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Part 5: Fusion and Football Draws



Two parts

1. Fusion Intractable likelihood problems where data is
separated, either deliberately or because of constraints

2. Football draws How to do public draws for football
competitions fairly.

Both involve extensive use of retrospective simulation techniques.



Overview of Fusion part

Background

Monte Carlo Fusion

Bayesian Fusion

Recent directions

Monte Carlo Fusion (Dai et al., 2019)

Bayesian Fusion (Dai et al., 2021)

Divide-and-Conquer Fusion (Chan et al., 2021)



Divide-and-conquer paradigm

Interested in carrying out Bayesian inference based on subsets of
the data, each held on a separate core and then combining
inferences. Motivation:

▶ Partitioning Big Data to make it manageable

▶ Inference under privacy constraints.

For existing methods, the combination process will likely involve
some kind of approximation.

Errors induced by such approximations are often not
well-understood.
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Bayesian setting

f (x) is a posterior of interest.

f (x) ∝
C∏

c=1

fc(x) .

Assume we can draw samples from fc(x); but we cannot draw
samples from f (x).

There is now a substantial literature on this problem. Many useful
methods exist, but all involve approximation. Eg Consensus Monte
Carlo (Scott et al., 2016) which is exact when each of fc(x) are
Gaussian.



Our aims for this work:

1. Provide methodology which is ”exact”.

2. Make this methodology scalable.

3. Show robustness of the methodology for instance to
incompatibility of the different fc densities.

4. Give practical algorithmic guidance for implementing the
resuting algorithms (which have a number of user-specified
tuning parameters).



An auxiliary variable representation

f (y) ∝
C∏

c=1

fc(y)

Consider d(C + 1)-dimensional distribution

g (x (1), . . . , x (C), y)

∝
C∏

c=1

[
f 2c

(
x (c)

)
pc

(
y
∣∣∣ x (c)

)
· 1

fc(y)

]
(1)

where pc
(
y
∣∣ x (c)

)
is a transition density of a Markov

chain/process with stationary distribution f 2c (x).

Then the marginal distribution of y is f .
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Choosing pc(y | x)

Many possible choices for pc(y | x).

Consider pc(y | x) to be the transition density of the following

double Langevin diffusion x (c)
t over a pre-defined time T > 0:

dx (c)
t = ∇ log fc(x

(c)
t ) dt + dW (c)

t ,

W (c)
t : d-dimensional Brownian motion.

Such x (c)
t has invariant distribution f 2c (x). From now on we shall

use this choice for pc(y | x).

But pc(y | x) is typically not tractable in this case.
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Monte Carlo fusion by rejection sampling

To simulate from the extended pdf

g(x (1), . . . , x (C), y) ∝
C∏

c=1

[
f 2c

(
x (c)

)
p
(
y | x (c)

)
· 1

fc(y)

]
use proposal density proportional to

h(x (1), . . . , x (C), y)

=
C∏

c=1

[
fc

(
x (c)

)]
· exp

(
−C · ∥y − x̄∥2

2T

)
for some user-specified T > 0.



Simulating the proposal h

h(. . .) =
C∏

c=1

fc

(
x (c)

)
· exp

(
−C · ∥y − x̄∥2

2T

)
This choice of h can be easily simulated.

▶ For c = 1 . . .C , draw xc from fc .

▶ Compute x̄
▶ Simulate y ∼ N(x̄ ,T I/C )

(For some others proposal choices of h see papers.)



Rejection sampling – acceptance probability

Simulation from h: xc is drawn from fc(·), independently; then y
from N (x̄ ,T I/C ).

