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Motivations

Demands of modern computational statistics and machine learning
problems.

Intractable likelihoods:

▶ Complex models

▶ Large data

▶ missing/latent data

Infinite-dimensional random variables:

▶ Simulating (and inference for) stochastic processes

▶ Non-parametric inference

Aim to produce methods which are “exact” or lead to
principled approximations.

Focus is mostly (not not exclusively) Bayesian.
Stochastic simulation tools will be key.
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Plan for lectures (to be adapted .....)

1. Introduction to retrospective sampling
Barker and Portkey Barker MCMC

2. Exact simulation for diffusions
Importance sampling , Rao-Blackwellisation, the CIS algorithm

3. Some topics in perfect simulation

4. Subsampling in Monte Carlo:
PDMPs
The SCALE algorithm

5. Fusion algorithms
Football draws

Warning, Part 3 will probably be omitted but I will give you the
slides anyway in case you are interested.
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Basic simulation toolbox 1: Simulating discrete events

We want to simulate from an event with probability p.

Basic algorithm: simulate from a U ∼ U(0, 1) random variable.
Then if

I = 1(U ≤ p) ,

then I is the indicator of an event of probability p.

But do we really need to KNOW p to carry this out?
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Basic simulation toolbox 2: Rejection sampling

Interested in sampling from a distribution P on a state space X:

dP

dµ
(x) ∝ f (x)

X could be simple, complex, high-dimensional, infinite dimensional
(eg the trajectory of a stochastic process) ....

Propose from Q instead such that P << Q and

dP

dQ
(x) ≤ K , Q almost surely.

Accept draw, x , with probability proportional to

1

K

dP

dQ
(x)

Accepted draws are from P.

Do we need to know K?
Do we need to be able to calculate f pointwise?
Do we even need to simulate from (the whole of) Q?
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Basic simulation toolbox 3: Importance Sampling
Interested in estimating EP(h(X )) by taking draws from Q instead:
X1,X2, . . .Xn and use

E =

∑n
i=1

dP
dQ(Xi )h(Xi )

n
Only requires

dP << dQ . (1)

Then estimator is unbiased and consistent.

So in principle can be used more generally than rejection sampling.
(There’s also a ratio version of this which is consistent and does
not require normalising constants.)

If we don’t know K or normalisation constant for f , then can use
instead

E ′ =

∑n
i=1

dP
dQ(Xi )h(Xi )∑n

i=1
dP
dQ(Xi )

which is not unbiased but is consistent.

But can we get away without (1)?
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Basic simulation toolbox 4: Markov chain Monte Carlo

Metropolis-Hastings algorithm: constructs a reversible Markov
chain with invariant density π.

Given xn, propose yn+1 from a Markov chain with kernel density
q(x , y) accepting this proposal with probability α(xn, yn+1) where

α(x , y) = 1 ∧ π(y)q(y , x)

π(x)q(x , y)
.

Acceptance implies that xn+1 = yn+1 while rejection leads to
xn+1 = xn.

Do we need to be able to calculate π(y) pointwise at each
iteration?
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What is retrospective simulation?

It is an attempt to take advantage of the redundancy inherent in
modern simulation algorithms (particularly MCMC, rejection
sampling) by subverting the traditional order of algorithm steps.

It is (in principle) very simple!

Retrospective simulation is most powerful in infinite dimensional
contexts, where its natural competitors are approximate and
computationally expensive. In contrast, restrospective methods are
often computationally inexpensive and “exact”.

Restrospective sampling has natural allies in the simulation game,
for example catalytic perfect simulation, and non-centering

Topics in Retrospective simulation (Gareth Roberts) 9



Ex 1: The birth of retrospective simulation?

Consider the quiz question on a Children’s television programme
(set in 1975!):

Who is the current manager of Liverpool football club?

