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Talk outline

• The zig-zag as an alternative to MCMC. “The Zig-Zag
Process and Super-Efficient Sampling for Bayesian Analysis of
Big Data” arXiv:1607.03188, Ann Stat 2019

• Quasi-stationary Monte Carlo and the ScaLE algorithm “The
scalable Langevin exact algorithm: Bayesian inference for big
data (with discussion)” arXiv:1609.03436, JRSS B 2020

Both these ideas are examples of Continuous-time Monte Carlo
algorithms, and they intrinsically rely on retrospective sampling.

Super-Efficiency:

computational cost of running algorithm

cost of one single likelihood evaluation
−→ 0

in the big data asymptotic.
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Likelihood intractability due to data size

MCMC is the workhorse of Bayesian inference. Since it requires
large numbers of realisations of the posterior density π(x), it relies
on these evaluations to be quick. However connsider (for example)
the big (tall) data case:

π(x) =
n∏

i=1

πi (x)

Evaluation of π(x) is typically an O(n) calculation.

Does that mean that exact Bayesian inference is not realistically
possible for huge data sets?

Maybe we can get away with just computing some of π at each
step? This is known as a subsampling approach.
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Piecewise-deterministic Markov processes
Continuous time stochastic process, denote by Zt .

The dynamics of the PDP involves random events, with
deterministic dynamics between events and possibly random
transitions at events.

(i) The deterministic dynamics. eg specified through an ODE

dzt
dt

= Φ(zt), (1)

So
zs+t = Ψ(zt , s)

for some function Ψ.

(ii) The event rate. Events occur at rate, λ(zt),

(iii) The transition distribution at events. At each event time τ , Z
changes according to some transition kernel



(Non-Reversible) Algorithms Some PDMP algorithms Ergodicity Quasi-stationary Monte Carlo methods

PDMP
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PDMP

Date back to 1951 paper by Mark Kac on the telegraph process.

Mathematical foundations: Davis (1984, JRSS B)

Instrinsically continuous in time unike (almost all) algorithms. Why
would they ever be useful for simulation?

Unlike diffusion processes they are comparatively understudied, and
underused (either for models or in stochastic simulation), especially
in terms of their ergodic properties.

.... until recently
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Non-reversibility for MCMC?

Reversible Markov chains are well-understood mathematically.
They lead to flexible families of algorithms (Metropolsi-Hastings,
etc) which can be implemented using only local computation
(detailed balance equations leading to accept reject mechanisms).

BUT it has long been known in probability that non-reversible
chains can sometimes converge much more rapidly than reversible
ones (see for instance Hwang, Hwang-Ma and Sheu (1993), Chen
Lovasz and Pak (1999), Diaconis, Holmes and Neal (2000).

Hamiltonian MCMC (Hybrid Monte Carlo) tries to construct
chains with non-reversible character, but ultimately it is also
reversible because of the accept/reject step.
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Why does non-reversibility help?

Breaking down random walk behaviour:

Or maybe helping to escape local modes
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But if you had this momentum all the time, the chain would
disproportionately visit the right hand mode.

How to choose the right direction for the momentum? Particularly
in d dimensions.
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Toy example

Consider one-dimensional random on the integers
−n,−(n − 1), . . . n − 1, n started at X0 = 0, ie 

                                                       ½      ½  
 
-n                                            k-1       k          k+1                                                                                                    n 
 
  

Imagine n is large. To have any chance of mixing, the chain needs
to be able to reach ±n.
By the Central Limit Theorem, Xt ≈ N(0, t) ie standard deviation
O(t1/2).
So we need t1/2 to be at least O(n) to have non-negligible
probability of reaching the edges, ie t = O(n2) steps.
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Now consider non-reversible (lifted) RW (Chen et al 1999) 
                                                       0     1-1/n  
 
                                                                                                                    
                                                          1/n   1/n     
                                      1-1/n       
 
 
 

We now have two copies of the state space, the upper one with
momentum +1 and the lower one with momentum -1.
Now we have probability approximately e−1 of reaching ±n in time
exactly n.
It can be shown in fact that the mixing time is O(n log n)
(Diaconis et al, 2000).