Rejection sampling ratio:

g (x (1), . . . , x (C), y)
h(x (1), . . . , x (C), y)

∝ ρ × Q︸ ︷︷ ︸
acceptance prob

ρ := ρ(x (1), · · · , x (C)) = e−
Cσ2

2T ,

σ2 = C−1
C∑

c=1

∥x (c) − x̄∥2,



Rejection sampling– acceptance probability

Q = E

(
C∏

c=1

Ec

)
=

C∏
c=1

E (Ec) ,

with

Ec := exp

{
−
∫ T

0

(
ϕc

(
x (c)
t

)
− Φc

)
dt

}
.

where x (1)
t , · · · , x (C)

t are independent Brownian bridges tied down

at x (c)
0 = x (c) and x (c)

T = y .

ϕc(x) =
∆fc(x)
fc(x)

Φc are constants chosen so that integrand is non-negative.

So need to perform C independent tests, one for each Brownian
bridge.
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The Q rejection step

Given the starting and common end point, we simulate
independent Brownian bridges as below.

We then assign to each bridge an acceptance probability given by
Ec .
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Brownian bridge rejection test

Need to simulate from event of probability

exp

{
−
∫ T

0

(
ϕc

(
x (c)
t

)
− Φc

)
dt

}
.

Use path space rejection sampling (Beskos et al., 2008, 2006;
Beskos and Roberts, 2005).

This methodology is exact and can be carried out efficiently as
long as the dimensionality d is not too large.

Can be efficient even for large d so long as T is sufficiently small
(typically O(d−1)).



Summary of the algorithm

Once we have starting points and common endpoints, we propose
C the Brownian bridges; acceptance probability ρ × Q
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ρ looks only at the c initial points and penalises over-discrepant
starting values.

Q penalises all c trajectories according to state-dependent hazard
rates along the trajectory.



The Monte Carlo fusion method

A simple rejection sampler implemented as follows.

1. Draw starting values xc ∼ fc , 1 ≤ c ≤ C .

2. Carry out ρ rejection step

3. Draw common terminal value y .
4. Construct the C Brownian bridges

5. Carry out Q rejection step.
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Illustrative example

Consider target density π(u) ∝ u4(1− u), u ∈ [0, 1], i.e. Beta(5, 2).

Transform to R: x = log(u/(1− u))

f (x) ∝
[

exp(x)

1 + exp(x)

]5 [ 1

1 + exp(x)

]2
.

Decompose f (x) into C = 5 components:

f (x) ∝ f1(x) · · · fC (x)

fc(x) =

[
exp(x)

1 + exp(x)

] [
1

1 + exp(x)

]0.4
. (2)
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Simulation results
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Figure: Kernel density fitting with bandwidth 0.04 for Beta(5, 2): [1.]–
black solid curve, standard exact MC, r command; [2.]– blue solid curve,
Rejection sampling; [3.]– red dashed curve, CMC algorithm.



Limitations of the above rejection sampling algorithm

1. Scalability: the acceptance probability of Monte Carlo fusion
can be small, especially when C is large and or d is large.

2. Small T : T has to be reasonably large to make ρ to be
relatively large. In fact typically needs to be O(d).

3. Large T . However, Q might typically decrease exponentially
as T increases.

So method only applicable for moderate-dimensional problems.

This might be fine for many applications (eg in privacy) but we
want a more generally applicable method.

Aim to construct a more scalable version of this using sequential
importance sampling.
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Monte Carlo fusion: main limiting factor

Q =
∏
c∈C

exp

{
−
∫ T

0

(
ϕc

(
x (c)
t

)
− Φc

)
dt

}
.

MCF algorithm:

1. Draw starting values xc ∼ fc , 1 ≤ c ≤ C .

2. Carry out ρ rejection step

3. Draw common terminal value y .
4. Construct the C Brownian bridges

5. Carry out Q rejection step.

The blue step is generally the limiting factor.



Can we produce a scalable sequential version of MCF?

1. Draw starting values xc ∼ fc , 1 ≤ c ≤ C .

2. Carry out ρ rejection step

3. Draw common terminal value y .
4. Construct the C Brownian bridges.

5. Carry out Q rejection step.
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Not sequential!



A closer look at the proposal: Fusion Measure

Fusion measure:

1. xc ∼ fc , 1 ≤ c ≤ C

2. Set y ∼ MVN(x̄ , Id×d/T )

3. Fill in the rest with Brownian bridges.

Conditionally Gaussian.