1. Bill Shankly

2. Bob Paisley

3. Harold Wilson

N people enter a competition to win a prize, entering their answer
on a postcard. The winner is drawn uniformly from those who get
the question right (ie most of them). Suppose a proportion
p > 0.5 get it right.
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Algorithm 1

1. Mark each of the N entries, placing the correct postcards into
a bucket.

2. Shake the bucket and then pick out one postcard, declaring its
author the winner.

Cost of this procedure, O(N).
Algorithm 2

1. Throw all the postcards into the bucket without marking them

2. Draw postcards until a winner is found

Cost of this procedure, O(p−1).
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Ex 2: Rejection sampling

Let f be a density of interest, and g be a density from which we
can simulate. f /g bounded by K say.

1. Sample X from g .

2. Compute p(X ) = f (X )/(Kg(X )).

3. Simulate U ∼ U(0, 1).

4. Accept X if p(X ) > U. Otherwise return to 1.

Blue steps are often unnecessary!
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Retrospective rejection sampling

We want to carry out the simulation on a space X which is
typically complex, high- or infinite-dimensional.

Firstly, identify a function h : [0, 1] × X → Y where Y is a much
simpler space.

We want h to act as a random projection in the sense that for each
v ∈ [0, 1] we can identify a set A(v) ⊂ Y such that if V ∼ U(0, 1)
then

PV {h(V ,X ) ∈ A(V )} = p(X )

Then we can construct a retrospective rejection sampling algorithm
which operates in Y instead.
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Retrospective rejection sampling algorithm

1. Sample V ∼ U(0, 1).

2. Simulate h(X ,V ).

3. If h(X ,V ) ∈ A(V ) the accept. Otherwise return to 1.

4. Fill in missing bits of X from distribution of X |h(X ,V ) as
required.

Does this mathematical abstraction serve any purpose?

Can it ever be useful?

Won’t step 4 often be impossible?
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At Warwick, in the last 15-20 years, we have used these techniques
for many Bayesian computational problems, particularly
retrospective rejection sampling:

▶ intractable likelihood problems

▶ exact simulation of diffusions, jump diffusions, others ...

▶ Bayesian inference for stochastic processes

▶ Infinite dimensional MCMC, eg for Bayesian nonparametric
models

.... thanks to many collaborators, especially Omiros
Papaspiliopoulos and Alex Beskos.
Some of these methods will be presented in the course.
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Ex3: Simulating from intractable probabilities

Even simpler example: example from undergraduate simulation
class 101:

Suppose we wish to simulate from an event I of probability p.

If p is known, then set

I = 1[U ≤ p]

for a uniform [0, 1] random variable U.

Then I has probability p.

But what if p is unknown?
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Retrospective discrete simulation

Suppose we can generate a random variable P which is an
unbiased estimator of p with 0 ≤ P ≤ 1, a.s., ie E(P) = p

Now set
Î = 1[U ≤ P]

Then Î also has probability p.

Amazing that sometime simulation of a random variable is often
EASIER than evaluating a probability!
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Slight generalisation

Probabilities p1, . . . pk with
∑

i pi = 1.

Random variables R1, . . .Rk such that there exists a constant M
with

▶ E(Ri ) = Mpi , ∀i
▶

∑
i Ri = M, a.s.

Then define X to be equal to i if

i−1∑
j=1

Rj < UM ≤
i∑

j=1

Rj

for U ∼ U(0, 1), then X has probabilities {pi}.
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Random discrete rational simulation

If the Ri s are guaranteed to be integer-valued, we can do this by a
ball draw:

Put Ri balls of label i into a bucket and draw one out at random.

Very simple, but does it have uses .... ?

