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Scene setting for Imprecise Probabilities (IP)

» All probability statements and quantification of beliefs are imprecise

» There's never been a ‘fair coin’ for which | genuinly believe that
Pr(heads) = 0.5

» for which | would be prepared to wager a bet $ — oo on returning a
long-run frequency of 1/2

» Jim Berger tackles IP within the framework of Bayesian statistics;
although it's worth noting that other learning systems design
themselves around this problem

> Levi (1974) “Indeterminate Probabilities”

» Dempster—Shafer theory for belief functions



Two general approaches to IP

» JB considers two general approaches to Bayesian updating under IP
» Herman Rubin approach:

o Undertake an a priori sensitivity analysis by constructing a set of
models P to update, and report interesting properties over the
class of posteriors

» Jack Good approach:

o Reduce sensitivity to prior specification via hyper-priors



These objective issues are have strong subjective roots

» with subjectivist connections.....

“Subjectivists should feel obligated to recognise that any opinion (so
much more the initial one) is only vaguely acceptable. . . So it is
important not only to know the exact answer for an exactly specified
initial problem, but what happens changing in a reasonable
neighbourhood the assumed initial opinion.” De Finetti, as quoted in
Dempster (1975).

. in practice the theory of personal probability is supposed to be
an idealization of one's own standard of behaviour; that the
idealization is often imperfect in such a way that an aura of
vagueness is attached to many judgements of personal probability...”
Savage (1954).



Four motivating applications

o JB presents four motivating applications
I. Interval probabilities
Il. p-values
I1l. Priors for the multivariate normal linear model

IV. Uncertainty Quantification in computer models



. Dealing with interval probabilities

> Use the Rubin approach, within the field of robust Bayesian analysis,
and carry forward a collective set of prior models — note this is not
model averaging

» JB treats this in a pure inference setting

» One (small) issue for “objectivists” is that the priors on intervals
aren’t invariant to transformation

> for example a uniform probability of rain over the interval
€ [0.75,0.8] will be different to uniform over the log-odds
[log3:1,log4 : 1]



Decision theory for intervals

>

»

An alternative is to explore consequences of imprecise probabilities
within decision analysis
For example, suppose | specify my prior on “rain tomorrow” as 0.4

» when in truth it was 0.3649274014829063987104

» or | think that a reasonable interval is [0.3,0.5]

Should | be worried with using the 0.4 approximation?

> Maybe yes, but maybe no.....

It seems to difficult to separate out the impact of prior specification,
or specification of intervals, from the decision task

> If optimal actions change dramatically over the prior interval | would
be concerned, but if they are stable then less so

» This is the approach taken in Watson & Holmes (2016), Statistical
Science; and outside of Statistics, Whittle reviewed in his book “Risk
optimized control” (1990); and extended by the Nobel Laureate
Hansen & Sargent in their book on “Robustness” (2007)



II. Pure testing problems and p-values

It's brilliant!



I1l. Hierarchical priors for multivariate linear model

We consider the model
0i=zi16+6:a G:NNk(‘OaV)

where 0 is a k x 1 multivariate outcome, and new objective priors

1
O < e
1
(V) o -
[VI'=VER T, j(di — dy)
for ordered eigenvalues (dy, ..., d)
o 7(8) looks like an improper multivariate Student (with v = —1

degrees of freedom) and applies global shrinkage
o 7(V') encodes an assumption of white noise (constant frequency
spectrum) and equal spread of variance

Table 1 of the accompanying paper suggests for posterior propriety you
only need n > 1 — seems remarkable



I1l. Hierarchical priors for multivariate linear model

o Simulations in the paper show the advantage (MSE) over twelve other
default priors (formed from independent combinations of 7 (3) w(V))

o A few questions:

>

what happens to performance under the least favourable
conditions for the prior? e.g. if the real eigenvalues are such that
dy > dy > dg..., so that the noise is spread along particular axes

what's to be done if p > n
out of scope: but can we use these priors under model choice?

> in recent work (Fong & Holmes 2019) we showed that Bayesian

marginal likelihood is just exhaustive cross-validation over all of
the (2" — 1) possible held-out test sets using the log marginal
predictive as the scoring rule

n k
1 n 1
logp(y|M) = - E <k> E % E log p(Y;i(iy |9 (k+1:n))

k=1

it would be interesting to compare models with the objective prior
aggregating the cross-validation score after propriety



IV. Uncertainty Quantification

One main question

» What is the advantage of the joint approach
v (x) = yM(z,u) + b(z,u) + €

as compared to a two stage approach

Stage-1:
yO(z) =y (z,u) + €

without the bias term, followed by model criticism under

Stage-2:

» [s there any advantage to consider both?



Conclusions

» This is a wonderful and rich talk (and accompanying paper)

» Thought provoking contribution to dealing with imprecision in
statistical inference