Turns out to have a tractable SDE representation.



Sequential interacting Brownian motions

We can combined steps [3] and [4] to give the sequential and
equivalent formulation:

dX
(c)
t =

X̄t − X
(c)
t

T − t
dt + dB

(c)
t

where X̄t is the mean of the C processes at time t.
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This Cd-dimensional Gaussian process has explicit
finite-dimensional distributions:



The fusion measure

For s < t
Xt ∼ MVN (M(s, t),V (s, t)) ,

where M(s, t) = (M1(s, t), . . .MC (s, t)) with

Mc(s, t) =
T − t

T − s
Xs,c +

t − s

T − s
X̄s ,

and where Vs,t = Σ⊗ Id×d with Σ = (Σij) being a C × C matrix
given by

Σii =
(t − s) · (T − t)

T − s
+

(t − s)2

C (T − s)
, Σij =

(t − s)2

C (T − s)
.



Partition over time
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..... so we can iteratively simulate the process through a discrete
set of skeleton time points.
Now set up complete to use a sequential approach



Iterative treatment of the Q rejection step

Recall, in Monte Carlo fusion each strand of the coalescing
Brownian motions is ultimately accepted with probability

Ec = exp

{
−
∫ T

0

(
ϕc(X

(c)
t )− Φc

)
dt

}
.

Decompose according to our time partition:

Ec =
n∏

i=1

exp

{
−
∫ ti

ti−1

(
ϕc(X

(c)
t )− Φc

)
dt

}
.

This paves the way for the use of a Sequential Monte Carlo (SMC)
approach.
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Computational problem

For SMC to work we will need to evaluate weights:

exp

{
−
∫ tj

tj−1

ξc(X
(c)
t ) dt

}
.

but this is not tractable. But we can easily construct unbiased
non-negative estimators (Fearnhead, Papaspiliopoulos and R, 2008,
2010). Suppose (for now) that 0 ≤ ξc(·) ≤ M (at least on
(tj−1, tj)), then for any λ > 0

eM(tj−1−tj )

∏κ
k=1(M − Uk)

λκ

where κ is a Poisson(λ) variable is an unbiased estimator and Uk

are IID from U(0,M).

More general (often better) alternatives to the Poisson(λ) can be
used generalised Poisson estimator.



Localisation

In our case ϕ(x) = 2∥∇ log π(x)∥2 +∆ log π(x).

We use the layered Brownian motion framework initially developed
in (Beskos et al., 2008), and now being developed into a Black box
R package Brownian motion by Aslett and Pollock.

The approach first simulate a layer, eg sup⌊|Xs |⌋ for s in the
interval in question.

Then compute the localised bound M(L), ie the bound conditional
on the layer.

This paves the way for a random weight particle filter (Chopin
2002). Method works best if variance of weight estimator is as
small as possible: eg choose λ in the above (Chopin 2004).



Bayesian Fusion – an SMC approach
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Use a population of C -tuples, each one passing the initial proximity
test using the rejection sampler ρ. Then iterate

1. Transition from tj−1 to tj according to appropriate normal
increment with weighting giving unbiased estimator of

exp

{
−
∫ tj

tj−1

(
ϕc(X

(c)
t )− Φc

)
dt

}
.

2. Resample as appropriate

This is a random weight SMC algorithm (Chopin, 2002)



Choosing algorithm parameters

1. Choice of partition. Currently use equally spaced time points.
Makes sense to ensure that the variance of the weight
increments are comparable between intervals.

2. Choice of T . Unlike Monte Carlo fusion, no longer need T
reasonably small to ensure practical acceptance probability.

3. In fact can make T quite large ensuring the algorithm is
robust to the fi densities being well separated. This regains
polynomial complexity in d (at least in the toy examples
where we can do calculations).