We shall see an important example in the last part of the course.
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Ex. 3: The alternating series method

Devroye (1986)
Let p = a0 − a1 + a2 − a3 + a4 − . . ., where {ai} is a decreasing
sequence. To simulate an event of probability p, the retrospective
method is as follows.
Use partial sums as upper and lower bounds for p:

p+i =
2i∑
j=0

aj(−1)j ;

p−i =
2i−1∑
j=0

aj(−1)j ;

1. Simulate U ∼ U(0, 1).

2. Find i with both p+i and p−i are either above or below U

3. When values are less than U, event is true, otherwise false.
Topics in Retrospective simulation (Gareth Roberts) 20



Example: Simulation of BM hitting times

Let Bt be standard Brownian motion. Let τa = inf{t; Bt = a}

0.0 0.2 0.4 0.6 0.8 1.0

−
0.
4

−
0.
2

0.
0

0.
2

0.
4

time

The distribution of τa is readily available analytically:

P(τa > t) = 2Φ

(−|a|
t1/2

)

However: consider two-sided hitting time,
τa,−b = inf{t; Bt = a or − b}. Harder.
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Two-sided boundaries

0.0 0.2 0.4 0.6 0.8 1.0

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

time

However by the reflection principle there exists an expansion

P(τa,−b ≤ t) = a0 − a1 + a2 . . .

Use Union Intersection formula.

a0 = P(U) + P(L), a1 = P(UL) + P(LU) etc

So we can apply the alternating series method.
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Ex 4: Simulating from unnormalised probabilities

We have p1, p2, . . . is a sequence of positive numbers with pi ≤ qi
and

∑∞
i=j+1 qi = G (j) < ∞.

We would like to simulate from the discrete distribution with
probabilities proportional to {pi}.

Think Bayesian analysis with qs coming from prior.

Why not use the inverse CDF method?

1. Calculate s =
∑∞

i=1 pi

2. Simulate U ∼ U(0, 1).

3. Set X = inf{j ; ∑j
i=1 pj/s ≥ U}.

We don’t know s but we have upper and lower bounds from
assumptions.
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Retrospective inverse CDF method

s−j =

j∑
i=1

pi

s+j =

j∑
i=1

pi + G (j)

Clearly
s−j ≤ s−j+1 ≤ s ≤ s+j+1 ≤ s+j

P+j
i =

j∑
k=1

pk

s−j
upper bound on cumulative probability

P−j
i =

j∑
k=1

pk

s+j
lower bound on cumulative probability

X+j(U) = inf{j ; P+j
i ≥ U} lower bound on X

X−j(U) = inf{j ; P−j
i ≥ U}. lower bound on X
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1. Simulate U ∼ U(0, 1).

2. Calculate X−j(U) and X+j(U), j = 1, 2, . . . until
X−j(U) = X+j(U). Set X to be this common value.

Retrospective Sampling

1. Simulate U ∼ U(0, 1).

2. Calculate X−j(U) and X+j(U), j = 1, 2, . . . until X−j(U) = X+j(U).

Set X to be this common value.

P
−j
1 P

−j
2 P

−j
3

P
+j
1 P

+j
2 P

+j
3

U
0 1

Here X+j = X−j = X = 2.

Here X+j = X−j = X = 2.
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Ex. 5: Retrospective MCMC

Many opportunities.

Peeking forward at future observations ....

Eg simulate from π(θ,X ) with θ ‘simple’ and X ‘complex’.

Consider Gibbs sampler which alternates between updating θ|X
and X |θ. The latter step is harder than the former.

However by suitable construction of random map X 7→ θ (eg by
catalytic field coupler, Breyer + R, 2001) we can often avoid
having to calculate ‘all’ of X .

See example(s) in Part 3
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Ex. 6: Coupling from the past

Propp and Wilson (1996).

Here the naive sampler starts at time −∞ from all possible states.
It then records the chain value at time 0.

CFTP starts at time 0 and proceeds backwards till the chain value
at time 0 is inevitable.

See example(s) in Part 3
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Ex. 7: Poisson thinning

Important for Parts 2 and 4.

How to simulate from a Poisson process of rate λ(s), 0 ≤ s ≤ 1
say?

Suppose λ(s) ≤ Λ for all 0 ≤ s ≤ 1.

Simulate a PP of rate Λ on [0, 1] giving points Yi , 1 ≤ i ≤ N.

Then accept each point with probability

pi =
λ(Yi )

Λ

The accepted points are a Poisson process of rate λ(s).

