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Abstract
Through a few selected examples (and counterexamples) we will explore how stochastic
PDEs arise naturally in the study of spatial stochastic processes. We will introduce
models from population genetics, the evolution of phase fields, quantum field theory
and growth models, with an emphasis on the connection between small-scale dynamics
and macroscopic behavior. We will obtain on overview of the methods available to
solve stochastic PDEs, study their qualitative behavior.
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1 Branching Brownian Motions

In the study of the evolution of populations, what is the driving force between the
diversity of species that we observe in nature? Spatial dispersion (this is just one aspect,
on which we choose to focus) plays a key rôle: as members of the same species separate
over space, they develop mutations independently of one another, leading to the evolution
of different species.

A crucial question is whether there are fundamental (universal) laws that apply to
the evolution of populations over space and time (see for example the Wright–Malécot
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formula for the probability of common descent). Small populations are driven by “local”
laws: the particular geography in which they live for example. Or the structure of
the randomness in the reproduction mechanism, which can be so strong as to lead to
extinction of a species (so-called genetic drift). The quest for universality is to identify
how these forces act on large populations. While one can come up with a miriad
of different “local” laws, most of them share more or less the same effect on large
populations, perhaps up to a couple of parameters.

Mathematically, this leads to generalisations of the law of large numbers and the
central limit theorem to processes that evolve both in time and in space. Population
genetics is but one setting in which such studies are meaningful: other applications of
similar ideas are fundamental in the study of phase fields, quantum field theory, growth
processes, etc. . .

We start by looking at these questions from the perspective of population genetics,
so let us introduce a few classical models. For this chapter, we refer to the very nice
exposition [Eth00] for further reading.

1.1 The Moran model
The Moran model considers the evolution of n ∈ N particles that form a population.
Each particle can be either of type A or of type B. Evolutionary reproductive events
take place at random exponential times. When such events take place, one member of
the population, chosen uniformly at random, dies and another reproduces (the type of
the new particle is inherited from its parent). Let Xn

t be the number of particles of type
A. Then Xn is a Markov process on {0, . . . , n} with generator

L(f )(x) = p(x)(1− p(x))
∑
y=±1

(f (x+ y) − f (x)) , p(x) =
x

n
.

In general, continuous-time jump Markov processes are characterised by their generators,
which in the simplest setting take the form:

L(f )(x) =
∫
S

(f (y) − f (x))q(x, dy) , (1.1)

where q(x, dy) is a measure that indicates the rate of transition from x to y and S is the
state space. If q(x, dy) is a finite measure (as in our case) one can think of

p(x, dy) =
1∫

q(x, dy)
q(x, dy) ,

as the transition probabilities from x to y of a discrete time Markov chain. And
∫
q(x, dy)

indicates the total speed (or rate) at which a transition (chosen according to p) happens.
Crucially, L helps us in computing expectations:

∂tE[f (Xt)] = E[Lf (Xt)] ,

and we will make use of the following result (we will be a bit reckless and omit writing
domains of generators and other assumptions: for now, take the state space S to be
finite).

Theorem 1.1 If (Xt)t⩾0 is a jump Markov process with generator L of the form (1.1),
with q a finite measure, then

Mf
t = f (Xt) −

∫ t

0

L(f )(Xs) ds ,
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is a martingale with predictable quadratic variation

⟨Mf ⟩t =
∫ t

0

L(f2)(Xs) − 2fL(f )(Xs) ds .

Proof. For a proof of the first statement see [EK86, Proposition 4.1.7]. For the second
statement, we can compute

(Mf
t )2 = f (Xt)2 − 2f (Xt)

∫ t

0

L(f )(Xs) ds+
(∫ t

0

L(f )(Xs) ds
)2

. (1.2)

We need only concentrate on the last two terms. Here we have

2f (Xt)
∫ t

0

L(f )(Xs) ds =2

∫ t

0

f (Xs)L(f )(Xs) ds+ 2

∫ t

0

Mf
s,tL(f )(Xs) ds

+ 2

∫ t

0

∫ t

s

L(f )(Xu) duL(f )(Xr) dr

The second term here cancels via the tower property under expectation (we have defined
Mf
s,t =Mf

t −Mf
s ) and the last term cancels with the last term in (1.2).

It turns out that the martingale problem is a great tool to study scaling limits of Markov
processes. For example, from our motivation it is natural to consider the behaviour of
Xn
t for n ≫ 1. Of course, for times of order 1 nothing happens as a huge population

will not suddenly change its size. Instead, we must look at the behaviour at large times.
The correct scaling is parabolic: we must find (αt)t⩾0 such that(

1

n
Xn
n2t

)
t⩾0

⇒ (αt)t⩾0 .

We must study therefore the limit of the generator

Ln(f )(α) = n2α(1− α)
∑
y=±1

(f (α+ 1/n) − f (α)) .

Note that this is a discrete approximation of the Laplacian ∆f =
∑d
i=1 ∂

2
xi
f .

Exercise 1 Prove that for f ∈ C2(Rd;R) (meaning that the second derivative is locally
continuous)

lim
n→∞

n2
∑
y∼nx

f (x+ y) − f (x) = ∆f (x) ,

where y ∼n x if y is of the form y = x± n−1ei for some basis vector ei ∈ R
d.

Therefore, if there is any right in the world, the limit (αt)t⩾0 should be the diffusion

dαt =
√
2αt(1− αt) dWt ,

for (Wt)t⩾0 a Brownian motion. Indeed, Xn
t is a martingale itself (check this by taking

f (x) = x). Presuming the limit is continuous, the martingale is characterised by its
quadratic variation, which is given via Dynkin’s formula.

Exercise 2 Check that for f (α) = α

Ln(f2)(α) − 2fLn(f )(α) → 2α(1− α) , n→ ∞ .
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1.2 Large scale dynamics with critical branching
The aim of this mini-course is to study the limiting processes that arise in analogy to the
example just seen, but in presence of an additional spatial component. This means that
for instance particles are not only allowed to reproduce and die out, but can just as well
move in space. For instance consider Zd the unit lattice and on it a system of particles
defined as follows:

• All particles behaves independently of one another.

• Each particle reproduces at rate one (giving birth to a new particle at the same
location of the parent).

• Each particle dies out at rate one.

• Each particle performs a random walk with unit rate on the lattice.

The system of branching Brownian motions just described is equivalently defined through
the generator:

L(f )(η) =
∑
x∈Zd

η(x)

{∑
y∼x

f (ηx→y) − f (η)

}
+ η(x)

{
f (ηx+) − f (η)

}
+ η(x)

{
f (ηx−) − f (η)

}
.