Detailed guidance on parameter values in paper. For example:

T = O

(
C 3/2vbetween

d

)
, ∆j = O

( vwithin
C 1/2d1/2

)



Running time comparison - discrepant densities

C = 2, f = N (0, 2), f1 = N (−µ, 4), f2 = N (µ, 4)
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Figure: Log-running-time comparisons of Monte Carlo Fusion (red solid
line), Bayesian Exact Fusion (black dotted line) and Bayesian sequential
Fusion algorithms (blue dashed line). Results based on two
computational cores, but sub-densities having different mode discrepancy.

Red = Monte Carlo Fusion I Black = Monte Carlo Fusion II Blue
= Bayesian fusion



Running time comparison - cores

f = N (0, 0.5), fc = N (0, 0.5C )
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Figure: Log-running-time comparisons of Monte Carlo Fusion (red solid
line), Bayesian Exact Fusion (black dotted line) and Bayesian sequential
Fusion algorithms (blue dashed line). Results based on sub-densities with
the same mode, but different number of computational cores.

Red = Monte Carlo Fusion I
Black = Monte Carlo Fusion II Blue = Bayesian fusion



Posterior for logistic regression model

We choose sample size 1000 and C = 40, T = 0.2 and n = 20.

−10 −6 −4 −2

0.
0

0.
2

0.
4

0.
6

0.
8

β1

ke
rn

el
 d

en
si

ty
 e

st
im

at
es

−8 −6 −4 −2 0

0.
0

0.
2

0.
4

0.
6

0.
8

β2
ke

rn
el

 d
en

si
ty

 e
st

im
at

es

Blue = Bayesian fusion
Purple = WRS (Wang and Dunson, 2013)
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Posterior for logistic regression model

Sample size 1000 and C = 40 and n = 20, but with different
T = 0.2, 0.15, 0.1, 0.05.
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Real data example

US Census Bureau data sets 1994-95. C = 40.
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Error analysis
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Divide and conquer strategies

Ideas in Ryan Chan’s recent PhD thesis.

Another substantial advantage of an SMC framework is that we
can use Divide-and-Conquer SMC strategies for combination of the
subposteriors (Lindsten et al 2017, Kuntz et al 2021).

Left hand side is traditional BF, right hand side is D&C BF.



Generalised Bayesian Fusion
Carry out a preliminary affine transformation of the parameter
space. Can lead to substantial improvements (also part of Ryan
Chan’s PhD thesis).

dx (c)
t = Λ∇ log fc(x
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t ) dt + Λ1/2 dW (c)
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A running time comparison
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heterogenous information
(Work also with Ryan Chan)

What if one core (core 1 say) had lots more data than the others?

Then given x1, . . . , xC , we’d expect a draw from π to be much
closer to x1 than the other xs.

But BF, MCF in their basic form treat all the xs identically.
Proposal is less efficient.

We can modify the approach to pick a different Tc for different
cores. Eg Tc ∝ N−1

c .
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Conclusions

▶ Bayesian fusion provides a scalable consistent methodology,
robust to different distributions.

▶ It is not quite exact - uses SMC, but consistency follows from
standard SMC considerations.

▶ Other inexpensive principled approximations are readily
suggested by simplifying the complete Bayesian fusion
algorithm.

▶ Some formal theory for scalability is being developed, with
associated practical guidance on use.

▶ Just beginning to explore privacy applications (joint with
Louis Aslett also).
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Outline of Football Draws part of talk

1. Consider the practical problem of implementing a public draw
unbiasedly.

2. Note the clear biases of currently used methods.

3. suggest some fixes using Retrospective Simulation.



2022 FIFA world cup draw

The 2022 FIFA World Cup took place in November/December
2022, in Qatar. The actual draw took place on 1st April 2022
using a procedure essentially identical to that of 2018.