Idea readily generalises and localises.
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Bernoulli factories and Barker MCMC

The general Bernoulli Factory problem originated from a classical
probability question posed by Keane and O’Brien (1994). (Some
earlier papers had asked related questions.)

Given coins which can generate events of probability p, how can we
construct an algorithm to simulate from events of probability h(p).

Originally studied in the case f (p) = 2p, but we shall be interested
in more general Bernoulli factories.

The work presented here is recent and can be found in the
following papers:

Vats, Goncalves, Latuszynski, and R (2022, Biometrika)

Agrawal, Vats, Latuszynski and R (2023, Advances in Applied
Probability)
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Intractable targets

Consider a Bayesian model for parameter θ:

π(θ|y)︸ ︷︷ ︸
Posterior

∝ f (y |θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

:= π̃(θ|y) .

The posterior is often complicated enough that it is only known up
to the unnormalized π̃(θ|y).

Markov chain Monte Carlo (MCMC) algorithms may be used to
sample from π(θ|y).

Topics in Retrospective simulation (Gareth Roberts) 30



Accept-Reject based MCMC

An accept-reject MCMC algorithm (k + 1) update:

1. Generate θ∗ ∼ q(θ∗|θk)

2. Set θk+1 = θ∗ with probability α(θk , θ
∗).

3. Else, θk+1 = θk .

Of course α(θ, θ∗) needs to chosen to satisfy invariance (more on
this later).

If α(θ, θ∗) can be evaluated, then obtaining an event with prob.
α(θ, θ∗) is by:

Get U ∼ U(0, 1) and check is U ≤ α(θ, θ∗)
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Metropolis-Hastings (MH)

A popular acceptance probability used is the Metropolis-Hastings
acceptance probability:

αMH(θ, θ∗) = min

{
1,

π(θ∗|y) q(θ|θ∗)

π(θ|y) q(θ∗|θ)

}
= min

{
1,

π̃(θ∗|y) q(θ|θ∗)

π̃(θ|y) q(θ∗|θ)

}

Of course, if π̃(θ|y) is known, then MH can be implemented easily.

Topics in Retrospective simulation (Gareth Roberts) 32



Metropolis-Hastings (MH)

A popular acceptance probability used is the Metropolis-Hastings
acceptance probability:

αMH(θ, θ∗) = min

{
1,

π(θ∗|y) q(θ|θ∗)

π(θ|y) q(θ∗|θ)

}
= min

{
1,

π̃(θ∗|y) q(θ|θ∗)

π̃(θ|y) q(θ∗|θ)

}

Of course, if π̃(θ|y) is known, then MH can be implemented easily.

Topics in Retrospective simulation (Gareth Roberts) 32



Intractable posteriors

Consider problems that yield targets that cannot be evaluated.
This may be for example, because

π(θ|y) =

∫
η
g(θ, η|y)dη .

This problem arises in

▶ Priors on constrained spaces

▶ Missing data - imputation

▶ Bayesian inference for diffusions

Here,

αMH(θ, θ∗) = min

{
1,

π(θ∗|y) q(θk |θ∗)

π(θ|y) q(θ∗|θk)

}
cannot be evaluated.
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Barker’s algorithm

Barker (1965) proposed the acceptance function:

αB(θ, θ∗) =
π(θ∗|y) q(θ|θ∗)

π(θ|y) q(θ∗|θ) + π(θ∗|y) q(θ|θ∗)

Barker’s algorithm is not very popular due to Peskun’s ordering
result.
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Peskun Ordering (Peskun (1973))

Let X̄h = n−1
∑

t h(Xt) be a Monte Carlo estimator for a function
h. Let PB and PMH be Barker’s and MH Markov kernels. Then

varπ(PMH , h) ≤ varπ(PB , h) ≤ 2 varπ(PMH , h) + Varπ(h)

where varπ(P, h) = limn→∞ nVar(X̄h) is the asymptotic variance
when Xt is produced from P.

