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Abstract

This article describes methods for efficient posterior simulation for Bayesian vari-

able selection in Generalized Linear Models with many regressors but few observations.

The algorithms use a proposal on model space which contains a tuneable parameter. An

adaptive approach to choosing this tuning parameter is described which allows auto-

matic, efficient computation in these models. The method is applied to examples from

normal linear and probit regression. Relevant code and datasets are posted as an online

supplement.
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1 Introduction

The availability of datasets with large numbers of variables has lead to interest in the use of

variable selection methods for regression models with large numbers of potential regressors.

In this paper, we will concentrate on Bayesian variable selection methods applied to datasets

with hundreds of regressors where Markov chain Monte Carlo methods can be effectively
∗Cyprus University of Technology and University of Kent and University of Warwick
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used. We will work in the context of Generalized Linear Models (GLM) (McCullagh and

Nelder, 1989) where it is assumed that y1, y2, . . . , yn are observed dependent variables and

the i-th observation is associated with a set of p regressors xi = (xi1, xi2, . . . , xip) and that

f(yi|xi,β, τ) = exp
{
a−1

i (τ) [yigi − b(gi) + c(yi, τ)]
}} (1)

where gi = g(ηi) is the link function and ηi = α + xiβ is the linear predictor, with intercept

α ∈ R and regression coefficient β ∈ Rp. Different choices of a, b and c lead to different

conditional models for yi. Linear regression and probit regression have been the most thor-

oughly explored models with large datasets and this paper will concentrate on these examples

(although several methods are applicable to all GLMs). For example, Lee et al. (2003) and

Sha et al. (2003, 2004) consider using MCMC methods for Bayesian variable selection in

a probit regression model to find gene expression levels related to a binary response (such

as diseased or non-diseased). In linear regression, large numbers of variables are common

in spectroscopy, chemometrics or proteomics and can also occur in economics. In both re-

gression models, we would usually assume that only a subset of the regressors are needed

to predict yi and the vector of indicator variables γ = (γ1, γ2, . . . , γp) is introduced to rep-

resent inclusion (γi = 1) or exclusion (γi = 0) of the i-th regressor leading to model size

pγ =
∑p

i=1 γi for γ. The model γ uses the linear predictor ηi = α + xγ
i βγ in equation (1),

where xγ
i and βγ group the pγ elements for which γi = 1. Bayesian inference proceeds by

placing a prior on γ as well as α, βγ and τ .

Summaries of the posterior distribution are typically computed using either efficient

methods to select a small subset of interesting models combined with an approximation

for π(y|γ) (Yeung et al., 2005; Hans et al., 2007; Clyde et al., 2011) or Markov chain Monte

Carlo methods that produce samples from the posterior distribution using a Gibbs sampler.

This paper follows the second approach. The model γ is usually updated by a Metropolis-

Hastings step which proposes new models by either including an excluded variable, exclud-

ing an included variable or swapping one included variable with one excluded variable. This

is similar in spirit to a Random Walk Metropolis (RWM) sampler, which generates a Markov

chain by proposing a new value as a perturbed version of the current value with the difference
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that here the state space is a lattice. In the RWM sampler, the variance of the pertubations can

be controlled to obtain an optimal RWM sampler. Lamnisos et al. (2009) find that acceptance

rates for Metropolis-Hastings samplers that include, exclude or swap a single variable usu-

ally have high acceptance rates for variable selection in probit regression models when there

are many regressors and few observations. They describe a tuneable proposal for variable se-

lection problems with a single parameter defined on [0, 1] controlling the difference between

the current and proposed model. They find that in probit modelling with many regressors,

the optimal sampler occurs for a proposal which leads to an average acceptance rate close to

0.234, which is the value for the optimal RWM sampler in many continuous problems and in

simple discrete problems on a lattice (Roberts and Rosenthal, 2001; Sherlock and Roberts,

2009; Roberts, 1998).

Metropolis-Hastings samplers with tuneable proposal can lead to efficient algorithms but

tuning can be time-consuming. Recently, there has been interest in adaptive Monte Carlo

methods where the distribution of the proposal is adjusted during the MCMC run. These

methods are difficult to implement in general since the Markov property is violated and stan-

dard theory for convergence of the chain to the target distribution does not apply. However,

convergence to the target distribution can be verified for particular forms of adjustment. The

first adaptive algorithm that could be shown to converge to the target distribution was in-

troduced by Haario et al. (2001) who used methods from Stochastic Approximation. This

important idea and other methods are reviewed by Andrieu and Thoms (2008).

Our goal is to automatically produce a Markov chain with good mixing properties which

gives accurate answers with the smallest possible run length. The posterior distribution will

be complicated and vast (there will be 2p potential models if there are p potential regres-

sors). Adaptive methods are important because MCMC methods often mix slowly (and so

proposals that encourage good mixing are important) and the running of many pilot runs is

unsatisfactory due to the large number of iterations needed to give good estimates of poste-

rior summaries. Such methods have been previously applied to variable selection problems

by Nott and Kohn (2005). They allow the probability that a particular variable is proposed
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to be included in or removed from the model to adapt over the chain. This is rather differ-

ent from the method developed here where the expected number of variables to be updated,

rather than the variable-specific update probability, is adapted over the chain. The method

uses a form of proposal for variable selection described by Lamnisos et al. (2009) which can

be tuned in a similar way to a RWM sampler.