Here η : Zd → N represents the umber of particles alive at x. And in addition

1. ηx→y represents the movement of one particle from x to y:

ηx→y(z) =


η(z) if z ̸∈ {x, y} ,
η(x) − 1 if z = x ,
η(y) + 1 if z = y .

2. ηx±(z) = η(z) ± 1{x}(z) stands for the birth or death of a particle at x.

Our Markov process (ηt)t⩾0 is therefore a sequence of functions ηt : Zd → N such that
ηt(x) counts the number of particles alive at time t ⩾ 0 in location x. How can we
describe the large-scale effective dynamic that arises from this model?

First, we must consider the evolution of a large cloud of particles. Therefore we fix
an initial condition with nα particles (the parameter α ∈ N will be tuned later on). For
simplicity, we position all particles at x = 0 in the initial state:

ηn0 (x) = nα1{0}(x) .

Then we associate to its evolution ηnt the empirical density of the particles

µnt =
1

nα

∑
x∈n−1Zd

ηnn2t(nx)δx .

Note that here we have zoomed out in space and time: particles seen from far away live
on a smaller lattice n−1Zd, and we have scaled time parabolically by a factor n2. Then
µnt ∈ M(Rd), the space of finite positive measures on R

d. For later convenience we
note that this is a topological space

(M(Rd), τv) ,
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when endowed with the topology τv of vague convergence, meaning that µn → µ
vaguely if

⟨µn, φ⟩ → ⟨µ, φ⟩ , ∀φ ∈ C∞
c (Rd;R) ,

we denote with C∞
c (Rd;R) is the space of such functions with compact support.

Our objective is to show that the empirical measure of the critical spatial branching
process (µnt )t⩾0 has a limit in distribution as a process with values in M(Rd). To see
this, we can test the empirical measure against continuous and bounded functions. We
find

⟨µnt , φ⟩ =
1

nα

∑
x

ηnn2t(nx)φ(x) .

To see how ⟨µnt , φ⟩ evolves in time we can use the generator:

d⟨µnn2t, φ⟩ = ⟨µnn2t,∆
nφ⟩ dt+ dMn,φ

t , (1.3)

for some cádlág martingale (Mn,φ
t )t⩾0. For example, if we choose φ ≡ 1, we obtain an

a-priori bound on the total mass of the process.

Lemma 1.2 Let µn be defined as above and fix α ⩾ 2. Then for any t ⩾ 0

sup
n∈N

E

∣∣∣∣ sup
0⩽s⩽t

⟨µnt , 1⟩
∣∣∣∣2 <∞ .

Proof. From (1.3), Theorem 1.1, and a short calculation, we know that Nn
t = ⟨µnt , 1⟩

is a martingale, with predictable quadratic variation

d⟨Nn⟩t = 2n2−α⟨µnt , 1⟩ dt .

If follows that

E sup
0⩽s⩽t

⟨µns , 1⟩2 ≲ ⟨µn0 , 1⟩2 + E⟨Nn
t ⟩ ≃ 1 + n2−αt .

As a consequence of this a-priori estimate we obtain tightness of the sequence µn.

Corollary 1.3 For α ⩾ 2, the sequence (µnt )t⩾0 is tight in the space D([0,∞);M(Rd)).
In addition any limit point lives in C([0,∞);M(Rd)).

The proof of this corollary is slightly technical, because it involves understanding tight
sets in the Skorokhod space: we refer the reader to [Eth00, Proposition 1.19]. The
fundamental question we must ask now is whether there exists a unique limit point µ of
µn, and how to characterise it. Taking naively the limit n→ ∞ in (1.3) we would hope
that any limit µ satisfies identities of the following form for any φ ∈ C∞

c (Rd;R):

d⟨µt, φ⟩ = ⟨µt,∆φ⟩ dt+ dMφ
t , (1.4)

In addition, the limiting martingale should have quadratic variation given by the limit of
the discrete quadratic variations, by Theorem 1.1:

d⟨Mn,φ⟩t =⟨µnt , x 7→
∑
y∼x

|φ(y) − φ(x)|2⟩n2n−α dt
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+ ⟨µnt , φ2⟩n2n−α dt .

Then choose α = 2. The first term does not contribute, and the limiting variance is

d⟨Mφ⟩t = ⟨µt, φ2⟩ dt .

Instead for α > 2 the limiting variance is zero (we therefore expect the limit µ to be
deterministic in this case, corresponding to a law of large numbers). We have concluded
the following

• A law of large numbers if the number of particles is very large (α > 2).

• A limiting stochastic process if the number of particles is chosen correctly (α = 2).

For the limit we have furthermore identified a martingale problem.

Definition 1.4 We say that a Markov process (µt)t⩾0 ∈ C([0,∞);M(Rd)) solves the
Dawson–Watanabe martingale problem, if for any φ ∈ C∞

c (Rd+1;R) we have for some
continuous square-integrable martingale (Mφ

t )t⩾0

d⟨µt, φ⟩ = ⟨µt,∆φ⟩ dt+ dMφ
t , d⟨Mφ⟩t = ⟨µt, φ2⟩ dt .

Can we be more precise in characterising the limit? Is there a unique solution to the
Dawson–Watanabe martingale problem?

1.2.1 The law of large numbers

Before we proceed to answer this question, let us obtain a complete picture in the case
α > 2, when the limit is deterministic, as this is in any case useful later on. If we choose
α > 2, then the limit will be deterministic and satisfy

d⟨µt, φ⟩ = ⟨µt,∆φ⟩ dt , ∀t ⩾ 0 , φ ∈ C∞
c (Rd;R) .

Since ∆ is self-adjoint, this is just the weak formulation of the heat equation

∂tµt(x) = ∆µt(x) , ∀t ⩾ 0 , x ∈ R
d , µ0(x) = δ0(x) . (1.5)

Remark 1.5 For the particular choice of initial condition µ0 = δ0, the solution to (1.5)
is explicit and given by the heat kernel

p(t, x) =
1

(2πt)
d
2

exp

(
−|x|2

2t

)
.

For arbitrary initial condition one deduces that

µt(x) = Ptµ0(x) , Ptf (x) =
∫
R

d

pt(x− y)f (y) dy .

We call (Pt)t⩾0 the heat semigroup.
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1.3 Duality
To prove uniqueness of solutions to the martingale problem there is a trick that is very
common in the study of population genetics, as it relates to observing the population
evolve “backwards in time”, and prescribe the evolution of a genealogical tree rather than
the evolution of the particles “forward in time”. In the case of the Dawson–Watanabe
martingale problem the key observation is that by Itô’s formula the following holds for
f ∈ C2(R;R) (now we are working with martingales in continuous time):

df (⟨µt, φ⟩) =
{
f ′(⟨µt, φt⟩)⟨µt,∆φ⟩+

1

2
f ′′(⟨µt, φ⟩)⟨µt, φ2⟩

}
dt+ dM

f

t ,

for some continuous martingale Mf . Because of the linearity in the variance, there is a
simpler structure appearing if one chooses φ ⩾ 0 and f (x) = exp(−λx). In this case

df (⟨µt, φ⟩) =
{
⟨µt,−λ∆φ+

λ2

2
φ2⟩

}
f (⟨µt, φt⟩) dt+ dM

f

t .