So although Barker’s is more inefficient, it is not too much so.
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Barker’s for intractable posteriors

But Barker’s still doesn’t solve our problem since π(θ|y) still
appears in the function:

αB(θ, θ∗) =
π(θ∗|y) q(θ|θ∗)

π(θ|y) q(θ∗|θ) + π(θ∗|y) q(θ|θ∗)

To the rescue: Bernoulli factory!
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Bernoulli factory
A Bernoulli factory is an algorithm that generates a Bernoulli event
of probability h(p) for some function h(·), using Bernoulli(p)
events.

Want a Bernoulli factory to get events of prob. αB(θ, θ∗) without
evaluating it.
Goncalves, Latuszynski and R (2017) proposed the following.
Suppose we can, find cθ

π(θ|y)q(θ∗|θ) ≤ cθ .

Then set π(θ|y)q(θ∗|θ) = cθpθ where

pθ = π(θ|y)q(θ∗|θ)/cθ ≤ 1,

Then to generate events with probability

π(θ∗|y)q(θ∗|θ)

π(θ|y)q(θ|θ∗) + π(θ∗|y)q(θ∗|θ)
=

cθ∗pθ∗

cθpθ + cθ∗pθ∗

we propose a two-coin algorithm.
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Two-coin algorithm

1. Draw C1 ∼ Bern

(
cθ∗

cθ + cθ∗

)
2. If C1 = 1, then

2.1 Draw C2 ∼ Bern(pθ∗)
2.2 If C2 = 1, then output 1
2.3 If C2 = 0, then goto Step 1

3. If C1 = 0, then

3.1 Draw C2 ∼ Bern(pθ)
3.2 If C2 = 1, then output 0
3.3 If C2 = 0, then go to Step 1

The above algorithm outputs 1 w.p. αB(θ, θ∗).

But how do we
sample Bern(pθ)?
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Two-coin algorithm by retrospective sampling

To sample Bern(pθ), we use retrospective simulation. Note that

pθ =
π(θ|y)q(θ∗|θ)

cθ
=

q(θ∗|θ)
∫
g(θ, η|y)dη

cθ

=
q(θ∗|θ)

cθ

∫
g(θ, η|y)

h(η)
h(η)dη

for some density h. Then draw Z ∼ h

Pθ =
q(θ∗|θ)g(θ,Z |y)

cθh(Z)
and E (Pθ) = pθ .

(careful - need h so that Pθ < 1.)
So if C2 ∼ Bern(Mθ), then

P(C2 = 1) = E (I (C2 = 1)) = E (E (I (C2 = 1)|Mθ)) = pθ .

So C2 ∼ Bern(pθ)
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Two-coin algorithm

1. Draw C1 ∼ Bern

(
cθ∗

cθ + cθ∗

)
2. If C1 = 1, then

2.1 Draw C2 ∼ Bern(pθ∗)
2.2 If C2 = 1, then output 1
2.3 If C2 = 0, then goto Step 1

3. If C1 = 0, then

3.1 Draw C2 ∼ Bern(pθ)
3.2 If C2 = 1, then output 0
3.3 If C2 = 0, then go to Step 1

Algorithm restarts often if pθ is small and cθ∗ >> cθ or pθ∗ are
small and cθ∗ << cθ . That is, if we propose unlikely values in the
Barker’s algorithm, algorithm gets stuck in a loop.

Can choose to increase one of the cs to make them comparable in
size, but then maybe both pθ and pθ∗ could be small.

Not robust!
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Portkey Barker’s algorithm
We need a way of getting out of trouble (exiting the loop) without
violating stationarity of the resulting Markov chain.

(Name inspired by Harry Potter!)
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Portkey Barker’s algorithm

Here, the acceptance probability need not be the ratio of the target
densities.

We propose the Portkey Barker’s algorithm for
d(θ, θ∗) ≥ 0.

αP(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) + d(θ, θ∗)

Theorem
If d(θ, θ∗) = d(θ∗, θ), then αP(θ, θ∗) yields a π-invariant Markov
chain.