The paper is organised as follows: Section 2 describes the Bayesian approach to variable

selection in linear regression, as well as a tuneable proposal on model space and an adaptive

MCMC algorithm in linear regression. Section 3 describes MCMC algorithms for Bayesian

variable selection in generalized linear models and their adaptive versions, as well as ergodic-

ity results of the adaptive MCMC algorithms. Section 4 discusses some numerical examples

that illustrate the utility of the approach and finally the Discussion contains some concluding

comments. The code and data are freely available at http://www.amstat.org/publications/jcgs.

2 MCMC algorithms for Bayesian Variable Selection in Lin-

ear Regression

The normal linear regression model has greater analytical tractability than other GLMs and

so we start by discussing that model here. It assumes that observations y = (y1, y2, . . . , yn)T

are generated by

y ∼ N(α1 + Xγβγ, τIn).

Within a Bayesian analysis, α, βγ, τ and γ are given prior distributions. The intercept α is

given the commonly used noninformative improper prior for location parameters

π(α) ∝ 1, (2)

the regression coefficients have the multivariate normal prior

βγ|τ, γ ∼ Npγ (0, τV γ), (3)
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and the error variance τ is assigned the usual noninformative improper prior for scale pa-

rameters

π(τ) ∝ 1

τ
. (4)

Two quite common choices for the prior covariance V γ are cIpγ and c(X ′
γXγ)

−1 which

involve a single hyperparameter. Finally, the prior on γ assumes that π(γi = 1) = w,

independently for i = 1, . . . , p.

The priors (2), (3) and (4) result in an analytical expression for the marginal likelihood

π(y|γ) of model γ given by

π(y|γ) ∝ |XT
γ Xγ + V −1

γ |−1/2 |V γ|−1/2 (ỹTỹ − yTXγ(X
T
γ Xγ + V −1

γ )−1XT
γ y)−(n−1)/2,

where ỹ = y − ȳ1 and ȳ is the mean of the response y.

This analytical expression for the marginal likelihood π(y|γ) facilitates the development

of MCMC methods that are used to estimate posterior model characteristics. A Metropolis-

Hastings algorithm with the posterior model distribution π(γ|y) as stationary distribution

can be implemented. This Metropolis-Hastings linear regression (MH-LR) algorithm pro-

ceeds as follows:

Algorithm 1 (MH-LR) Let γ be the current state of the chain.

1. Select model γ ′ with probability q(γ ′|γ).

2. Jump to the model γ ′ with probability

α(γ,γ ′) = min

{
1,

π(y|γ ′) π(γ ′) q(γ|γ ′)
π(y|γ) π(γ) q(γ ′|γ)

}
.

The availability of a closed form expression for π(y|γ) allows a Metropolis-Hastings

algorithm to be defined directly on γ. An important part of MH-LR is the model proposal

q(γ ′|γ) which controls the mixing of the algorithm.
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2.1 A Tuneable Proposal On Model Space

Lamnisos et al. (2009) propose a new general model proposal qζ(γ
′|γ) which draws a new

model in the following way:

1. A value N (t) is generated from a Binomial distribution with a fixed number, N − 1, of

trials and success probability ζ .

2. One of three possible moves: “Add”, “Delete” and “Swap” is chosen uniformly at

random. If Add is selected then N (t) + 1 regressors are chosen to be added to those

included in γ to form γ ′, if Delete is selected then N (t) +1 regressors are chosen to be

removed from the model and if Swap is selected then N (t) + 1 included regressors are

swapped with N (t) + 1 exluded regressors without changing the model size (provided

pγ ≥ N (t) + 1; if not, the “Add” step is chosen for pγ < N (t) + 1 and either the “Add”

or “Swap” for pγ = N (t) + 1. In those cases, the model proposal and reverse model

proposal are slightly adjusted to consider those conditions).

This model proposal combines local moves with more global ones by simultaneously

changing a block of variables. Two parameters determine this proposal: N is the maximum

number of variables that can be changed from the current model γ and ζ determines the

degree of “localness” since the mean number of variables proposed to be changed is 4/3 ×
(1 + (N − 1) × ζ). If ζ = 0, we have the standard proposal which adds or deletes a single

variable or swaps one variable into the model and one variable out of the model. However,

more ambitious moves which change more variables are increasingly likely to be proposed

as ζ increases. The value of N will usually be fixed and the parameter ζ chosen to control

the mixing of the chain. The application of this proposal to microarray data by Lamnisos

et al. (2009) suggests that the optimum effective sample size is obtained when the average

acceptance rate falls in the range 0.25 to 0.40. This is true for a wide-range of sampling

schemes. Rather like RWM samplers, this optimal choice of acceptance rate can be achieved

by carefully tuning the parameter ζ of the model proposal using a series of pilot runs. In

each pilot run, the sampler is run for a chosen value of ζ and the average acceptance rate
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calculated. If the acceptance rate is too high then ζ is increased in the next run and if the

acceptance rate is too low then ζ is decreased in the next run. However, this tuning process

will involve trial and error and so is typically a computationally expensive task.