This suggests that if φ were the solution to

−∆φ+
λ

2
φ2 = 0 , (1.6)

then we would be able to characterise the law of ⟨µt, φ⟩. Of course, only φ ≡ 0 solves
(1.6). Yet, this idea is fruitful: if instead of choosing φ time-independent one considers
the solution φ to

∂tφ = ∆φ− λ

2
φ2 , φ(0, ·) = φ0(·) ∈ C∞

c (Rd;R) . (1.7)

Then fix T ∈ (0,∞) and consider, again for f (x) = exp(−λx) the process

[0, T ] ∋ t 7→ f (⟨µt, φT−t⟩) = Xt .

We can again apply Itô’s formula to obtain

dXt = f (⟨µt, φT−t⟩)
{
⟨µt, λ∂tφT−t − λ∆φT−t +

λ2

2
φ2
T−t⟩

}
dt+ dMλ,T

t .

We see that the drift vanishes because of our choice of φ. Therefore (Xt)t∈[0,T ] is a
martingale and in particular

E[exp(−λ⟨µT , φ0⟩)] = E[XT ] = E[X0] = exp(−λ⟨µ0, φT ⟩) .

In this way, we have characterised uniquely the law of (µt)t⩾0. We have proven the
following theorem.

Theorem 1.6 For any µ0 ∈ M(Rd) there exists a unique-in-law solution (µt)t⩾0 in
C([0,∞);M(Rd)) to the Dawson–Watanabe martingale problem of Definition 1.4.

Proof. Existence follows from approximations via particle systems, while unique-
ness follows from the previous calculation. Here we use that the law of a measure-
valued random variable is characterised by the law of the one-dimensional projections
{⟨µt, φ⟩ : φ ∈ C∞

c (Rd;R)} (see [Daw93, Lemma 3.2.4]).
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1.4 Weak formulations and white noise
Theorem 1.6 is incredibly strong, but can we obtain a different understanding of the
limiting object? A stochastic PDE should be an equation of the kind

∂tµ = ∆µ+ f (µ) + σ(µ)ξ , (1.8)

where ξ is some noise - in analogy to stochastic ODEs, which are of the form

∂tX = f (X) + σ(X)ξ .

Is there a way by which we can cast our equation into the setting of (1.8)? We might
expect that (1.4) can also be rewritten as the weak form of some equation of the kind

dµt(x) = ∆µt(x) dt+ dMt(x) ,

where M is a martingale, which must somehow depend on space as well. This turns
out to be intuitively correct, but is rather delicate. Naively choosing φ(·) = δx(·) as a
test function leads to ⟨Mδx⟩t = ∞, so there is no clear meaning to Mt(x) evaluated
at a single point. The correct way to rewrite the martingale term in (1.4) is through
space-time white noise.

Definition 1.7 Space-time white noise on R
d is equivalently defined as one of the

following:

1. A sequence of Gaussian random variables ξφ indexed by functions φ ∈ L2(Rd+1)
and with covariance

E[ξφξψ] = ⟨φ,ψ⟩ .

2. A random Gaussian distribution (that is with values in S′(Rd+1)) such that

E⟨ξ, φ⟩⟨ξ, ψ⟩ = ⟨φ,ψ⟩ , ∀φ,ψ ∈ C∞
c (Rd+1) .

Informally, ξ is a random Gaussian field with covariance

E[ξ(t, x)ξ(s, y)] = δ(x− y)δ(t− s) .

This is not rigorous, as above for M (x), because ξ can not be evaluated at a point
x ∈ R

d+1.

Exercise 3 Prove that the two points of the definition above are equivalent, namely that
given ξ according to the first point there is a ξ̃ ∈ S′(Rd+1) such that ⟨ξ̃, φ⟩ = ⟨ξ, φ⟩
almost surely for allφ, and ξ̃ satisfies the second property. Hint: Choose an orthonormal
basis of L2(Rd+1).

From the definition, it follows that it is possible to give meaning to the integral of
space-time white noise against deterministic functions in L2(Rd+1). Much in the
same way as for the Itô isometry, we can extend this integration to adapted space-time
processes.

Lemma 1.8 Let φ : Ω× [0, T ] ×R
d → R be an adapted spatial process such that

E

∫ T

0

∫
R

d

|φ(s, x)|2 dx ds <∞ .
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Then the stochastic integral

Mt =

∫ t

0

∫
R

d

φ(s, x)ξ( dx, ds) ,

is well-defined and a continuous martingale on [0, T ] with quadratic variation

⟨M⟩t =
∫ t

0

∥φs∥2L2(Rd) ds .

Proof. By approximation it suffices to prove the result for φ : Rd+1 → R an adapted,
simple function. That is, of the form (form some n ∈ N and {ti}i∈N ⊆ R)

φ(t, x) =
n∑
i=0

1[ti,ti+1)(t)φi(x) ,

where φi is Fti-measurable (the filtration Ft is formally the one generated by ξ(s, x)
such that s ⩽ t, x ∈ R

d) and E∥φi∥2L2(Rd) <∞. Then

Mφ
t = ⟨ξ, φ1[0,t)⟩ =

∫
[0,t)×R

d

φ(s, x)ξ(s, x) ds dx

=

n∑
i=0

∫ ti+1∧t

ti

∫
R

d

φi(x)ξ(s, x) ds dx

is a square-integrable martingale with quadratic variation

⟨M⟩t =
∫ t

0

∥φi∥2L2(Rd)1[ti,ti+1)(s) ds .

From Lemma 1.8 if follows that our candidate equation for the Dawson–Watanabe
martingale problem should be the following:

∂tµ = ∆µ+
√
µξ , (1.9)

where ξ is space-time white noise. The main issue with (1.9) is that in order for it to
even make sense, one must make sense of √µ, but µ is a-priori only a measure. Indeed,
this issue can only be overcome in dimension d = 1: the reason is the irregularity of the
noise (see later sections).

Theorem 1.9 If d = 1, then the unique solution to the Dawson–Watanabe process
satisfies for all α ∈ (0, 1/2) that µt ∈ Cαloc(Rd; [0,∞)) for all t > 0. In addition (up
to extending the probability space) there exists a space-time white noise ξ such that µ
solves (1.9).