But can MCMC algorithms inherit this advantage?
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Non-reversible MCMC algorithms

Much hype about non-reversibility in MCMC. There are still major
challenges in implementation and software for these methods.
However reasons for optimism:

1. High-dimensional scaling theory (methods scale well with
dimension).

2. Principled subsampling (major advantage over subsampled
Langevin methods) - methods scale well with data size).

3. Non-reversible algorithms can sometimes avoid random walk
behaviour.

Here we are largely going to concentrate on the middle one of
these .... although there are a lot of exciting recent developments
in the other areas.
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One-dimensional Zig-Zag

One-dimensional Zig-Zag processes on (respectively) Gaussian and
Cauchy targets.
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velocity = ±1.
Switching rate = max{0,−v(log π)′(x)}.
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Canonical Zig-Zag (multiple dimensions)
State (Xt ,Vt) in dimension d .
Vt,i = ±1 for each i .

dXt = Vt dt

V
(i)
t− → 1− V

(i)
t− at rate

λi (Xt ,Vt) = λ0
i (Xt ,Vt) ≡ max

{
0,−V

(i)
t−

∂ log π(Xt−)

∂X (i)

}
Invariant distribution is

πE (x , v) ∝ π(x) .

Ie in stationarity X and V are independent with V being uniform
over all configerations: (±1,±1, . . .± 1)
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Marginal distribution in x is π.

Truly continuous time algorithm. Skeletons required (either equally
spaced or random) to exptract ergodic estimates.

Markov chain from the jump times alone is biased.
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Refreshment
But there is a lot more flexibility!

For instance, can take

λi (x , v) = λ0
i (x , v) + ν(x)

for any function ν.

Why might we do this?

For irreducibility: to aid communication between different parts of
the state space.

But the larger ν is, the closer to reversibility.

The canonical Zig-Zag is the most non-reversible. (Eg the limit as
ν diverges is a reversible Langevin diffusion, suitably scaled,
Bierkens+Duncan, 2017).

(See Andrieu+Livingstone 2019 for precise statement about the
canonical algorithm minimising asymptotic Monte Carlo variances.)
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Bouncy particle sampler
Closely related to another PDMP scheme, the bouncy particle
sampler (BPS), [Bouchard-Côté et al., 2015].

 

λ(x) = max{−∇ log π(x) · v , 0}

v constant until event occurs upon which it reflects.

Many alternatives/variants available (eg different inner products,
refresh rate, excess switching rate, choice of velocity distribution...)
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Stereographic Projection

Maps Rd to Sd

Many attempts to curtail transient phases by transformations in the
MCMC literature. Stereographic Projection is a very natural tool.

Inexpensive, and constant curvature gives great tractability and
algorithmic advantages.
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SBPS

Stereographic Bouncy Particle Sampler

Piecewise great circle trajectories on the hypersphere projected
back onto Rd :
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Figure: SBPS without (left) and with (right) refreshment for target
distribution N (0, I2).
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Implementation

How do we simulate continuous time stochastic process like this?

Most general techniques using thinned poisson processes, but
application specific to implement.

In its simplest form... if |(log π)′(x)| < c, simulate a Poisson
process of rate c (by simulating the exponential inter-arrival
times). Then at each poisson time, we accept as a direction
change with probability max(−(log π)′(x), 0)/c.

This makes the algorithm inexpensive to implement as we only
need to calculate (log π)′(x) occasionally.

Also automatic and numerical options, plus skew-Metropolised
versions: eg Corbella et al (2021), Pagani et al (2020), Bertazzi et
al (2022), and others, starting to make these methods accessible to
non-specialist users.
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Subsampling
Motivation: intractable likelihood problems where calculating π at
any one fixed location is prohibitively expensive (given that very
many evaluations will be required to run the algorithm. Here,
concentrate on common context for (eg) Bayesian setting:

π(x) =
N∏
i=1

πi (x)

Eg we have N observations (but this method is not in any way
restricted to the independent data case).

