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The problem

1. We are interested in the invariant distribution π of a given
Markov chain P.

2. We have a given invariant distribution π and have one (or
many) Markov chain for which it is the invariant distribution.

1 is steady state analysis, important in many fields, including
stochastic geometry. 2 is MCMC.
Under suitable irreducibility, aperiodicity assumptions,
P(Xk ∈ A|X0 = x0) should converge to π(A). But how large
should k be?
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We want to avoid the need to make the approximation: for “large
enough” k , P(Xk ∈ A|X0 = x0) ≈ π(A).
Perfect simulation provides a collection of methods to do this.
It is closely related but different to coupling.
Will discuss:

▶ Coupling from the past

▶ Read-once CFTP

▶ Catalytic coupling

▶ One-shot coupling

▶ Some monotonicity methods and dominated CFTP
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Coupling From The Past (CFTP) (Propp & Wilson 1996)

Imagine running an ergodic Markov chain started at time “−∞”.
It is reasonable to hope that by time 0 it will have converged.
Perhaps we can acertain its value at time 0 without going back as
far as time −∞?
We consider constructing the Markov chain using a collection of
independent random maps:

. . . ,C [−1],C [0],C [1],C [2], . . .

with the property that C [i ](x) distributed according to P(x , ·).
Then set C [i ,j] to be the composite random map:

Ci ,j = C [j]C [j−1] . . .C [i+1]C [i ]

so that given starting value, X0 = x , Xn = C [1,n](x) has
distribution Pn(x , ·).
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What a random map looks like
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But this construction is not unique - many constructions for
random maps can lead to the same P.
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Also C [−n+1,0](x) ∼ Pn(x , ·). So the limiting distribution of
C [−n+1,0](x) as n → ∞ is π.

Moreover it might be true that limn→∞ C [−n+1,0](x) exists or even
that there exists a time N such that for n ≥ N,

C [−n+1,0](x) = C [−N+1,0](x) .

If we can identify this limit, we have an exact observation from π.
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For N ≤ n we have that

C [−n+1,0] = C [−N+1,0]C [−n+1,−N]

Look at the image of the map C [−N+1,0], ie
IN = {C [−N+1,0](y), y ∈ X}. Suppose IN contains just one value, z
say (coalescence) then for all y , C [−N+1,0](y) = z and in
particular

C [−N+1,0]C [−n+1,N](x) = z

for all n ≥ N, x ∈ X.
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Will it work?
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Will it work?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The coupling merely permutes states. Coupling never achieved.
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Improved coupling

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Topics in Retrospective simulation (Gareth Roberts) 10



A monotone coupling

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Monotonicity helps to keep track of coalescing states (more later)
which becomes important in harder examples.
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There is no reason why coalescence might be achieved for any N
for any given construction of the random updates. However we
have a great deal of freedom in choosing {C [i ]}. Some may be far
more effective coalescers than others.

Practical considerations such as keeping track of coalescence
become crucial in more complicated problems.

This construction does not require that {C [i ]} are iterations from
the same Markov chain, just independent iterations which are
stationary with respect to π.
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Uniform ergodicity

We say that a Markov chain X is uniformly ergodic if there exists a
constant ρ < 1 and constant A such that for all x ∈ X

∥Pn(x , ·)− π∥ ≤ Aρn .

Here we use ∥ · ∥ to denote total variation distance (generally one
of the hardest metric to work with) although similar theory can be
derived for other metrics such as Wasserstein metrics.

This has enormous practical and theoretical advantages. There do
not exist arbitrarily bad starting values.

Most MCMC algorithms are not uniformly ergodic. But we can
sometime manipulate them to ensure uniform ergodicity.
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Uniform ergodicity for a simple MCMC algorithm

Consider the independence sampler.

Interested in π but can simulate directly from q with the same
support as π.

Given Xn, propose a new value Yn+1 ∼ q and accept wp

min

{
1,

π(Yn+1)q(Xn)

q(Yn+1)π(Xn)

}
.

Theorem (Mengersen and Tweedie 1994)
The independence sampler is uniformly ergodic if and only if π/q is
bounded above.
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This coupling construction of putting together finite collections of
random maps has no chance of success unless we have uniform
ergodicity. The construction requiring that IN be a singleton is a
constructive minorisation condition:

PN(x , ·) ≥ ϵν(·)

where ϵ denotes the probability of success of the coalescence after
N iterations, and ν is the probability measure describing the
distribution of the value coalesced to.