1.5 Some properties
Super-Brownian Motion (SBM) has a number of interesting properties, which shed light
on its qualitative behaviour. The most interesting consequence of these properties is
that SBM behaves fundamentally different from the heat equation (∂t −∆)µ = 0. For
instance solutions to the latter equation stay strictly positive for all times. Moreover, the
equation is critical, in that it satisfies a scaling invariance (as it should, since it appears
as the universal large scale limit of systems of branching particles).
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1.5.1 Extinction

First, we observe that the noise is so strong that the population almost surely dies out
in finite time. This is known as the effect of genetic drift, which leads to one type
overcoming the other simply because of the inherent randomness of the evolutionary
process.

Exercise 4 Prove that ⟨µt, 1⟩ is a weak solution to the Feller diffusion

d⟨µt, 1⟩ =
√
⟨µt, 1⟩ dWt ,

where Wt is a Brownian motion. Then if

τ = inf{t ⩾ 0 : ⟨µt, 1⟩ = 0} ,

deduce that P(τ <∞) = 1. Hint: Apply Itô’s formula to
√
Zt, with Zt = ⟨µt, 1⟩.

What can we say about the probability of extinction? We have that

1{µt=0} = lim
λ→∞

exp (−⟨µt, λ⟩) .

Therefore

P(µt = 0) = lim
λ→∞

exp
(
−⟨µ0, φ

λ
t ⟩
)

,

where φλt is the solution to the dual equation (1.7) with initial condition λ. Now observe
that the ODE

∂tφ = −φ2 ,

has a unique solution such that φ0 = ∞, and it is given by φt = t−1. Hence
P(µt = 0) = exp

(
−⟨µ0, 1⟩t−1

)
.

1.5.2 Scale invariance

In dimension d = 1 the SPDE for super-Brownian motion satisfies formally some scale
invariance. Here we will make use of the following fact.

Exercise 5 For any ε > 0 define ξε(t, x) = ε
3
2 ξ(ε2t, εx). Then, if d = 1, we have

ξε
d
= ξ. Remark: of course, the previous formulation is purely formal (ξ is a distribution)

and must be made sense of through a change of variables, in a distributional sense.

Because of the scale-invariance of white noise we find that if µ(ε)(t, x) = εµ(ε2t, εx),
then (as usual in d = 2)

(∂t −∆)µ(ε) =
√
µ(ε)ξε ,

which means that the equation is “critical” in the sense that the heat operator (∂t −∆) is
not of leading order on small scales.

2 An intermezzo with two counterexamples

Let us conclude with two examples of stochastic PDEs in which things can go wrong.
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2.1 Dean–Kawasaki fluctuations
Consider the martingale problem associated to the SPDE

∂tµ = ∆µ+ γ div(
√
µξ) ,

where ξ is a vector-valued space-time white noise ξ = (ξ1, ξ2) and div(φ1, φ2) =
∂x1φ1 + ∂x2φ2 . By martingale problem we mean measure-valued solutions (µt)t⩾0

such that for all φ ∈ C∞
c (Rd;R)

d⟨µt, φ⟩ = ⟨µt,∆φ⟩ dt+ dMφ
t , d⟨Mφ⟩t = γ2⟨µt, |∇φ|2⟩ , (2.1)

where Mφ
t is a continuous martingale.

Theorem 2.1 There exists a solution to the martingale problem (2.1) if and only if
2γ−2 = n ∈ N. In this case

µt =
1

n

n∑
i=1

δW i
t

,

where {W i
t }i∈N is a collection of i.i.d. Brownian Motions with diffusivity

√
2.

Proof. We only prove that a system of i.i.d. Brownian Motions does solve the equation,
and is the unique solution if n = γ−2 ∈ N. The non-existence result can be found in
[KLvR19, Theorem 2.2].

First, we show that µt = 1
n

∑n
i=1 δW i

t
solves the martingale problem. We can

compute

d⟨µt, φ⟩ =
1

n

n∑
i=1

∇φ(W i
t ) dW i

t +∆φ(W i
t ) dt .

Now, the first term is a martingale, and it has quadratic variation

d⟨Mφ⟩t =
2

n2

n∑
i=1

|∇φ(W i
t )|2 =

2

n
⟨µt, |∇φ|2⟩ .

For uniqueness, we follow the same strategy as for super-Brownian motion, by
finding a dual. If we consider f (x) = exp(−λx) for λ > 0 and φ smooth in time and
space on [0, T ] ×R

d and positive, then we obtain for all t ∈ [0, T ]

df (⟨µt, φT−t⟩) =f (⟨µt, φT−t⟩)
{
−λ⟨µt,−∂tφT−t +∆φT−t − λγ2|∇φT−t|2⟩

}
dt

+ dMt .

Therefore, the law of the solution will be unique if we can solve the dual equation

∂tφ = ∆φ− λγ2|∇φ|2 .

The solution to this equation is given by the Cole-Hopf transformation of the solution to
a linear equation.

∂tu = ∆u , u0 ⩾ 0 ,

Then ψ = log u solves

∂tψ = ∆ψ − |∇ψ|2 , ψ0 = log (u0) .

Then φ = (λγ2)−1ψ, with matching initial conditions.
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2.2 Itô vs Stratonovich
Next we consider a toy model in stochastic fluid dynamics, namely viscous “passive
scalar advection” driven by a white-in-time noise

∂tϱ = ∆ϱ+ γ(ξ · ∇)ϱ . (2.2)

The physically most relevant case appears when the noise ξ is incompressible. For
the moment let us choose ξ = ( dβ1, dβ2) for a couple of real-valued independent
Brownian motions (independent of space, so that naturally the incompressibility condition
div(ξ) = 0 is satisfied). Of course, this being a multiplicative equation there is a choice
between Itô and Stratonovich noise. Following the (wrong) intuition from stochastic
ODEs, we may try to treat the Itô case as it might be somewhat “simpler”.

Theorem 2.2 Equation (2.2) admits a solution for all ϱ0 ∈ C∞
c if γ2 ⩽ 2.

Remark 2.3 The result is tight, in the sense that (as will appear from the proof), for
γ2 > 2 the problem is linked to solving the heat equation backwards in time.

Proof of Theorem 2.2. The reason for the restriction to γ ⩽ 2 comes from the Itô–
Stratonovich corrector. Recall that the formula for the corrector is as follows for a
semimartingale (Xs)s⩾0:∫ t

0

Xs ◦ dWs =

∫ t

0

Xs dWs +
1

2
⟨X,W ⟩t . (2.3)

We want to apply this formula to ∂x1ϱ(t, x) dβ1
t . We find

∂t∂x1
ϱ = ∆∂x1

ϱ+ γ(∂2x1
ϱ) dβ1 + γ∂x1

∂x2
ϱ .