We consider, for β > 0,

αβ(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) +
1 − β

β
(cθ∗ + cθ)

Topics in Retrospective simulation (Gareth Roberts) 42



Portkey Barker’s algorithm

Here, the acceptance probability need not be the ratio of the target
densities. We propose the Portkey Barker’s algorithm for
d(θ, θ∗) ≥ 0.

αP(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) + d(θ, θ∗)

Theorem
If d(θ, θ∗) = d(θ∗, θ), then αP(θ, θ∗) yields a π-invariant Markov
chain.

We consider, for β > 0,

αβ(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) +
1 − β

β
(cθ∗ + cθ)

Topics in Retrospective simulation (Gareth Roberts) 42



Portkey Barker’s algorithm

Here, the acceptance probability need not be the ratio of the target
densities. We propose the Portkey Barker’s algorithm for
d(θ, θ∗) ≥ 0.

αP(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) + d(θ, θ∗)

Theorem
If d(θ, θ∗) = d(θ∗, θ), then αP(θ, θ∗) yields a π-invariant Markov
chain.

We consider, for β > 0,

αβ(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) +
1 − β

β
(cθ∗ + cθ)

Topics in Retrospective simulation (Gareth Roberts) 42



Portkey Barker’s algorithm

Here, the acceptance probability need not be the ratio of the target
densities. We propose the Portkey Barker’s algorithm for
d(θ, θ∗) ≥ 0.

αP(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) + d(θ, θ∗)

Theorem
If d(θ, θ∗) = d(θ∗, θ), then αP(θ, θ∗) yields a π-invariant Markov
chain.

We consider, for β > 0,

αβ(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) +
1 − β

β
(cθ∗ + cθ)

Topics in Retrospective simulation (Gareth Roberts) 42



Portkey Barker’s algorithm

αβ(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) +
1 − β

β
(cθ∗ + cθ)

Ideally, choose β ≈ 1 so as to remain close to the Barker’s
algorithm. Because:

Theorem
For β > 0,

varπ(h,PB) ≤ β varπ(h,Pβ) + (β − 1)Varπ(h) .

and if there exists γ > 0 such that pθ∗ > γ and pθ > γ, then

varπ(h,Pβ) ≤
(

1 +
1 − β

γβ

)
varπ(h,PB) +

1 − β

γβ
Varπ(h) .

Then why use Portkey Barker’s?
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Portkey Two-coin algorithm

1. Draw S ∼ Bern(β) (S is the portkey)

2. If S = 0, output 0.

3. If S = 1,

3.1 Draw C1 ∼ Bern

(
cθ∗

cθ + cθ∗

)
3.2 If C1 = 1, then

3.2.1 Draw C2 ∼ Bern(pθ∗)
3.2.2 If C2 = 1, then output 1
3.2.3 If C2 = 0, then goto Step 1

3.3 If C1 = 0, then

3.3.1 Draw C2 ∼ Bern(pθ)
3.3.2 If C2 = 1, then output 0
3.3.3 If C2 = 0, then go to Step 1
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Flipped Portkey’s

Notice that if we divide Portkey Barker’s throughout by

π(θ∗|y)q(θ|θ∗)π(θ|y)q(θ∗|θ)

then,

αP(θ, θ∗) =
π(θ∗|y)q(θ|θ∗)

π(θ|y)q(θ∗|θ) + π(θ∗|y)q(θ|θ∗) + d(θ, θ∗)

=
(π(θ|y)q(θ∗|θ))−1

(π(θ|y)q(θ∗|θ))−1 + (π(θ∗|y)q(θ|θ∗))−1 + d ′(θ, θ∗)

So if we can lower bound π(θ|y)q(θ∗|θ), we can implement a
similar Portkey two-coin algorithm.
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Application: Bayesian Correlation Estimation

Suppose

y1, . . . , yn|R iid∼ N(0,R)

where R is a p × p correlation matrix.

