemic and queueing theory, these results typically rely heavily
on Poisson thinning, and sometimes on Poisson superposition.
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