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Abstract

In this paper we briefly review the main methodological aspects concerned with the application

of the Bayesian approach to model choice and model averaging in the context of variable selection

in regression models. This includes prior elicitation, summaries of the posterior distribution and

computational strategies. We then examine and compare various publicly available R-packages,

summarizing and explaining the differences between packages and giving recommendations for

applied users. We find that all packages reviewed (can) lead to very similar results, but there

are potentially important differences in flexibility and efficiency of the packages.

Motivation

A very common problem in statistics is where several statistical models are proposed as plausible

descriptions for certain observations y and the observed data are used to resolve the model uncertainty.
∗Corresponding author: email: gonzalo.garciadonato@uclm.es
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This problem is normally known as model selection or model choice if the aim is to select a single

“best” model, but if the model uncertainty is to be formally reflected in the inferential process,

we typically use model averaging, where inference on issues that are not model-specific (such as

prediction or effects of covariates) is averaged over the set of models under consideration.

A particularly important model uncertainty problem in practice is variable selection where the

proposed models share a common functional form (e.g. a normal linear regression model) but differ

in which explanatory variables, from a given set, are included to explain the response. The focus in

this paper will be on variable selection in the context of normal linear models, a problem frequently

encountered in practice and formally introduced in Section .

Model uncertainty is a classic problem in statistics that has been scrutinized from many different

perspectives. Hence, quite often, the main issues for practitioners are to decide which methodology

to use and/or how to implement the methodology in practice. One appealing approach is based on

the Bayesian paradigm and is considered by many the formal Bayesian answer to the problem. This

approach is the one based on the posterior probabilities of the models under consideration and results

in a coherent and complete analysis of the problem which provides answers to practical questions.

For instance, a single model can be selected as that most supported by the data (the model with the

highest posterior probability) or inference can be performed using the posterior model probabilities

as weights, normally denoted by Bayesian model averaging (BMA). In this paper we describe how

the formal Bayesian method can be implemented in R (R Core Team, 2015), analyzing the different

packages that are currently available in CRAN (cran.r-project.org). Emphasis is placed on

comparison but also on putting in perspective the details of the implementations.

As with any Bayesian method, the prior distribution for the unknown parameters needs to be

specified. It is well known that this aspect is particularly critical in model uncertainty problem

since results are potentially highly sensitive to the priors used (see e.g. Berger and Pericchi, 2001;

Ley and Steel, 2009). In this paper, we pay special attention to the family of priors in the tradition

started by Jeffreys, Zellner and Siow (Jeffreys, 1961; Zellner and Siow, 1980; Zellner, 1986) and
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continued by many other authors with important contributions during the last ten years. These

types of priors, which we label conventional, are introduced in Section . Bayarri et al. (2012) have

recently shown that conventional priors have a number of optimal properties that make them a very

appealing choice for dealing with model uncertainty.

Bayesian variable selection in Linear Models

Consider a Gaussian response variable y, of size n, assumed to be explained by an intercept and some

subset of p possible explanatory variables with values grouped in the n× p matrix X = (x1, . . . , xp).

Throughout the paper we suppose that n > p and that X is of full column rank (but see a comment

on the problem with p > n in the concluding section). We define a binary vector γ = (γ1, . . . , γp)t

where γi = 1 if xi is included in the model Mγ and zero otherwise. This is the variable selection

problem, a model uncertainty problem with the following 2p competing models:

Mγ : y = α1n +Xγβγ + ε, (1)

where ε ∼ Nn(0, σ2In) and the n× pγ (where pγ = ∑
γi, the number of covariates in Mγ) design

matrices Xγ are all possible submatrices of X. If we choose the null matrix for Xγ , corresponding

to γ = 0, we obtain the null model with only the intercept

M0 : y = α1n + ε. (2)

Without loss of generality, we assume that columns of X have been centered on their corresponding

means, which makes the covariates orthogonal to the intercept, and gives the intercept an interpre-

tation that is common to all models. The set of all competing models is called the model space and

is denoted asM.