At each iteration, aim to only use a small number of the terms in
the product (echoes of SGL approaches in optimisation)

For instance we might try pseudo-marginal MCMC (Beaumont,
2003, Andrieu and Roberts, 2009). But that would require an
unbiased non-negative estimate of π(x) with variance which is
stable as a function of N. But this is not possible for a product
without computing cost which is at least O(N).
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Subsampling within PDMP
PDMP for the exploration of high-dimensional distributions (such
as zig-zag or the ScaLE algorithm, Fearnhead, Johansen, Pollock
and Roberts, 2016) typically use log π(x) rather than π(x) and

log π(x) =
N∑
i=1

log πi (x)

for which there are well-behaved O(1) cost, O(1) variance (or
sometime a little worse) unbiased estimators of log π(x) and its
derivatives.

For example take I ∼ discrete({1, . . . ,N}) and use

• Vanilla Subsampling ̂log π′(x) = N log π′
I (x)

• Control Variate Subsampling
̂log π′(x) = log π′(x∗) + N(log π′

I (x)− log π′
I (x

∗)) where x∗ is
ideally taken to be at or near the mode of π.

Can we use this?
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Eg: subsampling for one-dimensional zig-zag

Eg one-dimensional Zig zag switching rate

max
(
0,−v

∑N
i=1(log πi )

′(x)
)
⇝ O(N) calculation at every switch

(or attempted switch).

Sub-sampling version

• Determine global upper bound M for switching rate

• Simulate Exponential(M) random variable T

• Generate I ∼ discrete({1, . . . ,N})
• Accept the generated T as a “switching time” wp

max
(
0,−VT− ̂log π′(XT )

)
M .

Theorem: This works! (invariant distribution π)

Why? Subsampling is statistically equivalent to adding a
(state-dependent) refresh rate.
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Subsampling: implementational complexity - the transient
phase

Crudely, for an O(1) update in state space:

• Canonical Zig-Zag, O(N) computations required

• Using subsampling, gain factor N1/2 ⇝ complexity O(N1/2)
per step

• Using control variates, gain additional factor N1/2 ⇝
complexity O(1) per step

Superefficiency We call an epoch the time taken to make one
function evaluation of the target density π. The control variate
subsampled zig-zag is superefficient in the sense that the effective
sample size from running the algorithm per epoch diverges.
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Subsampling + control variates – Logistic growth

(a) N = 100 (b) N = 100 (c) N = 100

(d) N = 10, 000 (e) N = 10, 000 (f) N = 10, 000

[Bierkens, Roberts, 2015, http://arxiv.org/abs/1509.00302]

[Bierkens, Fearnhead, Roberts, Ann Stat, 2019]
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Effective Sample Size per epoch
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Is the zig-zag ergodic?

An invariant distribution for (x , v) for the zig-zag is just

πE (x , v) ∝ π(x)

ie X ∼ π and independently the velocity v is uniformly distributed
within {−1, 1}d .

Ergodicity requires that we can reach all locations in (x , v) space.
But can we ensure this?
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Perfectly well-mixing Zig Zag?
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Turns out to be reducible!
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A counter example
π(x , y) ∝ exp{−max(|x |, |y |)}

R1

R2

R3

R4

(a) Contour lines, the regions R1, R2, R3 and
R4, and a typical trajectory for the potential
function U(x) = max(|x1|, |x2|). From the dis-
played starting position it is impossible to reach
a point in R1 with direction (≠1,≠1).

(b) Once we smooth the density function
slightly, it becomes possible to switch the sec-
ond coordinate of the direction vector, making
the process irreducible.

1
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Possible solution

Include a refresh jump rate γi which is uniformly positive, eg
γi (x) = γ̃ > 0.

This makes proving ergodicity easy under minimal assumptions on
π

But for large γ̃, the zig-zag then looks more and more like a
Langevin diffusion which is reversible. Many of the advantages of
non-reversibility are therefore lost.

See Peskun Tierney ordering result of Andrieu-Livingstone 2019)
which shows that adding refresh increases asymptotic Monte Carlo
variance.

Can we establish an ergodicity result for the canonical zig-zag, ie
γ̃ = 0?
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What else could go wrong?
We also need to preclude evanesence



(Non-Reversible) Algorithms Some PDMP algorithms Ergodicity Quasi-stationary Monte Carlo methods

Theorem
Assume that

1. π is positive and C3

2. lim|x |→∞ π(x) = 0 , and

3. has a non-degenerate local maximum, ie the Hessian at the
local maximum is strictly negative definite.