Let S+
p be the set of p × p correlation matrices. Liechty, Liechty

and Muller (Bimetrika, 2009) set priors:

f (R | µ, σ2) = L(µ, σ2)
∏
i<j

1√
2πσ2

exp

{
−(rij − µ)2

2σ2

}
I{R ∈ S+

p } , s.t.

L−1(µ, σ2) =

∫
R∈S+

p

∏
i<j

1√
2πσ2

exp

{
−(rij − µ)2

2σ2

}
drij

Further, µ ∼ N(0, τ2) and σ2 ∼ IG (a0, b0) are chosen. Interest is
in the posterior distribution for (R, µ, σ2).
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MCMC steps
Let l = p(p − 1)/2. To implement a component-wise algorithm:

f (rij | r−ij , µ, σ
2) ∝ |R|−n/2 exp

{
− tr(R−1Y TY )

2
− (rij − µ)2

2σ2

}
I{lij≤rij≤uij}

We use Metropolis-Hastings update with a Gaussian proposal for
each rij .

f (µ | R, σ2) ∝ L(µ, σ2)
∏
i<j

exp

{
−(rij − µ)2

2σ2

}
exp

{
− µ2

2τ2

}
,

f (σ2 | R, µ) ∝ L(µ, σ2)
∏
i<j

exp

{
−(rij − µ)2

2σ2

}(
1

σ2

)a0+l/2+1

exp

{
−b0
σ2

}
,

Running Metropolis steps for the conditional updates of µ and σ2

is not possible.
Liechty Liechtly and Muller (2009) use an approximate inference
shadow prior approach.
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Application: Flipped Portkey Barker’s
Let’s focus on the µ update:

f (µ | R, σ2) ∝ L(µ, σ2)
∏
i<j

exp

{
−(rij − µ)2

2σ2

}
exp

{
− µ2

2τ2

}
Recall,

L−1(µ, σ2) =

∫
R∈S+

p

∏
i<j

1√
2πσ2

exp

{
−(rij − µ)2

2σ2

}
drij

Obtaining an unbiased estimate of L−1 is simple and

L−1(µ, σ2) ≤
[
Φ
(
σ−1(1 − µ)

)
− Φ

(
σ−1(−1 − µ)

)]p(p−1)/2
:= c̃µ

which gives us a lower bound for f (µ | R, σ2). So we can use
flipped portkey Barker’s algorithm.
We study the correlation of the closing prices of the four major
European stocks from 1991-1998.
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Figure: Log of the ratio of the Bernoulli factory loops for one run of
length 1e5.
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Example: ACF plots
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Figure: Autocorrelation plot for one run of length 1e5.
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Example: Efficiency

Table: Averaged results from 10 replications of length 1e4

β 1 .90

ESS 542 (13.50) 496 (9.00)

ESS/s 9.63* (-) 14.83 (0.279)

Mean loops µ 218.43 (148.89) 2.99 (0.010)

Mean loops σ2 3.21 (0.02) 2.49 (0.010)

Max loops µ 2084195 (1491777) 34 (2.94)

Max loops σ2 38 (1.13) 27 (1.51)

Could only do 10 replications as β = 1 original would get stuck in
large loops!

However to get 2-coin to even work this well, we had to use really
small proposals (much smaller than “optimal” Barker) ....
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Max loops σ2 38 (1.13) 27 (1.51)

Could only do 10 replications as β = 1 original would get stuck in
large loops!

However to get 2-coin to even work this well, we had to use really
small proposals (much smaller than “optimal” Barker) ....
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Some conclusions

▶ Bernoulli factory MCMC methods can be an attractive to data
augmentation in a wide range of bayesian inference problems.

▶ Barker has natural advantages due to the two-coin algorithm.

▶ But Barker is not computationally robust.

▶ Portkey Barker solves the problem at the cost of a very minor
loss in Markov chain efficiency.