From now on we shall take C [i ] to be IID draws from a composite
Markov chain iteration with invariant distribution π and satisfying
the minorisation condition above, often constructed by composing
different Markov chain mechanisms.
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C [0],C [−1],C [−2], . . . of C
“back in time”...

X

C [0]

−5 −4 −3 −2 −1 0

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C [0],C [−1],C [−2], . . . of C
“back in time”...

X

C [−1] C [0]

−5 −4 −3 −2 −1 0

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C [0],C [−1],C [−2], . . . of C
“back in time”...

X

C [−2] C [−1] C [0]

−5 −4 −3 −2 −1 0

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C [0],C [−1],C [−2], . . . of C
“back in time”...

X

C [−3] C [−2] C [−1] C [0]

−5 −4 −3 −2 −1 0

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C [0],C [−1],C [−2], . . . of C
“back in time”...

2. ...until C [−l ] is coalescent. Then C [0] ◦ · · · ◦C [−l ] is coalescent.

X

C [−4] C [−3] C [−2] C [−1] C [0]

− 5 − 4 − 3 − 2 − 1 0

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C [0],C [−1],C [−2], . . . of C
“back in time”...

2. ...until C [−l ] is coalescent. Then C [0] ◦ · · · ◦C [−l ] is coalescent.

3. ...and x ′ = C [0] ◦ · · · ◦ C [−l ](X ) is a sample from Π.

X

C [−4] C [−3] C [−2] C [−1] C [0]

− 5 − 4 − 3 − 2 − 1 0

x ′ ∼ Π

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C [0],C [−1],C [−2], . . . of C
“back in time”...

2. ...until C [−l ] is coalescent. Then C [0] ◦ · · · ◦C [−l ] is coalescent.

3. ...and x ′ = C [0] ◦ · · · ◦ C [−l ](X ) is a sample from Π.

4. Waiting time Geometric(ϵ).

X

C [−4] C [−3] C [−2] C [−1] C [0]

− 5 − 4 − 3 − 2 − 1 0

x ′ ∼ Π

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Read-once CFTP (Wilson 2000): derivation from minorisation conditions

Suppose P(x , ·) ≥ ϵν(·) (ie X is 1-small). Of course π = πP so

π = π(ϵν + (1− ϵ)Q)

where Q is the residual kernel (PN = ϵν + (1− ϵ)Q). So

π[I − (1− ϵ)Q] = ν

and

π = ν(1 + (1− ϵ)Q + ((1− ϵ)Q)2 + . . .)

which implies that we can construct π exactly by introducing an
auxiliary variable G ∼Geom(ϵ) and then:
1. starting from ν(·)
2. running G − 1 steps of the Markov chain with kernel Q.
The value after G − 1 steps has distribution π.
Magic! But how can this be implemented?
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Assume that C : X → X is a random function that preserves
stationarity w.r.t. target distribution Π, ie.∫

X
P(C (x) ∈ A)Π(dx) = Π(A).

Assume there is a positive probability of C being coalescent, ie.
#C (X) = 1.

Here C (X) = {C (x) : x ∈ X} is the image of C
and # denotes cardinality.
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C1,C2, . . . of C

2. Let T0,T1, . . . denote indices of coalescent functions,
ie. CTi

(X ) is coalescent.

3. For i = 1, 2, . . . let xi = CTi−1 ◦ · · · ◦ CTi−1
(X )

X

C1 C2 C3 C4 C5 C6 C7

0 1 2 3 4 5 6 7
Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C1,C2, . . . of C

2. Let T0,T1, . . . denote indices of coalescent functions,
ie. CTi

(X ) is coalescent.

3. For i = 1, 2, . . . let xi = CTi−1 ◦ · · · ◦ CTi−1
(X )

X

C1 C2 C3 C4 C5 C6 C7

0 1 2 3 4 5 6 7T0 = 2 T1 = 5 T2 = 7
Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

1. Generate independent realisations C1,C2, . . . of C

2. Let T0,T1, . . . denote indices of coalescent functions,
ie. CTi

(X ) is coalescent.

3. For i = 1, 2, . . . let xi = CTi−1 ◦ · · · ◦ CTi−1
(X )

Then x1, x2, . . . are an IID sample from Π.

X

C1 C2 C3 C4 C5 C6 C7

0 1 2 3 4 5 6 7T0 = 2 T1 = 5 T2 = 7

x1 = C4 ◦ C3 ◦ C2(X ) ∼ Π
x2 = C6 ◦ C5(X ) ∼ Π

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Coupling vs coalescence
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Coupling vs coalescence

Coalescence is harder than coupling because

▶ It is intrinsically more demanding, ie it needs more things to
couple.