Assuming that one of the models inM is the true model, the posterior probability of any model is

Pr(Mγ∗ | y) = mγ∗(y)Pr(Mγ∗)∑
γmγ(y)Pr(Mγ) , (3)
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where Pr(Mγ) is the prior probability of Mγ and mγ is the integrated likelihood with respect to

the prior πγ :

mγ(y) =
∫
fγ(y | βγ , α, σ)πγ(βγ , α, σ2) dβγ dα dσ2, (4)

also called the (prior) marginal likelihood. Note that, for γ = 0 this integrated likelihood becomes:

m0(y) =
∫
f0(y | α, σ)π0(α, σ2) dα dσ2, (5)

An alternative expression for (3) is based on the Bayes factors:

Pr(Mγ∗ | y) = Bγ∗(y)Pr(Mγ∗)∑
γ Bγ(y)Pr(Mγ) , (6)

where Bγ is the Bayes factor of Mγ with respect to a fixed model, say M0 (without any loss of

generality) and hence Bγ = mγ/m0 and B0 = 1.

The prior on the model parameters implicitly assigns posterior point mass at zero for those regression

coefficients that are not included in Mγ , which automatically induces sparsity.

As stated in the introduction, we are mainly interested in software that implements the formal

Bayesian answer which implies that we use the posterior distribution in (3). Even with this important

characteristic in common there could be substantial differences between R-packages (leaving aside

for the moment details on programming and the interface used) due to the following three aspects:

• the priors that the package accommodates, that is, πγ(βγ , α, σ2) and Pr(Mγ),

• the tools provided to summarize the posterior distribution and obtain model averaged inference,

• the numerical methods implemented to compute the posterior distribution.

We now succinctly review the main methodological proposals for the above issues, emphasizing

particularly how these features are implemented in the different R packages.
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Prior Specification

The two inputs that are needed to obtain the posterior distribution are πγ and Pr(Mγ): the 2p

prior distributions for the parameters within each model and the prior distribution over the model

space, respectively.

Without loss of generality, the prior distributions πγ can be expressed as

πγ(βγ , α, σ2) = πγ(βγ | α, σ2)πγ(α, σ2).

In this paper, the focus is on a family of prior distributions that has been named “conventional" or

“g-prior" (Fernández et al., 2001; Berger and Pericchi, 2001). Under this approach, the standard

Jeffreys’ prior is used for the parameters that are common to all models

πγ(α, σ2) = σ−2 (7)

and

πγ(βγ | α, σ2) =
∫
Npγ (βγ | 0, gσ2(Xt

γXγ)−1).

That is, either a normal (if g is fixed) or a continuous mixture of a normal distribution (if g acts as

random hyper parameter) centered on zero (“by reasons of similarity”, Jeffreys, 1961) and scaled by

σ2(Xt
γXγ)−1 (“a matrix suggested by the form of the information matrix”, Zellner and Siow, 1980)

times a factor g, normally called a “g-prior”. Recent research has shown that such conventional

priors possess a number of optimal properties that can be extended by putting specific priors on

the hyperparameter g. Among these properties are invariance under affine transformations of the

covariates, several types of predictive matching and consistency (for details see Bayarri et al., 2012).

The specification of g has inspired many interesting studies in the literature. Of these, we have

collected the most popular ones in Table 1.