2.2 Adaptive MCMC Algorithm in Linear Regression

As an alternative solution to a series of pilot runs, we consider adaptive MCMC algorithms

which can automatically handle this parameter tuning. This problem is similar to adapta-

tion in RWM samplers since there is a tuneable proposal and a target acceptance rate to be

achieved. Therefore, we adopt ideas of the Adaptive Random Walk Metropolis (ARWM) al-

gorithm proposed by Atchadé and Rosenthal (2005) to develop adaptive MCMC algorithms

for variable selection that adapt sequentially the scale parameter ζ .

In our case the scale parameter ζ ∈ [0, 1] and similarly to Atchadé and Rosenthal (2005)

we define the following function of ζ

ρ(ζ) =





0 if ζ < 0

ζ if ζ ∈ [0, 1]

1 if ζ > 1.

The aim of this function is to contain the adaptive algorithm inside [0, 1]. Finally, a positive

sequence of real numbers s(t) = ζ0/t is defined. The pseudocode representation of the

adaptive MH-LR algorithm (denoted by ADMH-LR) adjusts the model proposal step and

adds an extra step (step 3 below) to the corresponding non-adaptive algorithm (Algorithm

1).

Algorithm 2 (ADMH-LR) Let γ be the current state of the chain and ζ(t) ∈ [0, 1].

1. Select model γ ′ with probability qζ(t)(γ ′|γ).

2. Jump to the model γ ′ with probability

α(γ,γ ′) = min

{
1,

π(y|γ ′) π(γ ′) q(γ|γ ′)
π(y|γ) π(γ) q(γ ′|γ)

}
.
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3. Compute

ζ(t+1) = ρ(ζ(t) + s(t)(α(γ,γ ′)− τ̄)). (5)

The acceptance rate is monitored by (5), where τ̄ is a value chosen from the range 0.25

to 0.4. The algorithm decreases the scale parameter ζ(t+1) when the acceptance rate is small

and increases ζ(t+1) when the acceptance rate is high. The sequence of scale parameters ζ(t)

converges to a value that results in the target acceptance rate τ̄ (if it is achievable).

3 MCMC algorithms for Bayesian Variable Selection in Gen-

eralized Linear Models

The marginal likelihood π(y|γ) is not analytically available for other GLMs and a sampler

must be defined on the joint posterior of γ, α, βγ and τ . Let us focus on the particular case

of the probit model. If the GLM is a probit regression model then Albert and Chib (1993)

show that the model can be written in the following way

zi ∼ N(α + xγ
i βγ, 1) (6)

where yi = 0 if zi < 0 and yi = 1 if zi > 1 and xγ
i denotes the ith row of Xγ . Latent

variables z = (z1, z2, . . . , zn)T are introduced which allow the model to be expressed as a

linear regression with known error variance in zi. The prior on βγ will be similar to (3),

namely

βγ|γ ∼ Npγ (0,V γ),

and for α we now take a vague Normal prior

α ∼ N(0, h),

with some large value for h (we adopt h = 100 in the sequel). In probit regression, unlike

linear regression, the use of the improper prior in (2) can yield improper posteriors for α

and βγ if the design matrix X̃γ = (1 : Xγ) does not satisfy two conditions (Lamnisos,
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2010). Furthermore, identification issues between α and the scale of V γ are raised when a

prior distribution is specified on the scale parameter, as documented in Lamnisos (2010). We

shall define θγ = (α, βT
γ )T in what follows. Various MCMC methods for dealing with these

models are described by Lamnisos et al. (2009). One of these methods is the Holmes and

Held (2006) (H-H) algorithm that uses the data augmentation approach of probit regression

to develop an efficient between-model move. This algorithm proceeds as follows:

Algorithm 3 (H-H) Suppose that (γ, θγ) are the current values of the chain

1. Generate z1, z2, . . . , zn from the truncated normal distribution zi ∼ N(α + xγ
i βγ, 1)

and zi > 0 if yi = 1 or zi < 0 if yi = 0.

2. Select model γ ′ with probability q(γ ′|γ).

3. Jump to the model γ ′ with probability

α(γ,γ ′) = min

{
1,

π(γ ′)q(γ|γ ′)π(z|γ ′)
π(γ)q(γ ′|γ)π(z|γ)

}
.

4. If γ′ is accepted, draw θγ′ ∼ N((X̃
T

γ′X̃γ′ + Ṽ
−1

γ′ )−1X̃
T

γ′z, (X̃
T

γ′X̃γ′ + Ṽ
−1

γ′ )−1).

The between-model acceptance probability of the H-H algorithm is independent of pa-

rameter states and it is similar to the acceptance probability of MH-LR algorithm with target

distribution π(γ|z). The H-H algorithm can be made adaptive by updating ζ at each iteration

using the recursion in (5). The pseudocode representation for the adaptive H-H algorithm

(denoted by ADH-H) has the form

Algorithm 4 (ADH-H) Let (γ,θγ) be the current state and ζ(t) ∈ [0, 1], then

1. Generate z1, z2, . . . , zn from the truncated normal distribution zi ∼ N(α + xγ
i βγ, 1)

and zi > 0 if yi = 1 or zi < 0 if yi = 0.