▶ It is practically much more complicated. How to keep track of
all the trajectories.

For example consider the 3 state chain:

P =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


Then there is no 1-step minorisation, but the whole space is
1-pseudo small (R+R, 2000, Stochastic models).

Topics in Retrospective simulation (Gareth Roberts) 29



When does it work?

In its pure form, both CFTP and RoCFTP requires that X is
1-small.
We can extend this to requiring that the state space is n-small by
just letting C [i ] denote the random map obtained by n steps of P,
ie C [i ](x) ∼ Pn(x , ·).
But this requires P to be uniformly ergodic, and this is rather
restrictive.
A further problem is we might not be able to work out whether
coalescence has been achieved.
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Strategies for making coalescence work

Two issues:

▶ constructing a suitable uniformly ergodic Markov chain with
adequate minorisation probability;

▶ constructing the random map and the coalescence.
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Composite chains

Instead of using n steps of a given Markov chain kernel P, we use∏n
i=1 Pi , where different Pi s have ‘different roles’.

For example:

▶ Bounded collapsing P1 is a uniformly ergodic ergodic chain
for which X is 1-small. This is typically possible with an
algorithm such as an independence sampler with very
fat-tailed proposal. It needn’t be an efficient stand alone
method and typically isn’t!

▶ Shrinking P2, . . .Pn−1 are moves of an algorithm typically
with some kind of monotonicity and/or contraction property.

▶ Coalescence Pn attempts the coalescence.

This is a one-shot strategy (see R+Rosenthal, SPA, 2002).
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Keeping track

Typically interested in C [i ](A) where A is a set (often infinite)
stored in a suitable format.
Would like to be able to find B ⊃ C [i ](A) without looking at the
image of all the elements of A.
Most useful trick is monotonicity: there exists a partial ordering
on X, ≤ typically with a kind of well-ordered property that
suitable sets (eg bounded ones) possess infima and suprema. Then
the property we require is that

▶ If x ≤ y then there exists a random update function
construction F such that

F (x) ≤ F (y) a.s.

Topics in Retrospective simulation (Gareth Roberts) 33



Is this ever possible for real MCMC?

MCMC is typically on complex high-dimensional spaces, not known
for their monotonicity.
However the simple structure of many MCMC algorithms reveals
many usable monotonicity properties, at least for suitable target
densities.
Eg: random walk Metropolis, slice samplers, independence
samplers, Langevin methods and Gibbs samplers.
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Some random block choices
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Example (Beskos and Roberts, 2005)

Consider a d-dimensional Gaussian density with precision matrix
Q = (qij) which is positive-definite and qij ≤ 0 for i ̸= j (a Stiljes
matrix).
Such a distribution is in the positive-association class, and one
consequence of this is that Xi and Xj are positively correlated for
all i , j .
The partial ordering: x ≤ y if and only if

xi ≤ yi , for all 1 ≤ i ≤ d

is preserved by the Gibbs sampler which uses the same standard
normal random seed to update the state starting from each
starting value.
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Example (Beskos and Roberts, 2005)
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Example (Beskos and Roberts, 2005)

As with all coalescence methods, block length is important for
algorithm efficiency.
Ths method was used to simulate from multi-dimensional
truncated normals. Works well (eg hundreds of IID observations
per second in 100 dimensions on a 1500MHz machine).
Computing cost scales well (possibly linearly) with dimension.
A version of the method for general Gaussian densities exists. This
is less efficient.
Extensions to other Gibbs samplers possible.
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Catalysts (Breyer and R, 2001)

Various specific methods for coalescence in continuous spaces have
been proposed (eg Murdoch and Green 1998 and Wilson, 2000)
(eg for RWM with symmetric unimodal proposals). See Huber
(2016) for recent developments

The catalyst approach has the advantage of being generic.

It starts with a random map and improves it.
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Catalysts (Breyer and R, 2001)

Let F (x) ∼ P(x , ·) be a random map (as part of a coalescence
block). F may have very poor coalescence properties. But we can
attempt to improve it!

▶ Choose a location for applying a catalyst, x∗ say.

▶ Simulate Y ∼ P(x∗, ·).
▶ Simulate U ∼ U(0, 1).