Aims of a public draw of this type:

1. Advertising for the main event

2. Entertainment

3. Geographical diversity

4. Balanced

5. Transparency

6. Fairness



32 national teams to be partitioned into 8 groups of 4 teams each,
who would all play each other in the group stages of the
competition. Each group consists of one team from each pot:

Pot 1: Qatar[As], Belgium[Eu], Brazil[SA], France[Eu], Argentina[SA],

England[Eu], Portugal[Eu], Spain[Eu].

Pot 2: Denmark[Eu], Netherlands[Eu], Germany[Eu], Switzerland[Eu],

Croatia[Eu], Mexico[NA], USA[NA], Uruguay[SA].

Pot 3: Iran[As], Serbia[Eu], Japan[As], Senegal[Af], Tunisia[Af], Poland[Eu],

KoreaRep[As], Morocco[Af].

Pot 4: Wales/Scot/Ukr[Eu], Peru/UAE/Au[SA,As], CostaRica/NZ[NA,Oc],

SaudiArabia[As], Cameroon[Af], Ecuador[SA], Canada[NA], Ghana[Af].



Geographical constraints

1. Each group needed to include one team from each of the 4
pots.

2. Each group contains either 1 or 2 teams from Eu .

3. Each group contains either 0 or 1 teams from each of the
other regions.

Procedure:

1. Qatar was automatically placed in Group A.

2. Then, the remaining teams from Pot 1 were selected one at a
time, uniformly at random, and placed into the next group
from B through H.

3. Then, the teams from Pot 2 were selected one at a time,
uniformly at random, and assigned to the next feasible group.

4. Repeat for Pot 3 then Pot 4.



Biases in the FIFA draw mechanism

We define a fair draw to be one which samples uniformly among all
draws which respect the constraints.

Is the FIFA mechanism fair? Or approximately fair?

For 2022 draw, for football reasons there was a particular interest
in the probability that a team might end up in the Qatar group.

Illustrated bias: FIFA draw gives

P(Mexico gets QATAR) = 0.125

whereas the fair probability gives

P(Mexico gets QATAR) = 0.09 .

Some might argue that this therefore unfairly advantages Mexico.



Rejection sampling

The most obvious way to simulate from the uniform distribution
over all feasible draws, is to carry out rejection sampling from a
proposal distribution which is uniform over all possible draws
without the geographical constraints.

For the 2022 World Cup draw this leads to an acceptance
probability of around 1 in 540.

This is clearly inefficient but fast enough to carry out 1000 draws
in a fraction of a second!

However this solution lacks transparency and excitement!

Various solutions in literature involving drawing from the
continental structure of the draw, allowing random allocation of
teams within a continent to be carried out live.

But can we have a truly sequential and practical solution?



An alternative

A different approach first identifies feasible teams at each step,
and then chooses uniformly from those options:

This is the approach recently adopted by UEFA: UEFA CL Last 8
2021-22

Different from FIFA first available group strategy. Is it unbiased?
No!

https://www.youtube.com/watch?v=c55KxESN9Gc&t=1m30s&end=310
https://www.youtube.com/watch?v=c55KxESN9Gc&t=1m30s&end=310
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A motivating example

Simplified setting. Suppose there are two seeded pots:

Pot 1: Qatar (Q) [Af], France (F) [Eu], Brazil (B) [SA]
Pot 2: Mexico (M) [NA], Switzerland (S) [Eu], Uruguay (U) [SA]

Qatar, as hosts, are automatically assigned to Group A. Wlog
France is placed in Group B, and Brazil in Group C.

The two SA teams, Brazil in Pot 1 and Uruguay in Pot 2, must be
kept apart, so that Uruguay cannot be placed in Group C.

Possible groups:
D1: QM, FU, and BS.
D2: QS, FU, and BM.
D3: QU, FM, and BS.
D4: QU, FS, and BM.



Let P be the probability measure resulting from FIFA’s draw.

Let U be the probability measure which assigns equal probability to
each valid draw: U(Di ) = 1/4, i = 1, 2, 3, 4.

However P(D1) = P(D2) = 1/3 while P(D3) = P(D4) = 1/6.