And hence by (2.3) we obtain

γ(ξ · ∇)ϱ = γ(ξ · ∇) ◦ ϱ− γ2

2
∆ϱ .

We can therefore reformulate (2.2) as

∂tϱ = (1− γ2/2)∆ϱ+ γ(ξ · ∇) ◦ ϱ .

The solution theory to this equation follows the one for deterministic PDEs from fluid
dynamics, via energy estimates. Indeed we immediately find that

1

2
∂t∥ϱt∥2L2 − (1− γ2/2)∥∇ϱt∥2L2 ⩽ 0 .

3 The Φ4
d equation and related problems

In this second part of the course, we study (and motivate the study of) solutions to the
Φ4
d equation

∂tu = ∆u+mu− u3 + ξ , u(0, x) = u0(x) . (3.1)

There (t, x) ∈ [0,∞) × R
d and d ∈ N is for now arbitrary. The noise ξ will be

space-time white noise. In absence of noise, and when m > 0, the evolution of this
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equation is roughly described by the evolution of phase fields on which u ≃ ±1. In
particular, the interface that separates two phases is expected to evolve (at large scales)
via mean curvature flow. It is therefore not entirely surprising that the Φ4 equation (with
m > 0) is linked to a classical microscopic model for the description of two phases: the
Ising model. Indeed, the link appears in presence of “intermediate range” correlations,
in what is called the Ising model with Kac interaction.

3.1 The Ising model with Kac interaction
In this section we start the study of the Glauber dynamics of the Ising model with
Kac interaction. This will be a jump Markov process on the state space of all possible
spin configurations. A spin configuration is a map σ : Zd → {−1, 1}, or alternatively
a collection (σx)x∈Zd ∈ {−1, 1}Zd . Now we prescribe an evolution on these spin
configurations - these are usually called the Glauber dynamics associated to the Ising
model. Namely, we define the following generator, for a parameter γ ∈ (0, 1):

Lγ(f )(σ) =
∑
x∈Zd

cγ(x, σ){f (τxσ) − f (σ)} .

Here the operator τxσ flips the value of the spin at the location x:

(τxσ)y =

{
σy if y ̸= x ,
−σx if y = x .

Furthermore, the rate associated to the flip is given by

cγ(x, σ) = e−σxhγ (x,σ)[e−hγ (x,σ) + ehγ (x,σ)]−1 , (3.2)

where the interaction term hγ depends on the configuration of spins in a ball of distance
of order γ−1 about x:

hγ(x, σ) =
∑
y

Jγ(x, y)σ(y) .

Here

Jγ(x, y) = ζ−1
γ γdJ(γ|x− y|) , ∀x ̸= y , and Jγ(x, x) = 0

where J is a smooth radial function with compact support and ζγ is the normalisation

ζγ =
∑
x ̸=0

γdJ(γ|x|) ,

and we observe that ζγ → 1 as γ → 0. Understanding the large-scale dynamics of this
model is quite challenging, so we start with a simplification of the model, which can be
considered as a form of “linearisation”.

3.2 The voter model as high temperature limit of Ising
In particular, we will consider an expansion of (3.2) in the case hγ(x, σ) ≪ 1. Note that
when hγ = 0, each spin behaves independently of one another, so this is one way to
dampen the interactions between the particles in the model. At first order in hγ(x, σ),
the rate cγ(x, σ) is given by

c0γ(x, σ) =
1

2
(1− σxhγ(x, σ)) = cγ(x, σ) + o(h2γ) .
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We then start with studying the large-scale dynamics of the generator L0
γ associated to

c0γ , and given by

L0
γ (f )(σ) =

∑
x∈Zd

c0γ(x, σ){f (τxσ) − f (σ)} .

Now if we look more closely, the transition rates are given by

c0γ(x, σ) =
1

2

∑
y

Jγ(x, y)(1− σxσy) =
∑
y

Jγ(x, y)1{σx ̸=σy} ,

were we used that Jγ is normalised to a probability measure. This is quite naturally
called the voter model, in which a particle changes opinion at a rate proportional to the
number of neighbouring particles with different opinions. As usual, we study the large
scale behaviour of this system through the associated martingale problem. For every
smooth function φ with compact support, let us define ⟨σt, φ⟩ =

∑
x σt(x)φ(x). Then

d⟨σt, φ⟩ = −

{∑
x

c0γ(x, σ)2σt(x)φ(x)

}
dt+ dMφ

t ,

for a cádlág martingale Mφ
t . We can rewrite the drift term as

−c0γ(x, σ)2σt(x)φ(x) =
∑
y

Jγ(x, y)(σt(y) − σt(x))φ(x) ,

which summing over x becomes (since Jγ(x, y) = Jγ(y, x)):∑
x

σt(x)
∑
y

Jγ(x, y)(φ(y) − φ(x)) .

Now we can also compute the quadratic variation of the martingale

d⟨Mφ⟩t =
∑
x

c0γ(x, σ)4φ2(x) = 2
∑
x,y

Jγ(x, y)(1− σxσy)φ2(x)

= 2
∑
x

φ2(x) − 2
∑
x

φ2(x)
∑
y ̸=x

Jγ(x, y)σxσy .

Here the second term will eventually be irrelevant in our analysis, because neighbouring
spins tend to decorrelate. To see this, we must introduce the appropriate scaling.

3.3 Convergence to the stochastic heat equation
To capture the large-scale behaviour of the voter model, we must introduce the appropriate
space-time scaling. Let us define the measure-valued process, for a parameter α > 0
that we will choose later on:

Xγ
t = γβ

∑
x

σγ−2αt(x)δγ1+αx .

Then, by the previous calculations we would obtain

d⟨Xγ
t , φ⟩ = γ−2α

∑
x

γβσγ−2αt(x)
∑
y

Jγ(x, y)(φ(γ1+αy) − φ(γ1+αx)) + dNφ
t .
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The drift term is well approximated by

ν(γ)Xγ
t (ν∆φ) , ν(γ) =

∑
y

Jγ(x, y)γ2|x− y|2 → ν =

∫
R

d

J(|x|)|x|2 dx .

Instead, for the quadratic variation we obtain following the previous heuristic:

d⟨Nφ⟩t = γ−2αγ2β2
∑
x,y

Jγ(x, y)(1− σxσy)φ2(γ1+αx) ,

= γ−2αγ2β2
∑
x

φ2(γ1+αx) + o(1) .

Therefore, we obtain a nontrivial limit under the assumption that

−2α+ 2β = (1 + α)d ,

which leads to β = d
2 + d+2

2 α. In fact, this heuristic can be made rigorous.