2. Select model γ ′ with probability qζ(t)(γ ′|γ).
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3. Jump to the model γ ′ with probability

α(γ,γ ′) = min

{
1,

π(γ ′)qζ(t)(γ|γ ′)π(z|γ ′)
π(γ)qζ(t)(γ ′|γ)π(z|γ)

}
.

4. Compute

ζ(t+1) = ρ(ζ(t) + s(t)(α(γ,γ ′)− τ̄)).

5. If γ ′ is accepted, draw θγ′ ∼ N((X̃
T

γ′X̃γ′ + Ṽ
−1

γ′ )−1X̃
T

γ′z, (X̃
T

γ′X̃γ′ + Ṽ
−1

γ′ )−1).

These algorithms could only be applied to a restricted class of GLMs that has a data

augmentation representation leading to a latent model which is linear in the regression co-

efficients and involves errors that are either a mixture of normals (Holmes and Held, 2006)

or can be approximated by a mixture of normals (Frühwirth-Schnatter and Wagner, 2006;

Frühwirth-Schnatter and Frühwirth, 2007). Furthermore, these algorithms are likely to mix

slowly because the auxiliary variable z is correlated with (θγ, γ), as is seen from (6), and z

is updated from its full conditional distribution.

The Automatic Generic sampler described by Green (2003) and extended by Lamnisos

et al. (2009) avoids using the auxiliary variable z in the between-model move and is appli-

cable to any GLM. The MLE of θγ is asymptotically normally distributed and so the full

conditional of θγ can be approximated by a normal distribution . The automatic generic

method exploits the fact that a normally distributed random variable, x, with mean µ and

variance-covariance matrix Σ can be written as x = µ + Σ1/2ε where Σ1/2 is the Cholesky

decomposition of Σ and ε is standard normal with the same dimension as x. In what follows

we shall use the notation X̃γ = (1 : Xγ) and Ṽ γ =


 h 0′

0 V γ


. The Automatic Generic

(AG) algorithm is then:

Algorithm 5 (AG) Let (γ,θγ) be the current state of the chain.

1. Select model γ ′ with probability q(γ ′|γ).

2. Propose θγ′ in the following way. Let µγ and Σγ be an approximation of the mean and

variance of the posterior distribution of θγ and let Bγ be the Cholesky decomposition
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of Σγ and v = B−1
γ (θγ − µγ). Then we propose θγ′ = µγ′ + Bγ′v

′ where

v′ =





(v1, . . . , vpγ′ )
T if pγ′ < pγ

v if pγ′ = pγ

(vT, εT)T if pγ′ > pγ

where ε = (ε1, . . . , εpγ′−pγ )
T has i.i.d. N(0, 1) elements.

3. Jump to the model γ ′ and parameter θγ′ with probability α(γ,γ ′,θγ,θγ′) =

min

{
1,

π(γ ′,θγ′)q(γ|γ ′)π(y|θγ′)|Bγ′ |
π(γ,θγ)q(γ ′|γ)π(y|θγ)|Bγ| ×K

}

where

K =





(2π)−
1
2
(pγ−pγ′ ) exp

{−1
2
(ε′)T(ε′)

}
if pγ′ < pγ

1 if pγ′ = pγ

(2π)
1
2
(pγ′−pγ) exp

{
1
2
εTε

}
if pγ′ > pγ,

and ε′ is the obvious counterpart of ε.

There are several methods of finding µγ and Σγ . Two are considered in this paper: the

Laplace approximation and the Iterated Weighted Least Squares (IWLS) approximation for

one iteration (see Lamnisos et al. (2009) and its supplemental material for more details).

The Laplace method involves an optimization algorithm in each iteration to find accurate

estimates of µγ and Σγ while the IWLS method use a single cycle of the Bayesian IWLS

algorithm to find rough estimates of µγ and Σγ . However, the IWLS approximation has

much lower computational cost.

Alternative automatic methods for moving between models are described by Brooks et al.

(2003) which are applied to probit regression by Lamnisos et al. (2009). In the case of pro-

posals that increase the model size, the coefficient vector is completed with uγ(ε) = µ + σε

where ε has a standard normal distribution. The Conditional Maximization method chooses

µ to maximize the posterior distribution π(θγ,uγ|y) with respect to uγ . The variance, σ2,

is chosen to ensure that the acceptance probability of the move with uγ(ε) = µ is 1 and is

given by

σ =

(
π(γ,θγ) q(γ′|γ) π(y|θγ)

(2π)(pγ′−pγ)/2 π(γ ′, θγ′) q(γ|γ′) π(y|(θγ,µ))

) 1
pγ′−pγ

.
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Here

α(γ,γ ′, θγ,θγ′) = min

{
1,

π(γ ′,θγ′) q(γ|γ′) π(y|θγ′) (σ2)
1
2
(pγ′−pγ)

π(γ,θγ) q(γ′|γ) π(y|θγ)
K

}
(7)

where

K = (2π)
1
2
(pγ′−pγ) exp

{
1

2
εTε

}
.