In particular, if QU is the event that Qatar is paired with Uruguay,
then P(QU) = 1/3 whereas U(QU) = 1/2.



In search of debiasing: random order sequential procedures

Can we fix this by randomising the order in which we fill the
groups? Ie a random order sequential draw giving rise to Prand .

Here Prand = U!

But in general random order sequential draws are still biased and in
fact their bias can even be larger than that for a fixed order
sequential draw.



In search of debiasing: multiple ball strategies

Analysing the sequential draw more carefully:

Two of the possible draws (D3 and D4) put Uruguay in Group A
with Qatar, while only one (D1) puts Mexico in Group A, and one
(D2) puts Switzerland in Group A.

This suggests that when selecting the team from Pot 2 to put in
Group A, we could use a bowl with two Uruguay balls, and only
one from each of Mexico and Switzerland.
The next team in the draw is then selected uniformly at random
just as before.

This simple multiple balls solution thus achieves the correct
conditional probability (in terms of U) for the team from Pot 2 to
be placed in Group A.



Towards a general multiple ball strategy
When selecting the team from Pot 2 to put in Group A, count, for
each team in Pot 2, the number of valid draws which could be
constructed and that have that team in that position.

In simple example above case, we have nU = 2 for Uruguay, and
nM = 1 for Mexico, and nS = 1 for Switzerland. We thus place nU
balls for Uruguay, nM balls for Mexico, nS balls for Switzerland, all
into a bowl, and then sample one of the balls uniformly at random.

Thus for instance

P(pick Uruguay) =
nU

nU + nD + nS
.

Can this strategy be extended to larger draws?

In principle, yes.

In practice no! Eg for World Cup 2022 draw, when choosing the
Pot 2 team to play Qatar, need to put 5× 1014 balls into the bowl.

Can we make this practical?
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Random discrete rational random simulation

Given a partial draw, set nj to be the number of ways of
completing the draw which put team j in the next position.

We simply want to simulate from a discrete random variable with
at most 8 possible values with

P(pick j) := pj =
nj∑
k nk

.

But we want to do this by discrete rational simulation.

However the number of balls of each type does not need to be
fixed. Ie it can be random

Suppose we decide to have M balls in total. Then, letting
rj = Mpj we shall choose a number of balls of type j , Rj say, with

E(Rj) = rj ∀j
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rj = Mpj we shall choose a number of balls of type j , Rj say, with

E(Rj) = rj ∀j



How to do this?

We want M to be as small as possible.

But we also want to have at least one ball of type j , for each j for
which pj > 0.

Therefore choose

M = ⌈max{(1/pj) : pj > 0}⌉

(where ⌈x⌉ = smallest integer ≥ x).

Then we have that rj ≥ 1 for each j for which pj > 0. So by
residual sampling, we will obtain at least one ball when j can lead
to a feasible solution.



An algorithm for simulating from the {pj}.

1. For each 1 ≤ j ≤ J, place aj := ⌊rj⌋ balls of type j into the
bowl.

2. Set uj = rj − aj , and vj =
∑j

ℓ=1 uℓ for 1 ≤ j ≤ J, with v0 = 0.
Also set k = vJ . (Thus k = M −

∑
j aj which is a

non-negative integer.)

3. Simulate independent uniform random variables U1, . . . ,Uk

with Ui ∼ U[i − 1, i).

4. For each 1 ≤ j ≤ J, let bj = |{i : Ui ∈ [vj−1, vj)}| be the
number of random variables Ui which lie in the interval
[vj−1, vj), and add bj additional balls of type j to the bowl.

5. Select a ball uniformly at random from the M balls in the
bowl.



Not quite there yet ...

The above algorithm is unbiased as required.

It is completely generic, can cope with any number and type of
constraints.

M will usually be small unless one of the pjs is very small. (In this
case the FIFA method is hugely biased.)

However it requires knowledge of the pjs at each step.