Then the chain is irreducible and converges to π from any starting
distribution.

Method of proof relies heavily upon smoothness and the ability to
approximate by a Gaussian around the local mode. (3) can no
doubt be weakened.
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Irreducibility of BPS?

Without refreshment, canonical BPS can easily be irreducible. Eg
for 2-dimensional isotropic Normal Distribution:

 

Uncountably infinite number of reducibility classes!
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More generally ..

For distributions which are close to spherical symmetry, mixing will
be extremely slow.

For higher-dimensional Gaussians we just need any two eigenvalues
of Σ to be equal to replicate this extreme reducibility.

So, strangely, the eigenvalues of Σ need to be well-separated to
even hope for mixing, leading itself to heterogeneity of scale and
again very slow mixing.

Fortunately, irreducibility is restored under very mild regularity
conditions under refreshment.

But how much refreshment?
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SBPS irreducibility

SBPS chain is also potentially not irreducible without refreshment.

Piecewise great circle trajectories on the hypersphere projected
back onto Rd :
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Figure: SBPS without (left) and with (right) refreshment for target
distribution N (0, I2).
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Summary of Zig-Zag

• PDMPs have many uses for simulation of stochastic processes
(even those very different from PDMPs) as well as steady
state simulation.

• Subsampling and control-variate tweaks greatly improve
efficiency in certain situations. PDMP are particularly
amenable to this.

• More work is needed on studying the theoretical and empirical
properties of these algorithms, and exploiting their flexibility.
(Though lots more I have not told you ...)

• Zigzag is a flexible and usually easy-to-implement method for
simulating from a target distribution.

• Can zigzag be a competitor to Hamiltonian MCMC?
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Quasi-stationary Monte Carlo

Traditional Markov chain Monte Carlo rests on the construction of
an ergodic Markov chain designed to have a prescribed stationary
distribution π.

Quasi-stationary Monte Carlo instead makes use of the conditional
distribution of an killed stochastic process conditioned on not
being killed.

This turns out to be a natural framework for subsampling without
approximation.
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Quasi-stationarity: boundary killing
Ant on a volcanic island undergoing Brownian motion, killed at τ∂
when it touches lava.

What can be said about P(Xt ∈ · |τ∂ > t) for large t?
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Quasi-stationarity: interior killing

Take a continuous-time Markov process on Rd

(Xt , t ≥ 0).

We then augment this process with an inhomogeneous Poisson
process:

τ∂ := inf

{
t ≥ 0 :

∫ t

0
κ(Xs)ds ≥ ξ

}
,

where ξ ∼ Exp(1), independent of X .

Here κ : R2 → [0,∞) is a locally bounded function, the killing rate.
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Quasi-stationarity: interior killing example
Take X to be a standard Brownian motion on R2, κ(y) = ∥y∥2.

What can be said about P(Xt ∈ · |τ∂ > t) for large t? Gaussian.
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Quasi-stationarity

Say a probability measure µ is quasi-stationary if for any t ≥ 0,

Pµ(Xt ∈ · |τ∂ > t) = µ(·).

Say µ is quasi-limiting if for each measurable set E

Px(Xt ∈ E |τ∂ > t) → µ(E ).

Rich literature in probability theory; e.g. population dynamics, and
textbook of Collet et al (2013).

This actually arises quite naturally in computing:

τ∂ = {algorithm behaves very badly},

e.g. stack overflow, very slow runs, cf. user-impatience bias.
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Characterisation of quasi-stationarity distributions

Discrete time

• Transition matrix P.

• π is stationary if

πP = π.

• π quasi-stationary if

πP = λπ,

some 0 < λ < 1.

• Semigroup

πPn = λnπ.

Continuous time

• Rate matrix Q.

• π is stationary if

πQ = 0.

• π quasi-stationary if

πQ = −λπ,

some λ > 0.

• Semigroup

πPt = e−λtπ.

Theory of quasi-stationarity more delicate, so why bother ....
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Quasi-stationary Monte Carlo

Start with a diffusion, for simplicity assume X is Brownian motion.

At time t, kill X at rate κ(Xt).