The pseudocode representation of the Conditional Maximization (CM) method is as follows:

Algorithm 6 (CM) If current state is (γ,θγ), then

1. Select model γ ′ with probability q(γ ′|γ).

2. Determine the location µ and the scale σ of the proposal random variable uγ as

described above.

3. Generate ε ∼ Npγ′−pγ (0, Ipγ′−pγ ).

4. Set uγ(ε) = µ + σε and θγ′ = (θγ,uγ).

5. Jump to the model γ ′ and θγ′ with probability given by (7). Otherwise, the proposal is

rejected.

Algorithms 5 and 6 can be made adaptive in the same way as Algorithm 3 by chang-

ing q(γ ′|γ) to qζ(t)(γ ′|γ) and updating ζ after calculating the acceptance probability of the

Metropolis-Hastings step. The proposed adaptive MCMC algorithms adapt the model pro-

posal qζ(γ
′|γ) while the adaptive MCMC algorithm of Ji and Schmidler (2009) adapt the

weight of the point mass component of a point mass mixture proposal on each βi to approx-

imate the posterior inclusion probability of its associated variable.

The MCMC algorithms of this section could be optionally supported with a within-model

move that enables a better exploration of the parameter space. In the case of probit regres-

sion, the data augmentation representation could be used to implement the within-model

move which involves Steps 1 and 4 of the H-H algorithm.
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3.1 Ergodicity of the Adaptive MCMC algorithms

General conditions for ergodicity of the adaptive algorithms are discussed by Roberts and

Rosenthal (2007) who establish two sufficient conditions: diminishing adaptation and simul-

taneous uniform ergodicity. The diminishing adaptation requires that the amount of adapta-

tion diminishes at each iteration, which can be achieved by modifying the scale parameter ζ

by smaller and smaller amounts. Roberts and Rosenthal (2007) give some sufficient condi-

tions for simulteaneous uniform ergodicity.

The adaptive algorithms introduced in this paper clearly satisfy the diminishing adapta-

tion condition. The proposal density qζ(γ
′|γ) of the adaptive algorithms is for k = 1, . . . , N

qζ(γ
′|γ) =





1

3 |γ+|


 N − 1

k − 1


 ζk−1(1− ζ)N−k if

p∑
i=1

|γ′i − γi| = k, addition

1

3 |γ0|


 N − 1

k − 1


 ζk−1(1− ζ)N−k if

p∑
i=1

|γ′i − γi| = 2k, swap

1

3 |γ−|


 N − 1

k − 1


 ζk−1(1− ζ)N−k if

p∑
i=1

|γ′i − γi| = k, deletion

0, otherwise,

where |γ+| = # of neighboring models of γ with dimension pγ+k, |γ0| = # of neighboring

models of γ with dimension pγ and |γ−| = # of neighboring models of γ with dimension

pγ−k. The ADMH-LR algorithms will satisfy the simultaneous uniform ergodicity condition

since the state space X = {0, 1}p is finite and the proposal density qζ(γ
′|γ) is continuous

with respect to ζ in the close interval [0, 1]. We conjecture that these properties will also

lead to the ergodicity of the other algorithms. Certain sufficient conditions ensuring that

simultaneous uniform ergodicity condition holds for a specific adaptive MCMC algorithm

are discussed in Roberts and Rosenthal (2007) and Bai et al. (2011). Finally, the diminishing

adaptation condition and the continuity of qζ(γ
′|γ) in [0, 1] do not depend on the magnitude

of the acceptance rate for each ζ and they are not violated if the target acceptance rate τ̄ is

not achievable.
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4 Illustrations

The performance of the adaptive MCMC algorithms is evaluated using examples from linear

and probit regressions. All the adaptive MCMC samplers start with initial parameter value

ζ0 = 0.5 and the algorithms were run for 2,000,000 iterations with a burn-in period of

100,000 iterations and thinned every 10th iteration resulting in an MCMC sample size T of

190,000. We specify the value 0.3 as a target acceptance rate τ̄ because the optimum effective

sample size of the MCMC algorithms that explore the model and parameter space of our

problem is obtained when acceptance rates are between 0.25 and 0.4. Adopting τ̄ = 0.234

instead makes very little difference to our results. We compare the adaptive version to its non-

adaptive counterpart using the parameter settings ζ = 0, 0.25, 0.5, 0.75, 0.95 and N = 4.

All the MCMC samplers have been replicated five times with random starting values. In both

applications, we assume that V γ is a diagonal matrix cIpγ . This implies that the coefficients

are independent a priori and we choose c = 5 which is the value chosen by Sha et al. (2004).

We also use mean prior model size pw equal to five.

The efficiency of an MCMC sampler can be measured using the Effective Sample Size

(ESS) which is T/(1 + 2
∑∞

j=1 ρj) for an MCMC run of length T with lag j autocorrelation

ρj (e.g., Liu, 2001). The interpretation is that the MCMC sampler leads to the same accuracy

of estimates as a Monte Carlo sampler (where all the draws are independent) run for ESS

iterations. In this paper, the MCMC output monitored consists of the components γi of

γ since the posterior inclusion probabilities are the main quantities of interest in variable

selection. An estimate of the integrated autocorrelation time τi = 1 + 2
∑∞

j=1 ρj for each γi

was computed using the Lag Window Estimator (Geyer, 1992) with Parzen window kernel.