These is typically not feasible to compute exactly in a time interval
short enough for a football fan to not get bored. (Could be a 15
digit number.)
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Echoes of intractable likelihood problems

We wish to simulate from a distribution (eg a posterior) without
having to evaluate the density of that distribution.

Ubiquitous problem in computational statistics

A simple collection of techniques for doing these simulations are
known as retrospective sampling (used in diffusion simulation,
Bernoulli factories, pseud-marginal methods, inference problems for
latent stochastic processes, mixtures, HMMs etc....)

A simple variant is effective here .....



Unbiased estimators of pj

We can readily acquire unbiased estimators of the pjs through the
rejection sampler simulator described above.

Eg sample 1000 exact draws starting from the current stage of the
draw and estimate

p̂j = #{draws which include j as the next team} .

It turns out that we can apply the same algorithm with the {p̂j}s
without bias. Set

M̂ = ⌈max{(1/p̂j) : p̂j > 0}⌉

r̂j = M̂p̂j



A practical algorithm for simulating from the {pj}.

1. Produce the {p̂j}s as above.
2. For each 1 ≤ j ≤ J, place âj := ⌊r̂j⌋ balls of type j into the

bowl.

3. Set ûj = r̂j − âj , and vj =
∑j

ℓ=1 ûℓ for 1 ≤ j ≤ J, with v0 = 0.

Also set k = vJ . (Thus k = M̂ −
∑

j âj which is a
non-negative integer.)

4. Simulate independent uniform random variables U1, . . . ,Uk

with Ui ∼ U[i − 1, i).

5. For each 1 ≤ j ≤ J, let b̂j = |{i : Ui ∈ [vj−1, vj)}| be the
number of random variables Ui which lie in the interval
[vj−1, vj), and add b̂j additional balls of type j to the bowl.

6. Select a ball uniformly at random from the M balls in the
bowl.



A fair sequential multiple balls draw

Proposition

If the above procedure is used repeatedly for each position of a
group draw, then the final group draw will have distribution U,
i.e.it will be equally likely to be any of the potential valid draws.

How does it work in practice?
In theory, the algorithm does not guarantee that each team with
pj > 0 is represented. However in practice it is vanishingly unlikely
that this is not the case.

M̂ tends to be larger for smaller sample sizes in the estimation of
pj by p̂j , but not by much.

Refinements to reduce M̂ which exploit symmetries between
countries from different continental confederations can be
constructed.

http://probability.ca/fdraw/drawnew.html


An MCMC solution

It is easy to construct an MCMC algorithm which proposes to
swapping the groups for two teams from the same pot.

Unlike MCMC which we are familar with, such a simulation could
start from stationarity using the rejection sampler.

Note that this is rather different from a sequential solution in
which slots in the draw are filled successively.

However moves can still easily be simulated by drawing balls from
pots.

For example we could have a seed pot containing 4 balls numbered
1-4 and a group pot containing 8 balls A-H. One seed ball and two
group pot balls define a proposed swap, between the two chosen
groups, of the teams currently in those groups of the chosen seed.

There is no randomness in the accept/reject step: valid moves are
accepted and invalid ones are rejected.

http://probability.ca/fdraw/drawnew.html


Discussion
We also have a multiple lives solution to this problem, whereby
some teams are only allocated to the current location in the draw
if they have been selected a prescribed multiple number of times.
Thus the team selected is only chosen if it loses its lives first.

All procedures use transparent randomness (ie drawing balls from
pots etc) as well as hidden randomness. A good method should
have as little hidden randomness as possible. Can quantify in terms
of expected conditional variance, typically far greater than 90% for
the multiple balls draw for instance (and can be made arbitrarily
close to 100%).

However practical and fair solutions which only use transparent
randomness are not available (yet at least).

Whether football authorities care about fairness is unclear. There
are many political factors which influence the form of the draw and
may be more important to many than fairness.

The multiple ball sampler and the MCMC sampler programmes
can be found at http://probability.ca/fdraw/
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