Theorem 3.1 If d = 1, then the process Xγ
t converges weakly in D([0,∞);M(Rd)) to

the unique martingale solution X to

d⟨X,φ⟩ = ⟨X,∆φ⟩ dt+ dNφ
t , d⟨Nφ⟩t = 2⟨φ,φ⟩ . (3.3)

The complete proof of this result can be found in [BBPS03, Theorem 3.1], together with
the proof of the convergence of the full dynamical Ising–Kac model.

Remark 3.2 The fact that the solution to (3.3) is unique follows from the fact that it is
Gaussian. Indeed, we can rewrite X (in the case ν = 1 for simplicity) as the solution to

∂tX = ∆X + ξ , (3.4)

where ξ is space-time white noise. In particular, if (Pt)t⩾0 is the heat semigroup, then

Xt = PtX0 +

∫ t

0

Pt−sξ ds ,

and the second term is a centered Gaussian for which one can compute explicitly the
correlation function (say X0 = 0):

E[Xt(x)Xs(y)] =
∫ t∧s

0

∫
R

d

pt−r(x, z)ps−r(y, z) dz dr

=

∫ t∧s

0

pt+s−2r(x, y) dr .

3.4 From linear problems to interactions: stochastic estimates
In this section we introduce a martingale approach to study nonlinear functions of the
solution X to (3.4). To simplify the issue, we consider the process on the torus, and at
invariance. We write

Td = R
d \ Zd

for the d-dimensional Torus, which is obtained from R
d by quotienting via translations

in integer directions. In other words, we are considering PDEs on [0, 1]d with periodic
boundary conditions. The torus is particularly convenient, as we can consider the system
in Fourier coordinates.
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3.4.1 Intermezzo on the Fourier transform

Define the Fourier transform:

φ̂(k) = Fφ(k) =
∫
Td

e2πιk·xφ(x) dx = ⟨φ, ek⟩ ,

where ι =
√
−1. Then the Fourier transform satisfies the following properties.

1. The output is a function on the lattice Zd, namely F[φ] : Zd → R.

2. The Fourier transform is invertible (in the space of Schwartz distributions)

F−1[ψ](x) =
∑
k∈Zd

ψ(k)ek(x) .

3. The Fourier transform is an Isometry between L2(Td) and L2(Zd):

∥φ∥L2(Td) =

(∫
Td

|φ(x)|2 dx
) 1

2

= ∥F[φ]∥L2(Zd) =

 ∑
k∈Zd

|φ̂(k)|2
 1

2

.

We can use the Fourier transform to solve the Heat equation through the following
lemma.

Lemma 3.3 Let φ be the solution to

∂tφ =
1

2
∆φ+ f , φ(0, ·) = φ0(·) .

Then

φ̂(t, k) = e−2π2t|k|2 φ̂0(k) +
∫ t

0

e−2π2(t−s)|k|2 f̂ (s, k) ds .

3.4.2 A martingale approach to nonlinearities of distributions

Now, let us pass again to analyze non-linear functionals of Xt. As we mentioned, to
simplify matters we consider the system at invariance, and with a mean-zero noise.
Namely if Π× is the projection

Π×φ(x) = φ(x) −
∫
Td

φ(z) dz ,

then let us consider

Xt =

∫ t

−∞
Pt−sΠ×ξ ds .

Then the law ofX is invariant in time. Our objective is to eventually define the non-linear
functional

X3
t (x) .
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The issue is that for given t > 0, Xt does not even lie in L2(Td), if d ⩾ 2. Indeed, we
can compute

E∥Xt∥2L2 =

∫
Td

E|Xt(x)|2 dx = ∞ ,

because formally

E[Xt(x)Xt(y)] =
∫ ∞

0

p2t(x− y) dt = G(x− y) ,

where p2t is the heat kernel of the periodic mean-zero Laplacian and G the associated
Green’s function. Since G(x− y) ≃ log |x− y|−1 in d = 2 (and the explosion is even
worse in d ⩾ 3), we see that the variance at a given point explodes.

Remark 3.4 Instead, in dimension d = 1, these problems do not appear, and almost
surely, Xt ∈ C

1
2−ε(Td) for any t, ε > 0. Also, note that in dimension d = 1 the

invariant measure associated to Xt is a Brownian motion conditioned to have zero
mean.

Since (Xt)t⩾0 is invariant in time, we now simply write X for X0, and consider a
time-independent problem. In any dimension, one can still make sense of X as a
distribution, since

E[⟨X,φ⟩⟨X,ψ⟩] =
∫

(Td)2
G(x− y)φ(x)ψ(y) dx dy <∞ , (3.5)

as long as φ,ψ ∈ L∞. But this does not help us in defining nonlinear functions of
X . Here it is fundamental to use probability theory. Rather than a classical approach
via decomposition into homogeneous Itô chaoses, we follow here a new approach via
martingales, that has been recently outlined in [BCG23]. To this aim consider the space
M of all continuous martingales:

M= {(Mu)u⩾0 : Mu is a real-valued martingale } .

There is a natural notion of product on this space, given by imposing that after a product
we still have a martingale:

(:MN :)u =MuNu − ⟨M,N⟩u .

Here we use colons :MN : to distinguish the product in M from the product in R. The
fundamental idea is to consider Mu an approximation of a possible terminal value M∞
(if this exists - which is not guaranteed, since we are not assuming that the martingales
are, for example, uniformly integrable). For example, we may approximate our X as
follows

Xu =

∫ − 1
u

−∞
P−sΠ×ξ ds d

= P 1
u

∫ 0

−∞
P−sΠ×ξ ds .

The last calculation shows that for any Given u > 0, the distribution Xu is actually a
smooth function. Then we can define the product X(x)X(y) ∈ M as the martingale

(: X(x)X(y) :)u = Xu(x)Xu(y) − d⟨X(x), X(y)⟩u .
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The quadratic variation process is given by a correlation function

⟨X(x), X(y)⟩u = cu(x, y) ,

which is deterministic and satisfies limu→∞ cu(x, y) = G(x, y). To see that this is the
case, we can represent cu(x, y) = cu(x− y) in Fourier coordinates

F[cu](k) =
∫ −1/u

−∞
es2|k|

2

ds1{|k|≠0} =
1

2|k|2
e−|k|2/u1{k ̸=0} → 1

2|k|2
1{k ̸=0} ,

where the last limit appears as u→ ∞.

Remark 3.5 Although neither X(x) nor X(y) make sense as random variables, we are
still formally able to compute their covariation, which is given by

Cov(X(x), X(y)) def
= lim
u→∞

Cov(Xu(x), Xu(y))

= lim
u→∞

cu(x, y) = G(x− y) , ∀x ̸= y .

So far we have given some meaning to X2(x), not as a random variable, but as a
non-closed martingale. The next step is to observe that the X2(x) we have constructed
is actually a spatial distribution.