We calculate the median m of τi’s for each algorithm and estimate the Effective Sample Size

by ESS = T/m. The algorithms have different running times and so we define the efficiency

ratio for a sampler to be

ER(Sampler) =
ESS(Sampler)
CPU(Sampler)

,

which standardizes the effective sample size by CPU run time and so penalizes computation-
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ally inefficient algorithms. We are interested in the performance of each adaptive algorithm

to the non-adaptive algorithm with ζ = 0 (which is the standard MCMC proposal for these

types of models and represents a baseline) and with the optimal value of ζ among five can-

didates (ζ = 0, 0.25, 0.5, 0.75, 0.95), which is the value resulting in the highest ESS. The

relative efficiency of the non-adaptive over the adaptive algorithm is defined by

R.E =
ER(Non-Adaptive)

ER(Adaptive)
.

4.1 Linear Regression

An adaptive version of the MH-LR algorithm was applied to the Tecator dataset (n =

172, p = 100) which is discussed in Griffin and Brown (2010). Figure 1 displays the es-
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Figure 1: Estimated posterior inclusion probabilities of Tecator data with MH-LR algorithm and

ζ = 0

timated posterior inclusion probabilities using the MH-LR algorithm with ζ = 0. The poste-

rior inclusion probabilities are very similar for different values of ζ . Figure 2 shows how the

new general model proposal improves the ESS, even though it decreases the between-model

acceptance rate. The MH-LR algorithm has maximum ESS for ζ = 0.25 which gives an

acceptance rate of 0.33. This acceptance rate falls in the range 0.25 to 0.4 and this result is

consistent with that found in probit regression.

Table 1 presents results of the MC3 algorithm (Madigan and York, 1995), the adaptive

Gibbs (ADG) of Nott and Kohn (2005) and the adaptive and non-adaptive MH-LR with fixed

15



0 0.25 0.5 0.75 0.95
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
x 10

4 Tecator

E
S

S

Model Proposals parameter
0 0.25 0.5 0.75 0.95

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Tecator

A
cc

ep
ta

nc
e 

R
at

e

Model Proposals parameter

Figure 2: Effective sample size and acceptance rate of the MH-LR algorithm for five different model

proposal parameters using the Tecator dataset

Method ESS(s.e) CPU(s.e) ER(s.e) R.E(s.e)

MC3 10520 (28.1) 25836 (9.7) 0.41 (0.01)

ADG 1462 (7.1) 22507 (43.0) 0.07 (0.01)

MH-LR (ζ = 0) 35644 (46.9) 26250 (7.4) 1.36 (0.01) 0.96(0.01)

MH-LR (ζ = 0.25) 37581 (107.5) 26415 (3.9) 1.42 (0.01) 1.00 (0.01)

ADMH-LR 37437 (62.6) 26448 (5.9) 1.42 (0.01)

Table 1: The effective sample size ESS, the CPU time in seconds, the efficiency ratio E.R of the

MC3, adaptive Gibbs and the adaptive and non-adaptive MH-LR with relative efficiencies of the non-

adaptive algorithm over the adaptive algorithm for the Tecator dataset

values of ζ (the standard choice of ζ = 0 and the optimal value among the values mentioned

above). Standard errors for the estimates over the five replications are also provided. The

MH-LR is almost 3.5 times more efficient than the MC3 and almost 20 times more efficient

than ADG. The relative efficiency of the sampling method with standard proposal (ζ = 0)

is less than 1 indicating that the adaptive method is superior. The relative efficiency of the

optimal non-adaptive algorithm is around 1 and therefore the adaptive algorithm achieves

essentially the same efficiency as the optimal non-adaptive algorithms.

Figure 3 shows the trace plots of both the model proposal parameter ζ (left panel) and the

empirical acceptance rate (right panel) of the adaptive algorithm for the Tecator dataset. The
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Figure 3: Trace plots of the model proposal parameter ζ and the empirical acceptance rate of the

adaptive MH-LR algorithm for the Tecator dataset; MCMC iterations are represented on a log scale

parameter ζ of the adaptive algorithm converges to a value close to the optimal one obtained

by manual tuning and the empirical acceptance rate converges to a value quite close to the

target acceptance rate 0.3. This result illustrates that the adaptive MH-LR algorithm auto-

matically finds model proposal parameters ζ that give asymptotically the target acceptance

rate τ̄ = 0.3.
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Figure 4: Scatter-plot of the log estimated posterior inclusion probabilities of the adaptive and opti-

mal non-adaptive algorithms for the Tecator dataset

Figure 4 displays the scatter-plot of the log estimated posterior inclusion probabilities of

the adaptive and optimal non-adaptive algorithms for the Tecator dataset. These log posterior

inclusion probabilities are very similar for both algorithms.
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4.2 Probit Regression

The performance of the adaptive MCMC algorithms in probit regression is evaluated using

two microarray datasets. These are the Arthritis data (Sha et al., 2003) for which we have

n = 31 observations and p = 755 possible regressors and the Colon Tumour data (Alon

et al., 1999) with n = 62 and p = 1224. Adaptive versions of all algorithms in Section 3

were tested and are denoted as follows:

1. ADH-H : Adaptive Holmes and Held algorithm

2. ADAG-LA : Adaptive automatic generic sampler with Laplace approximation

3. ADAG-IWLS : Adaptive automatic generic sampler with Iterated Weighted Least

Squares approximation

4. ADCM : Adaptive Conditional Maximization.

Non-adaptive versions of the algorithms are indicated by dropping the first two letters “AD”.

