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Highlights on this talk

We discuss about the convenience of correcting model selection priors in the
presence of censored observations,

We derive extensions of g -priors in this scenario, that include a new definition of
sample size,

We evaluate our proposal under the scrutiny of Predictive Matching arguments,

Illustrate our methodology using a real data set of a breast cancer registry.

And we are very Bayesian and very objective, and do not allow ourselves using any type
of sample information to define our priors.
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Model selection approach to variable selection in the linear model

The model selection approach

In variable selection, we have an initial set of potential explanatory variables:

X = (X1,X2, . . . ,Xk)

and we have to select those that are relevant to explain the variability of a response
variable Y .

• Within the model selection approach, the answer to variable selection is obtained from
the posterior probabilities of the 2k possible models:

p(Mγ | y), γ = (γ1, . . . , γk), γi ∈ {0, 1}.

• This talk concerns the assignment of prior distributions for the specific parameters
within each model Mγ . It suffices to present the problem as if only two models (the full
and the null) were entertained. The proposal automatically generalizes to the 2k models
situation.
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Model selection approach to variable selection in the linear model

Model selection within the linear model: basic formula

In the regular linear model, the model that contains all k covariates (full model) is:

M(y | β, β0, σ) : yi = β0 + β>x̃ i + σεi , εi ∼ N(0, 1),

where x̃ i ∈ Rk is the vector of centered (values) of covariates for sample i .

The null model:
M0(y | β0, σ) : yi = β0 + σεi .

Posterior probabilities are

p(M | y) =
m(y)p(M)

m(y)p(M) + m0(y)p(M0)
, p(M0 | y) =

m0(y)p(M0)

m(y)p(M) + m0(y)p(M0)
.

Where:

m(y) =

∫
M(y | β, β0, σ)π(β, β0, σ) dβ dβ0dσ, m0(y) =

∫
M0(y | β0, σ)π0(β0, σ) dβ0dσ.

The ratio B = m(y)/m0(y) is the Bayes factor (to the null).
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Model selection approach to variable selection in the linear model

For {p(M), p(M0)} we use p(M) = p(M0) = 0.5 and, in the case of variable selection,
the prior studied in Scott and Berger (2010). The focus on this talk is on the priors for
parameters within each model:

π0(β0, σ) π(β, β0, σ).
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Model selection approach to variable selection in the linear model

Variable selection priors have a common starting point

π0(β0, σ), and π(β, β0, σ) = π0(β0, σ)× π(β | β0, σ),

where

π0(β0, σ) is an objective estimation prior (normally π0(β0, σ) = σ−1 or vague
versions of it) and

the conditional prior for the specific parameters: π(β | β0, σ) is a proper prior.

One of the most popular approaches to specify π(β | β0, σ) dates back to Zellner and
Siow (1980) based on the previous work by Jeffreys (1961). It has been extended in
various ways with important contributions in the literature: Zellner (1986); Fernández
et al. (2001); Liang et al. (2008); Bayarri et al. (2012) (just to mention some).

This myriad of proposals have been named g -priors or conventional priors (Berger and
Pericchi, 2001; Bayarri and Garćıa-Donato, 2007) and have in common special features
that now I summarize.
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Model selection approach to variable selection in the linear model

Radiography of conventional g -priors

• Within g priors:
π(β | β0, σ, g) = N(0, gΣ), g ∼ π(g).

Here π(g) is either degenerate to a fixed value (e.g. g = 1 in BIC) or provides the prior
with convenient flat tails (e.g. Inverse Gamma) giving rise to the g -priors spectrum.
By default, we use the Robust prior for π(g) (but any other can be easily implemented).

With respect to Σ, g priors propose a quite particular form:

Σ = nσ2(X̃
>
X̃ )−1, X̃

>
= (x̃>1 · · · x̃>n ) (the centered design matrix).

This debatable choice (versus eg independent prior):

Makes the β’s depends on the X ′s, varying inversely proportional to Var(X )’s,

is inspired by the expected Fisher information matrix,

contains the factor n that makes it of unitary size.

Particular properties: exact null predictive matching (Bayarri et al., 2012); Group
invariant (Consonni et al, 2019).
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Variable selection with censored data in the linear model

The linear model with censoring

Now, the model that contains the covariates is:

yi = β0 + β>x̃ i + σεi , i = 1, 2, . . . , n

but

we observe yi only if yi < ci , in which case we record δi = 1,
if yi ≥ ci , we record δi = 0.