Remark 3.6 In the language of Wiener-Itô chaoses, we have approximatedX through a
smooth familyXu for u ⩾ 0. Then, sinceX is Gaussian, the squareX2

u has components
in a second homogeneous and first inhomogeneous Wiener–Itô chaos. The first chaos
component is given by cu(x, x), which is diverging. Our procedure is a way to remove
the diverging zeroth chaos, or expected value (which is referred to as s renormalisation),
leaving us with a well-defined random field.

Lemma 3.7 It holds that

Cov(: X2 : (x), : X2 : (y)) = 2G2(x, y)

Proof. We find that for some martingale (Mu)u⩾0

d(: X2 : (x))u(: X2 : (y))u = d⟨: X2 : (x), : X2 : (y)⟩u + dMu .

As we are only interested in the quadratic covariation term, we find

d⟨: X2 : (x), : X2 : (y)⟩u = 4Xu(x)Xu(y)∂ucu(x, y) du .

Therefore

E d⟨: X2 : (x), : X2 : (y)⟩u = 4cu(x, y)∂ucu(x, y) du

Integrating in time, we obtain the desired result.

Corollary 3.8 The Wick square : X2 : is, up to considering a modification, a random
distribution, in dimension d < 4.

Proof. This follows since G2(x, y) ≃ |x−y|2(d−2) is integrable if and only if 2d−4 < d.
Therefore we obtain

E

[
⟨: X2 :, φ⟩⟨: X2 :, ψ⟩

]
= 2

∫
(Td)2

G(x, y)φ(x)ψ(y) dx dy <∞ ,
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for all φ,ψ ∈ L∞. From here one can construct a random distribution by defining:

Ẑ(k) def
= ⟨: X2 :, ek⟩ , Z = F−1Ẑ ,

and by observing that ⟨Z,φ⟩ is equal in distribution to ⟨: X2 :, φ⟩, for any φ ∈ L∞.

Similarly we can proceed to define the cube : X3 : (x). Here the compensation that is
required to build a martingale starting from X(x) is given by

dX3
u(x) = 3Xu(x) d⟨X(x), X(x)⟩u + dMu , dMu(x) = 3X2

u(x) dXu(x) .(3.6)

Therefore it would seem natural to consider in this case the martingale

(: X3 : (x))u = X3
u(x) − 3

∫ u

0

Xr(x)∂rcr(x, x) dr .

Unfortunately, this is not enough, you can check that this choice gives rise to an exploding
covariance matrix for : X3 : (covariances are taken formally as the limit in Remark 3.5).
Instead, the correct choice of higher degree Wick powers is

d(: Xn(x) :)u = n(: Xn−1(x) :)u dXu (3.7)

Exercise 6 For n = 3, one way to obtain the expression (3.7) is to start from (3.6) and
observe that for some martingale Nu∫ u

0

Xr(x)∂rcr(x, x) dr = Xu

∫ u

0

∂rcr(x, x) dr −Nu , dNu = cu dXu .

Hence one can rewrite

X3
u(x) = 3Xucu − 3Nu +Mu ,

and Mu − 3Nu is the martingale appearing in (3.7). In particular

(: X3(x) :)u = Xu(x)(: X2(x) :)u = Xu(x)(X2
u(x) − cu(x, x)) .

Now, the expression (3.7) leads to an inductive way of computing the correlation
functions of the Wick powers.

Lemma 3.9 It holds that

Cov(: Xn(x) :, : Xn(y) :) = n!Gn(x, y) .

Proof. This follows if we can show by induction that

Cov(: Xn(x) :u, : Xn(y) :u) = n!cnu(x, y) .

If the above identity holds for n− 1, then

Cov(: Xn(x) :, : Xn(y) :) =
∫ u

0

n2(n− 1)!cn−1
r (x, y)∂rcr(x, y) dr = n!cnu(x, y) .

Corollary 3.10 From Lemma 3.9 we conclude that : X3(x) : is a random distribution
in d ⩽ 2. Instead, in d = 3, the covariance

Cov(: X3(x) :, : X3(y) :) = 6G3(x, y) ≃ |x− y|−3(d−2)

is not integrable.
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3.5 Towards singular stochastic PDEs
We are now ready to give a meaning to (3.1) in dimension d = 2 (d = 1 is much simpler,
and d = 3 significantly more complex). For simplicity we stick to the case m = 0, since
the case m ̸= 0 follows in exactly the same way. Following the idea of “linearisation”
that appeared already in the scaling of the Ising model, we start with the ansatz that the
solution φ to (3.1) is a perturbation of the Gaussian process (Xt)t⩾0 that solves (3.4).
Namely, let us (formally, since the existence of φ is not guaranteed) defined ψ by

φ = X + ψ .

Then we expect ψ to solve the equation

∂tψ = ∆ψ − ψ3 − 3X2ψ − 3Xψ2 −X3 , ψ(0, ·) = φ0(·) −X0(·) .

As we have learned, the products X3 and X2 are not well defined, and we replace them
with their (well-defined) Wick products instead:

∂tψ = ∆ψ − ψ3 − 3 : X2 : ψ − 3Xψ2− : X3 : , (3.8)

which is sometimes formally written as the effect of an infinite renormalisation

∂tψ = ∆ψ − ψ3 − 3(X2 −∞)ψ − 3Xψ2 −X(X2 −∞) .

Now we are able to use classical PDE arguments to solve (3.8). To this aim, we need a
couple of results, which we will not prove. The first one is a quantitative estimate of the
(ir-)regularity of the driving noise terms. The second one is a quantitative estimate of
the regularising effect of the heat semigroup: these are known as Schauder estimates.

To state these results we need a notion of negative regularity (for distributions that
are not functions). Here we use Besov spaces C−α of negative regularity (α > 0), which
in first approximation can be though of spaces of distributions that are derivatives of
functions in C1−α (assuming that α ∈ (0, 1)). Rigorously, Besov spaces can be defined
through the norm

∥φ∥Cα = sup
j∈N

2αj∥∆jφ∥L∞ ,

there ∆jφ is the j-th Paley block ∆jφ = F−1(ϱj · F(φ)), defined in terms of a dyadic
partition of the unity (see [BCD11] for the complete definition), which can be thought
of roughly as a projection on frequencies of order 2j , namely ϱj(k) ≃ 1{[2j−1,2j )}(|k|)).

Lemma 3.11 In dimension d = 2 the process Xt and any of its Wick powers : Xn
t :

satisfies for any α > 0

E sup
0⩽t⩽T

∥ : Xn
t : ∥Cα < C(n, α, T ) <∞ .

Lemma 3.12 (Schauder estimates) For any α ∈ R and β > 0 we can estimate
uniformly over φ ∈ S′(Td):

∥Ptφ∥Cα+β = t−
β
2 ∥φ∥Cα .