Table 2 presents results of the MC3 algorithm, the adaptive Gibbs (ADG) and the adap-

tive and non-adaptive algorithms discussed in Section 3 with fixed values of ζ (the standard

choice of ζ = 0 and the optimal value among the five values mentioned above) for the Arthri-

tis and Colon Tumour datasets. The Automatic Generic samplers tend to have the highest

ESS, followed by CM and H-H and finally the MC3 and ADG which have considerably

lower ESS. If we take computing time into account, the AG-IWLS sampler is the most effi-

cient, following by H-H, AG-LA and CM. The AG-IWLS sampler is almost 30 times more

efficient than MC3 and ADG.

The relative efficiency for the adaptive algorithms against the standard proposal (ζ = 0)

is less than 1 only for the Automatic Generic algorithms indicating that those methods gain

the most benefit from adaptation. Furthermore, the increase in performance depends on the

form of posterior. However, the effect can be large in some cases. For example, the standard

method only obtains 80% of the efficiency of the adaptive method with the Arthritis data and

AG-LA and AG-IWLS algorithms. The Automatic Generic methods gain the most benefit
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Table 2: The effective sample size ESS, the CPU time in seconds, the efficiency ratio E.R of the MC3,

adaptive Gibbs and the adaptive and non-adaptive algorithms discussed in Section 3 with relative

efficiencies of the non-adaptive algorithm over the adaptive algorithm for the Arthritis and Colon

Tumour datasets

Arthritis data

Method ESS(s.e) CPU(s.e) ER(s.e) R.E(s.e)

MC3 1495 (2.2) 3955 (24.4) 0.38 (0.01)
ADG 1241 (2.6) 3889 (21.8) 0.32 (0.01)

H-H (ζ = 0) 51498 (92.4) 5146 (3.2) 10.01 (0.02) 1.07 (0.02)
ADH-H 49908 (55.4) 5321 (2.4) 9.38 (0.01)

AG-LA (ζ = 0) 72584 (76.4) 19958 (7.2) 3.64 (0.01) 0.83 (0.02)
AG-LA (ζ = 0.5) 95664 (83.8) 21096 (3.1) 4.53 (0.01) 1.03 (0.02)
ADAG-LA 94453 (251.3) 21424 (22.1) 4.41 (0.02)

AG-IWLS (ζ = 0) 64564 (81.8) 6155 (2.4) 10.49 (0.02) 0.81 (0.01)
AG-IWLS (ζ = 0.5) 82822 (104.9) 6435 (4.5) 12.87 (0.02) 0.99 (0.01)
ADAG-IWLS 82385 (70.3) 6328 (7.0) 13.02 (0.02)

CM (ζ = 0) 73216 (40.7) 18564 (1.1) 3.94 (0.01) 1.52 (0.04)
CM (ζ = 0.5) 85406 (58.4) 27774 (3.3) 3.08 (0.01) 1.18 (0.03)
ADCM 80246 (189.0) 30827 (80.3) 2.60 (0.01)

Colon Tumour data

Method ESS(s.e) CPU(s.e) ER(s.e) R.E(s.e)

MC3 1199 (64.4) 5498 (19.5) 0.22 (0.01)
ADG 1080 (4.9) 4947 (23.9) 0.22 (0.01)

H-H (ζ = 0) 48330 (46.0) 7314 (8.5) 6.61 (0.01) 1.07 (0.02)
ADH-H 46202 (182.9) 7450 (5.1) 6.20 (0.02)

AG-LA (ζ = 0) 67643 (94.0) 21478 (7.3) 3.15 (0.01) 0.96 (0.02)
AG-LA (ζ = 0.5) 73702 (49.1) 22049 (7.3) 3.34 (0.01) 1.02 (0.02)
ADAG-LA 73601 (123.0) 22250 (6.5) 3.28 (0.01)

AG-IWLS (ζ = 0) 63939 (53.0) 7889 (8.8) 8.11 (0.01) 0.96 (0.01)
AG-IWLS (ζ = 0.5) 69845 (87.3) 8063 (7.4) 8.66 (0.02) 1.02 (0.01)
ADAG-IWLS 68815 (129.5) 8117 (5.9) 8.48 (0.02)

CM (ζ = 0) 58232 (106.2) 20189 (3.9) 2.88 (0.01) 1.46 (0.03)
CM (ζ = 0.5) 59311 (97.0) 25410 (5.2) 2.33 (0.01) 1.18 (0.03)
ADCM 56786 (165.9) 28643 (182.0) 1.98 (0.02)
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from adaptation because their acceptance rates with standard proposal (ζ = 0) are around

0.50 for Arthritis and Colon Tumour while the H-H algorithm results in acceptance rates of

0.41 and 0.36, respectively. Implementing an adaptive H-H algorithm in those cases will not

improve efficiency as we are already close to optimum efficiency. The H-H algorithm almost

always has the lowest acceptance rates compared to other algorithms in real applications

(Lamnisos et al., 2009). The CM algorithm is also not benefitting from adaptation because

the computational complexity of this algorithm increases considerably with ζ (each iteration

of CM algorithm involves a maximization problem whose execution time increases with the

number of variables proposed to be changed from the current model).