The ci are censoring times and we assume that for all people in the study

c1, c2, . . . , cn

are known.

Example at the end: prognosis factors for survival to breast cancer

Observational units are women diagnosed with the disease in 2004-2013.

We are interested on yi time to death (since diagnosis), in log scale

The study was planned to end on 12/31/2015. For every woman in the study

ci = log
(
12/31/2015− diagnosis date

)
Women that died before 12/31/2015 are uncensored and yi is recorded. For the rest
we only know that yi > ci .
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Variable selection with censored data in the linear model

Differing information content

A priori, the “information” content in the units i ∈ {1, 2, . . . , n} varies:

Roughly speaking:

if ci is small then (a priori) yi has less chances to be observed and unit i will
contribute partially to the likelihood. As ci decreases, contribution of unit i to the
likelihood will be negligible (no impact on inferences).

As ci gets large, unit i is expected to provide full information.

Once the experiment is finished, the data we have are:

(y , δ) = ((y1, . . . , ynu ), (δ1, . . . , δn)), nu = #uncensored observations.

The rest nc = n − nu units are censored.

A compact expression of the model is:

M(y , δ | β0, σ,β) = Nnu (y | 1β0 + X̃ uβ, σ
2I ) × Pr

(
Nnc (1β0 + X̃ cβ, σ

2I ) > cc

)
,

where
X̃

T

= (X̃
T

u , X̃
T

c ), cT
= (cT

u , c
T

c )
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Variable selection with censored data in the linear model

Objective model selection priors (unlike estimation priors) are partially proper in a way
that depends on the observed values of covariates x i (and on n):

Explicitly like with the g -priors,

More subtly through a pre-processing (eg. standardization).

Main questions

In the presence of censoring,

should we modify the way x1, x2, . . . , xn contribute to the prior?

n is n?

In general, objective priors are directly imported from the uncensored literature (Sha et al.
(2006) with spike-and-slab priors or Nikooienejad et al. (2018) with non-local priors).

Interestingly, other authors have argued about the need to rethink the notion of sample
size to define their priors:

Volinsky and Raftery (2000) propose using a version of BIC that uses the number of
uncensored observations nu (instead of n).

Similarly, Held et al. (2016), make an implicit use of g -priors (with test-based Bayes
factors) discussing on the convenience of using nu to scale the prior covariance
matrix.
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Variable selection with censored data in the linear model

As in the conventional approach without censoring we use:

π0(β0, σ) = σ−1, π(β, β0, σ) = σ−1 ×
∫

N(β | 0, gΣ)π(g)dg ,

but which covariance Σ?

• The default choice is to use All units equally: ΣAll = nσ2(X̃
T

X̃ )−1, but this may have
unexpected consequences that we illustrate in an extreme situation
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Variable selection with censored data in the linear model

Study (dramatization of a possible situation)

Variable of interest (Yi ): age (in years) of appearance of early symptoms of
dementia,

Censoring time ci is age at the end of study (known for all units).

People that haven’t had any symptoms at the end of the study are censored.

We investigate the relation of Y with long-term memory capacity (say xi measures
the quantity of details from childhood one is able to remember).

We plan a visit to an old people’s home to enroll persons for the study

the same day that there was a school visit to the center.

• The person collecting data is paid per unit enrolled and take data from old people as
well as young kids.
• After 10 years the study ends. Some of the old people have shown symptoms, but all
kids are censored (with very small censoring times ci ).
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Variable selection with censored data in the linear model

About the default choice: Σall

The likelihood

M(y , δ | β0, σ,β) = Nnu (y | 1β0 + X̃ uβ, σ
2I ) × Pr

(
Nnc (1β0 + X̃ cβ, σ

2I ) > cc

)
,

is essentially based on the old people.

Then, in agreement with g priors, we should use Σuncens , a matrix based on X̃ u, the
covariates for the old people.

Nevertheless, the default choice (using all units) is ΣAll . Clearly

Var(Xall) >> Var(Xuncens)→ ΣAll << Σuncens ,

implying a more precise prior than it should, leading to conservative Bayes factors.
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Variable selection with censored data in the linear model

Observations

The previous example is an extreme situation, but it is not unusual at all that
Var(Xall) >> Var(Xuncens) (eg. the famous CHS and PBC survival datasets in
Volinsky and Raftery, 2000).