▶ Efficiency and scaling for Barker and Portkey Barker can use
theory developed in Agrawal, S., Vats, D.,  Latusyński, K.,
Roberts, G. O. (2023) .
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Optimal Scaling Beyond Metropolis
Consider the setup of R Gelman and Gilks (1996)

Consider a sequence of target distributions {πd}

πd(xd) =
d∏

i=1

f (xdi ), xd = (xd1 , . . . , x
d
d )T ∈ Rd .

where f is positive and in C 2 (the class of all real-valued functions
with continuous second order derivatives) Further, f ′/f is Lipschitz
and the following moment conditions hold,

Ef

[(
f ′(X )

f (X )

)8
]
< ∞, Ef

[(
f ′′(X )

f (X )

)4
]
< ∞.

Denote:

J = Ef

[(
f ′(X )

f (X )

)2
]
.
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Optimal Scaling Beyond Metropolis
Consider the Gaussian proposal distributions
{Qd(xd , ·)} = N(xd , σ2

d) where for some constant l ∈ R+,

σ2
d = l2/(d − 1) .

We accept draws from the proposal with probability α where α is
such that there exists a balancing function, gα : [0,∞) → [0, 1],
such that,

(Practicality) α(x , y) = gα

(
π(y)

π(x)

)
, x , y ∈ X ,

(Invariance) gα(z) = zgα

(
1

z

)
, 0 ≤ z < ∞,

(Weak) gα(ez), z ∈ R is Lipschitz continuous.

R Gelman and Gilks (1996) (and many others) prove weak
convergence and obtain optimal scaling for α = αMH . We extend
their proof to this general class of acceptances.
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Optimal Scaling Beyond Metropolis: Result
We speed up the process by a factor of d

X d
[dt] = (X d

[dt],1,X
d
[dt],2, . . . ,X

d
[dt],d)T ; t > 0.

Define a new 1-dimensional process Ud
t = X d

[dt],1.

Then, Ud ⇒ U,
where U satisfies the Langevin stochastic differential equation,

dUt = (hα(l))1/2dBt + hα(l)
f ′(Ut)

2f (Ut)
dt,

with hα(l) = l2Mα(l), where,

Mα(l) =

∫
R

gα(eb)︸ ︷︷ ︸
Coming from α

1√
2πl2J

exp

{−(b + l2J/2)2

2l2J

}
db. (2)

In previous proofs, α = αMH and Mα(l) is obtained in closed form.
We keep the integral intact and using the invariance property of α
get exact weak convergence.
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Barker’s magic number?

For Barker’s αB , the optimal acceptance probability is 0.158 and
the optimal proposal variance is l2∗/(d − 1) where

l∗ =
2.46√

J
compare to

2.38√
J

for MH
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Back to Bernoulli and Barker!
Unfortunately, optimal scaling for Portkey Barker’s are not
obtained. However, since Portkey Barker’s ≈ Barker’s, we can use
the Barker scaling as a good approximation.

Table: Averaged results from 10 replications using optimal scaling for
Barker and Portkey Barker (β = 0.9).

β 1 .90

ESS 542 (13.50) 496 (9.00)

ESS/s 9.63* (-) 14.83 (0.279)

Tuning to about 15.8% here:
β = .90: 104 samples in 40s with estimated ESS = 514
For Barker, the number in * is not to be trusted:
β = 1: < 103 samples in 24hrs and simulation was forcibly
stopped!
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Main references

▶ Vats, D., Gonçalves, F.,  Latusyński, K., Roberts, G. O.,
Efficient Bernoulli Factory MCMC for intractable posteriors,
Biometrika, 2021+

Advantages
▶ Markovian dynamics are mildly altered for β ≈ 1
▶ Exact MCMC
▶ Significantly more robust

Disadvantages
▶ Loss of statistical efficiency from MH algorithms
▶ Finding the bounds cθ may be challenging.

▶ Agrawal, S., Vats, D.,  Latusyński, K., Roberts, G. O.,
Optimal Scaling of MCMC Beyond Metropolis, 2023.
▶ Results for Lazy MH and other acceptance
▶ Can be extended to other optimal scaling results
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