The effective sample size of the adaptive Automatic Generic samplers are very similar to

the optimal non-adaptive algorithms in terms of mixing. Furthermore, the increase in CPU

time of the adaptive algorithms is small. This leads to relative efficiencies quite close to

1 and therefore the adaptive AG algorithms achieve essentially the same efficiency as their

optimal non-adaptive counterparts. Crucially, however, the adaptive algorithms avoid the

pilot runs needed to tune the model proposal parameter ζ . Overall, the adaptive Automatic

Generic algorithm with IWLS approximation seems to be the most efficient algorithm in

probit regression with p À n and it is the one recommended.

Figure 5 and Figure 6 show the trace plots of both the model proposal parameter ζ (left

panels) and the empirical acceptance rate (right panels) of the adaptive algorithms for the

Arthritis and Colon Tumour datasets, respectively. The parameter ζ of each adaptive algo-

rithm converges to a value close to the optimal one obtained by manual tuning. Furthermore,

the empirical acceptance rates converge to values quite close to the target acceptance rate of

0.3. These results illustrate that the adaptive MCMC algorithms automatically find model

proposal parameters ζ that asymptotically lead to the desired acceptance rate τ̄ = 0.3.

Figure 7 displays the scatter-plots of the log estimated posterior gene inclusion prob-

abilities of the adaptive and optimal non-adaptive algorithms for the Arthritis and Colon

Tumour datasets. The log posterior gene inclusion probabilities are very similar indicating

empirically that the stationary distribution of the stochastic process generated by the adaptive
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Figure 5: Trace plots of the model proposal parameter ζ and the empirical acceptance rate of the

adaptive algorithms for the Arthritis dataset; MCMC iterations are represented on a log scale

MCMC algorithms is the target posterior distribution π(γ, θγ|y).

In all the applications, we choose N = 4 because the very large number of predictors

and the high correlations among them result in a high acceptance probability for proposals

which only change a single variable. Therefore, we wish to try some ambitious global moves

to improve model space exploration. When the posterior model distribution is concentrated

on few models because of either very large sample size n or low correlation among predictors

then it is more reasonable to choose smaller N (N = 2) because more global moves will only

be accepted very infrequently.
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Figure 6: Trace plots of the model proposal parameter ζ and the empirical acceptance rate of the

adaptive algorithms for the Colon Tumour dataset; MCMC iterations are represented on a log scale

5 Discussion

This paper describes an adaptive Monte Carlo algorithm for posterior simulation for variable

selection in generalized linear models with many regressors, where acceptance rates for stan-

dard MCMC algorithms tend to be fairly large. The algorithm leads to Markov chains with

good mixing properties without the need for pilot runs and outperforms previously proposed

adaptive methods for variable selection. In fact, the effective sample sizes for the adaptive

algorithms are almost identical to those for the algorithms run at an optimized value of the

proposal parameter ζ (found using trial-and-error which requires separate tuning runs). The

methods are useful when there are a large number of variables that could potentially be in-

cluded in the model, which leads to high acceptance rates for standard algorithms. If the

number of regressors is not large, then acceptance rates may not be high and a target ac-
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Figure 7: Scatter-plots of the log estimated posterior gene inclusion probabilities of the adaptive and

optimal non-adaptive algorithms for the Arthritis and Colon Tumour datasets

ceptance rate of 0.3 may not be achievable. In this case, ζ should be zero and the value of

ζ(t) will converge to zero showing the robustness of the algorithm. Therefore, we suggest

the use of adaptive MCMC algorithms to efficiently explore the model space using Bayesian

variable selection in linear and probit regression problems with many covariates. Extensions

to variable selection problems for other types of GLMs can also be accommodated. For
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example, Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter and Frühwirth

(2007) propose an auxiliary mixture sampling approach which uses approximations through

mixtures of normal distributions to develop easy Gibbs sampling schemes for Poisson and lo-

gistic regression models, respectively. The discussed adaptive model proposal can be easily

implemented within these sampling approaches to provide efficient algorithms for Bayesian

variable selection in such models.

Supplemental materials

Computer Code and Data: Supplemental materials for this article are contained in a zip

archive and can be obtained in a single download. The archive contains all three

datasets used in the paper (MATLAB MAT-files) and MATLAB files implementing

the adaptive algorithms in the paper (MATLAB M-files). A detailed description of the

supplemental materials is contained in the pdf file entitled “!Read Me.pdf” which is

enclosed in the zip archive.
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