A default usage of conventional prior is not adaptive and may have a potential
impact on the Bayes factors. Most of the model selection priors in the literature
would have a similar misbehavior as they depend (implicitly) on the values of
covariates (eg. through standardization).

Using Σuncens “is not” allowed as it contains sample information (and does not
contain information from censored data).

Our prior should be able to adapt to situations with varying information content
among units as is done by the likelihood. We derive such possibility using the
expected information matrix.
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Construction of the prior covariance matrix

Construction of a prior covariance matrix

Our plan is using:

Σ =
(

Unitary information for β
)−1

= eff. sample size×
(
information for β

)−1

• For (information for β)−1:

We use the block for β of the inverse of the expected information matrix. It has a
closed-form expression but depends on β (a difficulty that does not appear in the
linear model without censoring),

We overcome that difficulty using a la Jeffreys trick: β = 0

• For effective sample size we borrow ideas from Berger et al. (2014), and use the
expected information for β0 in the null model (which in the linear model gets to n),
leading to:

N(β0,σ) =
n∑

i=1

ωi , ωi = ω
(ci − β0

σ

)
, ω(z) = Φ(z) + φ(z)

( φ(z)

1− Φ(z)
− z
)
.

...the effective sample size depends on c , β0, σ and is unknown a priori!
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Construction of the prior covariance matrix

Properties: about ωi and effective sample size

N(β0,σ) =
n∑

i=1

ωi , ωi = ω
(ci − β0

σ

)
, ω(z) = Φ(z) + φ(z)

( φ(z)

1− Φ(z)
− z
)
.

.

About ω(·) and N(β0, σ):

0 ≤ ω(z) ≤ 1 and ω(z) increases with z ,

0 ≤ N(β0, σ) ≤ n and for fixed (β0, σ):
N(β0,σ) → n if ci →∞, ∀i ,
N(β0,σ) → 0 if ci → −∞, ∀i ,
N(β0,σ) → n1 if c = (cu ,

n1). . ., cu , cc ,
n2). . ., cc ), and cc → −∞.
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Construction of the prior covariance matrix

Properties: about variance matrix

The covariance matrix adopts an appealing expression: it is a weighted covariance matrix:

ΣMix(β0, σ) = σ2
( n∑

i=1

ωi (x i − xw )(x i − xw )
T
/N(β0,σ)

)−1

, xw =
n∑

i=1

ωix i/N(β0,σ),

that Mixes units using weights ωi .

About ΣMix(β0, σ):

ΣMix(β0, σ) = ΣAll , if all ci are equal,

If c = (cu, n1). . ., cu, cc , n2). . ., cc), and cc → −∞, then ΣMix(β0, σ)→ Σ1

The resulting prior leads to finite marginals if nu ≥ k + 2.
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Predictive matching results

Predictive matching

General idea

When the sample is of minimal size, n?, then we should get a Bayes factor of 1 (exact
predictive matching).

Bayarri et al. (2012) define several types of predictive matching criteria. The one that
better characterizes aspects of the prior is:

Null predictive matching

Model selection priors are null predictive matching if {M, π} and {M0, π0} are exact
predictive matching for samples of minimal size for M.

• In the linear model without censoring, Bayarri et al. (2012) show that for n? = k + 1,
the priors:

π0(β0, σ) = σ−1, and π(β, β0, σ) = σ−1 ×
∫

N(β | 0, gΣ)π(g)dg ,

are exact predictive matching if and only if Σ = nσ2(X̃T X̃ )−1 (or proportional).
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Predictive matching results

Censored data: samples of “minimal size” revisited and predictive matching

Scenario I: n? = k + 1 [n?c ≥ 1, n?u ≥ 2 (for m0(y , δ) to exist)].

Result for Scenario I

Σ (known) leads to null predictive matching if and only if Σ = ΣAll (or a multiple).

• The information content vanishes for units with very small censoring times. Hence, in
what information respects, a sample of “minimal size” is also

Scenario II: n? = n?c + n?u [n?u = k + 1, n?c ≥ 1 with censoring times ci → −∞.]