The final ingredient is a rule for the product of distributions, which is allowed if the sum
of the regularities of the two distributions is strictly positive (so at least one must be a
sufficiently smooth function).
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Lemma 3.13 For any α, β ∈ R such that α+ β > 0, one can estimate uniformly over
φ,ψ ∈ S′(Td)

∥φ · ψ∥Cα∧β ≲ ∥φ∥α∥ψ∥β .

We are now ready to prove well-posedness of (3.8). For simplicity we will assume that
φ0 = X0.

Theorem 3.14 Assume that φ0 = X0. Then almost surely there exists a unique mild
solution ψ to (3.8) in the space L∞([0, T ]; Cα(Td)), for any α ∈ (0, 2) and T > 0.

Proof. By mild solution we mean that ψ solves the following fixed point problem

ψt = −
∫ t

0

Pt−s
[
ψ3 + 3Xψ2 + 3 : X2 : ψ+ : X3 :

]
ds .

We will shot that the map Idefined by

I(f )t = −
∫ t

0

Pt−s
[
f3 + 3Xf2 + 3 : X2 : f+ : X3 :

]
ds

is well defined I: L∞([0, T ]; Cα) → L∞([0, T ]; Cα) and is a contraction for suf-
ficiently small T > 0. Extending the solution to all T > 0 is then more involved
(and requires a-priori estimates that use the negative sign appearing in front of the
non-linearity).

As for the contraction property over small times, we can estimate

∥I(f )t∥Cα ≲
∫ t

0

∥fs∥3Cα + s−
α+ε
2 ∥X∥C−ε∥f∥2Cα

+ s−
α+ε
2 ∥ : X2 : ∥C−ε∥f∥Cα + s−

α+ε
2 ∥ : X3 : ∥C−ε ds .

This holds for any ε > 0, but let us choose ε sufficiently small such that ε+ α ∈ (0, 2),
which is possible since α ∈ (0, 2). Then we can estimate

|||I(f )|||T ≲ T 1−α+ε
2 (M + |||f |||3T ) ,

where |||f |||T = sup0⩽s⩽T ∥fs∥Cα and M is a random constant such that

sup
0⩽s⩽T

{
∥Xs∥C−ε + ∥ : X2

s : ∥C−ε + ∥ : X3
s : ∥C−ε

}
⩽M .

Therefore, if we denote with X the space (and XR the ball):

X= L∞([0, T ]; Cα) , XR = {f ∈ X : |||f |||T ⩽ R} ,

we find that for T ⩽ T⋆(R), for some T⋆(R) > 0 sufficiently small, I: XR → XR, and
moreover, by the same estimates as above

|||I(f ) − I(g)|||T ≲ T 1−α+ε
2 (1 +R2)(1 +M )|||f − g|||T ,

so that (again provided T⋆(R) > 0 is sufficiently small), leads to Ibeing a contraction
on XR. Therefore, there exists a unique fixed point ψ, which is the local solution of the
theorem.
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4 Construction of the Φ4
2 measure

In this last section we address the study of long-time properties of the Φ4 model (although
many results extend to other SPDEs). In the case of Φ4, the invariant measure can be
somewhat easily guessed, in analogy to finite-dimensional Langevin dynamics:

dYt = −∇Ψ(Yt) dt+ dBt , (4.1)

where Ψ is some for of potential. In the case of (4.1), the invariant probability measure
is given by

p( dy) =
1

Z
e−Ψ(y) dy ,

provided that the right hand-side is integrable, otherwise the invariant measure would not
be a probability measure. In the case of Ψ(y) = y4, this would lead to Z−1 exp(−y4) dy.
We observe that in finite dimensions there is a natural reference measure, which is the
Lebesgue measure. In the case of Φ4

d, the closest possible analogue of the Lebesgue is
the Gaussian measure associated to the free field (Xt)t⩾0. The invariant measure P

Φ

to (3.1) in the case m = 0 is then formally given through the following density with
respect to the invariant measure P

X of (Xt)t⩾0:

dPΦ

dPX
=

1

Z
exp

(
−
∫
Td

: X4 : (x) dx
)
. (4.2)

One way to construct the Φ4
d measure is by proving ergodicity of (3.1) (this is possible

in dimension d ⩽ 3). In dimension d = 2 a different construction is possible, which
builds solely on the analysis of Wick powers (this is known as Nelson’s construction
[Nel66], see also [Hai21, Chapter 9]). The key difficulty in constructing (4.2) is to prove
that the right hand-side is integrable. Here we must make use of the negative sign that is
appearing in front of the fourth power, yet this is not entirely obvious since : X4 : is not
positive (in fact, it has mean zero).

Nonetheless, for finite u ⩾ 1 we can still find an upper bound, as

: X4
u := c2u(0)H4(Xu/

√
cu(0)) ≳ −c2u(0) ≃ − log (u)2 . (4.3)

Then we can write

: X4 :=: X4
u : +Yu , Yu = 4

∫ ∞

u

: X3
r : dXr .

We now want to control, for K > 0 large, the tail probability

P

(
⟨: X4 :, 1⟩ ⩽ −K

)
= P

(
⟨: X4

u : +Yu, 1⟩ ⩽ −K
)
. (4.4)

The key idea of the proof is to suitably divide between high and low frequencies. For the
low frequency component we want to use (4.3), while for the high frequency component
we want to use a moment estimate on Y . Here we find that

E[Yu(x)Yu(y)] = 4!
(
G4(x− y) − c4u(x− y)

)
.

It follows therefore that for a suitable φu (which is in L2(Td) uniformly over u)

E⟨Yu, 1⟩2 ≃
∫

(Td)2
G4(x− y) − c4u(x− y) dx dy
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≃
∫
Td

(G(x) − cu(x))φ(x) dx ≲ ∥G− cu∥L2 .

Now for the last term, G− cu acts like a projection on frequencies ≳ u. Therefore, we
find for any ε > 0

∥G− cu∥L2 ≲ε u
−2+ε .

Now we can go back to (4.4), to find that if we choose u such thatK−c log2 (u) ∈ [1, 2],
then

P

(
⟨: X4 :, 1⟩ ⩽ −K

)
⩽ P(|⟨Yu, 1⟩| ⩾ K − c log2 (u))

⩽ E|Yu|2p ⩽ Cppu(−2+ε)p .

Now recall that

u ≃ exp(
√
K c̃) .

Therefore, we have found that

P

(
⟨: X4 :, 1⟩ ⩽ −K

)
⩽ C(pe−c1

√
K)p .

Choosing p = ec2
√
K for c2 < c1 leads to

P

(
⟨: X4 :, 1⟩ ⩽ −K

)
≲ exp(−c3 exp(c2

√
K)) .

References
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