Idea of quasi-stationary Monte Carlo: choose κ in such a way that
the quasi-limiting distribution coincides with the target distribution
π.

Need to take

κ(x) =
1

2

∆π(x)

π(x)
+ C

where ∆ denotes the Laplacian and C is an arbitrary constant
(which needs to be chosen so that κ is always non-negative.
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How to extract samples from π?

For MCMC it is obvious to just take values of the chain after a
while which should be close to samples from π.

It is clearly inefficient to take long runs of Brownian motion and
just keep the ones which have not been killed.

Instead we have two approaches

• The Scalable Langevin Exact Algorithm: ScaLE which
propagates a population of particles. Once one dies. it is
resurrected from the location of one of the other particles.

• ReScaLE which uses a single trajectory which on death
regenerates from a point along the trajectory to date.



(Non-Reversible) Algorithms Some PDMP algorithms Ergodicity Quasi-stationary Monte Carlo methods

How to extract samples from π?

For MCMC it is obvious to just take values of the chain after a
while which should be close to samples from π.

It is clearly inefficient to take long runs of Brownian motion and
just keep the ones which have not been killed.

Instead we have two approaches

• The Scalable Langevin Exact Algorithm: ScaLE which
propagates a population of particles. Once one dies. it is
resurrected from the location of one of the other particles.

• ReScaLE which uses a single trajectory which on death
regenerates from a point along the trajectory to date.



(Non-Reversible) Algorithms Some PDMP algorithms Ergodicity Quasi-stationary Monte Carlo methods

Some implementational comments about ScaLE

The algorithm is implemented via an SMC framework.

In practice, we don’t automatically kill particles and carry weighted
particles instead in a more traditional SMC way. This is more
efficient.

Crucial to efficiency is subsampling. Need tractability of f as well
as a thinned Poisson process approach. All of this is analogous to
the Zig-Zag set-up.

The underlying stochastic process is just Brownian motion.
Simulation of Brownian motion is complicated by the need to
simulate random variable such as BM’s first exit time of a suitable
hypercube. (Needed to ensure we can exactly implement the
thinned PP method.
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ScaLE

The key is that deciding on whether to kill a particle or not can be
done using subsamples of the data set of size 2, with no loss of
algorithmic efficiency.

For example a logistic regression example using control variates:
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Logistic regression example
Airline data set (all flights in US over an extended period). Binary
output of whether the flight was late.

49,665,450 individual records of the data set were accessed
(equivalent to roughly 0.0029 full data evaluations) for the
following output.
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Skewed distribution
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Summary of ScaLE properties

ScaLE has remarkable scaling properries for large data. BUT it
does require

1. smoothness of the likelihood;

2. posterior contraction

3. to get the best scaling with dimension, require to find at least
one point ”close” to a mode of π.

Current implementation (in R!) is fairly slow and only suitable for
fairly low dimensional parameter sets. But the scaling properties
can be clearly seen.
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Final comments

We have introduced two principled subsampling methods which
exhibit iterative super-efficiency.

Note that with highly heterogenous data (eg all the information
comes from a tiny fraction of the data) no method can be
super-efficient.

ScaLE is statistically identical to the algorithm which would carry
out no subsampling and fully the evaluate the target at each step.
Zig-Zag is not statistically identical and can converge slower with
subsampling.

Zig-Zag (and other PDMPS) are currently the more promising
method for higher-dimensional problems.

Continuous-time algorithms involve many new implementational
details and challenges. But these methods can often be more
robust than their continuous-time competitors.
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Final comment (continued)
Software:
https://github.com/mpoll/scale

RZigZag, see https://diamweb.ewi.tudelft.nl/joris/pdmps.html

Current/future directions:

1. ReScaLE. While ScaLE uses a population approach (SMC) to
realise the quasi-stationary distribution, ReScaLE is a single
trajectory algorithm: rebirths come from the past trajectory
rather than the remaining population of particles. Compared
to ScaLE, ReScaLE is very fast, but has less robust
convergence.

2. Restore. This is a pure non-reversible MCM algorithm
involving rebirths together with local dynamics.
http://arxiv.org/abs/1910.05037

3. Theoretical underpinning for all these methods!

4. Generic software using automatic differentiation.

5. Applications in infectious disease epidemiology
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