▶ For any x , set F̃ (x) = Y with probability

min

{
1,

P(x , dY )P(x∗, dF (x))
P(x∗, dY )P(x , dF (x)

}
▶ Otherwise set F̃ (x) = F (x).
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Then F̃ (x) ∼ P(x , ·) too.
This follows since the algorithm merely carries out (for each x) an
independence sampler with invariant distribution P(x , ·) and
proposal P(x∗, ·).
The point is that we use the same Y for each x . So this will have
a coupling effect.
For suitably continuous P, x values close to x∗ will couple with x∗.
Such x are in the basin of attraction of (x∗,Y ).
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Simple illustration of catalyst

( 0 , 3 )

P(x , ·) ∼ N(x , 1), take F (x) = x + Z for Z ∼ N(0, 1)
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Simple illustration of catalyst

( 0 , 3 )

*
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Simple illustration of catalyst

( 0 , 3 )

*
O

Propose Y ∼ N(x∗, 1) in this case Y = −4.
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Simple illustration of catalyst

( 0 , 3 )

*
O

Propose Y for every x value.Topics in Retrospective simulation (Gareth Roberts) 45



Simple illustration of catalyst

( 0 , 3 )

*
O

All xs which accept have F̃ (x) = Y .
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

In practise:

! C is a compound update function C = FT ◦ · · · ◦ F1

! Assume we can determine bounding set Wt ⊇ Ct(X ).

! Redefine Ti , so WTi
is “coalescent”.

! Then x1, x2, . . . are still an IID sample from Π.

X

F1 · · · FT C2 C3 C4 C5 C6 C7

0 1 2 3 4 5 6 7
Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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! Redefine Ti , so WTi
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F1 · · · FT C2 C3 C4 C5 C6 C7
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

In practise:

! C is a compound update function C = FT ◦ · · · ◦ F1

! Assume we can determine bounding set Wt ⊇ Ct(X ).

! Redefine Ti , so WTi
is “coalescent”.

! Then x1, x2, . . . are still an IID sample from Π.

X

F1 · · · FT C2 C3 C4 C5 C6 C7

0 1 2 3 4 5 6 7T0 = 2 T1 = 7
Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

In practise:

! C is a compound update function C = FT ◦ · · · ◦ F1

! Assume we can determine bounding set Wt ⊇ Ct(X ).

! Redefine Ti , so WTi
is “coalescent”.

! Then x1, x2, . . . are still an IID sample from Π.

X

F1 · · · FT C2 C3 C4 C5 C6 C7

0 1 2 3 4 5 6 7

x1 = C6 ◦ · · · ◦ C2(X ) ∼ Π

T0 = 2 T1 = 7
Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Bayesian analysis

This example is from a Bayesian analysis of mixture model using
data augmentation.
Monotonicity in the allocation space by enlarging state space to
allow datat to be allocated to any number of mixture components
(including none).

Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

Gibbs Sampling
Catalytic Sampler
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σ2 = 0.25

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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But can do much better (in much shorter time scale and for
minimal extra computing cost per iteration) by employing catalysts.

Introduction
Coupling from the Past

read-once coupling from the past
Coalescence

Example: classification with unknown weights

Gibbs Sampling
Catalytic Sampler
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Plot showing N1

Initially W = Ss,N

n = 100, r = 3
µ = (0, 0.5 , 1)
m = (1

2 , 1
3 , 1

3 )
σ2 = 0.25

Gareth Roberts and Jeff Rosenthal Lecture 4. Coalesence and Perfect Simulation
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Can use these strategies for perfect Bayesian Monte Carlo
inference in realistic moderate sized problems (eg Bayesian analysis
of mixtures, hidden Markov models) etc.

But what if we cannot ensure uniform ergodicity?

Outside the MCMC context it is not possible to pick and choose
our Markov chain mechanism to impose this.

KKC
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Dominated CFTP (Kendall and Moller 2000)
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Dominated CFTP (Kendall and Moller 2000)
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Dominated CFTP (Kendall and Moller 2000)
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Dominated CFTP (Kendall and Moller 2000)
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Dominated CFTP (Kendall and Moller 2000)
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Dominated CFTP (Kendall and Moller 2000)
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Dominated CFTP (Kendall and Moller 2000)
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Most successful area for CFTP by far has been in stochastic
geometry.

KKCs include: first perfect simulation algorithms for important
processes such as the area-interaction point process, cluster point
processes, and other interacting point process models.

Also KKCs in CFTP for queues, links to geometric ergodicity, and
fundamental questions about small sets.
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The future for CFTP

Despite some isolated successes, CFTP has not been found to be
practical in the hardest Bayesian computation problems.

Small set constructions usually suffer from the curse of
dimensionality in continuous state spaces.

So these methods usually require monotonicity or other structure
to be applicable.

Some more recent non-reversible MCM algorithms are explicitly
built around practical regenerations and therefore make CFTP
readily applicable. See McKimm, Pollock,. Roberts and R (2023)
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