Result for Scenario II

Σ known leads to (limiting) null predictive matching

lim
ci→−∞

B(y , δ) = 1,

if and only if Σ = Σuncens (or a multiple).
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Predictive matching results

What do we learn?

From a predictive matching perspective, using ΣAll (all units equally contribute to
the covariance matrix) is optimal for Scenario I (regular case), but it could be a bad
choice for Scenario II (varying information content).

Our proposed covariance matrix ΣMix(β0, σ) is adaptive, having ΣAll and Σuncens as
particular cases and we interpret it as being the optimal choice in general.

A curiosity: this adaptive behaviour comes with the price of a covariance matrix
dependent on (β0, σ) and for which the predictive matching criterion is not directly
applicable (marginal exists for nu ≥ k + 2).
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Real illustrative application

Breast cancer survival in Castellon (Spain)

n = 2116 women diagnosed with breast cancer in the decade 2004-2013,

yi = log(ti ), where ti is time to death (years) since diagnosis, which is censored for
women who survived after the closing date: December 31st, 2015.

Want to know evidence on the importance of k = 6 covariates (26 = 64 models):
number of nodes affected; age; recurrence (0/1); metastasis (0/1); estrogenic
hormonal receptors (0/1) and progesterone hormonal receptors (0/1).

We observed nu = 360 uncensored observations (83% of censoring).
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• MA posterior distribution of the
effective sample size N(β0,σ) (E(N |
data = 714).

• Summary: nc = 1756 ‘count’ as
E(N | data)− nu = 354 (20% infor-
mation content)
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n = 2116 women diagnosed with breast cancer in the decade 2004-2013,

yi = log(ti ), where ti is time to death (years) since diagnosis, which is censored for
women who survived after the closing date: December 31st, 2015.

Want to know evidence on the importance of k = 6 covariates (26 = 64 models):
number of nodes affected; age; recurrence (0/1); metastasis (0/1); estrogenic
hormonal receptors (0/1) and progesterone hormonal receptors (0/1).

We observed nu = 360 uncensored observations (83% of censoring).
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Real illustrative application

Standard summaries of model selection based variable selection

{nodes, age, metasta, recurrence, ER, PGR} 0.473
{nodes, age, metasta, recurrence, ER} 0.467

Table: Posterior probabilities for the two most probable models.

Variable nodes age metasta recurrence ER PGR
Probability 1.00 1.00 1.00 0.98 0.96 0.52

Table: Breast cancer dataset: inclusion probabilities
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Real illustrative application

Model averaging estimators
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Figure: Breast cancer dataset. Model averaged posterior distributions of the regression
coefficients for each potential covariate. Dark gray area represents the probability of no effect
and the light gray area the distribution of probability given there is an effect.
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Real illustrative application

Model averaging prediction (estimation of survival probabilities)

Survival at year
recurrence metasta nodes age ER PGR 1 5 8

+ + 0 40 - - 0.958 0.646 0.490
+ + 0 70 - - 0.678 0.178 0.100
- - 0 40 + + 1 1 0.987
- - 0 70 + + 0.996 0.917 0.832
+ + 10 40 - - 0.921 0.520 0.351
+ + 10 70 - - 0.550 0.107 0.052
- - 10 40 + + 1 0.990 0.974
- - 10 70 + + 0.992 0.854 0.742

0.999 0.941 0.873

Table: Last row is for an average case (values of the covariates at the sample mean).
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Conclusions

Conclusions

• In general:

Use a Model Selection approach to variable selection, but with caution: Priors for
model selection have particularities and, in general, shouldn’t be blindly imported
from similar problems.

A prior based on the expected information matrix seems to be a safe choice in
general but it has to be scaled by a sensible effective sample size.

This work is an exercise of how to construct such prior in problems with censored
data...and we learn:

• For problems with censored data:

When Populationuncens and Populationcens are similar, then using ΣAll is a good
choice because it is more precise than Σuncens (results will be more robust).

When Populationuncens and Populationcens differ, then using ΣAll is expected to
produce more conservative results (than the preferred Σuncens).

We do not know which situation is the real one, but our approach ΣMix provides a
way to weight among these extreme possibilities, based on the censoring times.
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Bayesian model choice with application to variable selection. The Annals of Statistics,
40:1550–1577.
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