Related with the conventional priors is the proposal by Raftery (1995) which is inspired by

asymptotically reproducing the popular Bayesian Information Criterion (Schwarz, 1978). Raftery
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Proposal Reference Name Label

Constant g

g = n Zellner (1986); Kass and Wasserman (1995) Unit Information prior (UIP) C1

g = p2 Foster and George (1994) Risk inflation criterion prior (RIC) C2

g = max{n, p2} Fernández et al. (2001) Benchmark prior (BRIC) C3

g = log(n) Fernández et al. (2001) Hannan-Quinn (HQ) C4

gγ = ĝγ Liang et al. (2008) Local Empirical Bayes (EBL) C5

Random g

g ∼ IGa(1/2, n/2) Jeffreys (1961); Zellner and Siow (1980, 1984) Cauchy prior (JZS) R1

g|a ∼ π(g) ∝ (1 + g)−a/2 Liang et al. (2008) hyper-g R2

g|a ∼ π(g) ∝ (1 + g/n)−a/2 Liang et al. (2008) hyper-g/n R3

g ∼ π(g) ∝ (1 + g)−3/2, g > 1+n
pγ +1 − 1 Bayarri et al. (2012) Robust prior R4

Table 1: Specific proposals for the hyperparameter g in the literature. Column “Label” will be used as

convenient reference to particular proposals throughout the paper. For the priors on g, a > 2 ensures a

proper prior.

(1995) proposes using the same covariance matrix as the Unit Information Prior (see Table 1) but

with mean the maximum likelihood estimator β̂γ (instead of the zero mean of the conventional

prior).

Other priors specifically used in model uncertainty problems are the spike and slab priors, which

assume that the components of β are independent, each having a mixture of two distributions:

one highly concentrated on zero (the spike) and the other one quite disperse (the slab). There

are two different developments of this idea in the literature. In the original proposal by Mitchell

and Beauchamp (1988) the spike is a degenerate distribution at zero so this fits with what we

have called the formal approach. The proposal by George and McCulloch (1993) in which the

spike is a continuous distribution with a small variance also received a lot of attention, perhaps for

computational advantages. In this implementation there is no posterior distribution over the model

space as every model smaller than the full model has zero probability.

With respect to the priors over the model spaceM, a very popular starting point is

Pr(Mγ | θ) = θpγ (1− θ)p−pγ , (8)
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where pγ is the number of covariates inMγ , and the hyperparameter θ ∈ (0, 1) has the interpretation

of the common probability that a given variable is included (independently of all others).

Among the most popular default choices for θ are

• Fixed θ = 1/2, which assigns equal prior probability to each model, i.e Pr(Mγ) = 1/2p;

• Random θ ∼ Unif(0, 1), giving equal probability to each possible number of covariates or

model size.

Of course many other choices for θ – both fixed and random– have been considered in the literature.

In general, fixed values of θ have been shown to perform poorly in controlling for multiplicity (the

occurrence of spurious explanatory variables as a consequence of performing a large number of tests)

and can lead to rather informative priors. This issue can be avoided by using random distributions

for θ as, for instance, the second proposal above that has been studied in Scott and Berger (2010).

Additionally, Ley and Steel (2009) consider the use of θ ∼Beta(1, b) which results in a binomial-beta

prior for the number of covariates in the model or the model size, W :

Pr(W = w | b) ∝
(
p

w

)
Γ(1 + w)Γ(b+ p− w), w = 0, 1, . . . , p.

Notice that for b = 1 this reduces to the uniform prior on θ and also on W . As Ley and Steel (2009)

highlight, this setting is useful to incorporate prior information about the mean model size, say w?.

This would translate into b = (p− w?)/w?.

Summaries of the posterior distribution and model averaged inference

The simplest summary of the posterior model distribution (3) is its mode

arg max
γ

Pr(Mγ | y).

This model is the model most supported by the information (data and prior) and is normally called

the HPM (highest posterior model) or MAP (maximum a posteriori) model. Clearly, a measure of
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uncertainty regarding this summary is reflected by its posterior probability which should always be

reported.

When p is moderate to large, posterior probabilities of individual models can be very small and their

interpretation loses appeal. In such situations, posterior inclusion probabilities (normally denoted

as PIP) are very useful.

Pr(γi = 1 | y) =
∑

xi∈Mγ

Pr(Mγ | y). (9)

These should be understood as the importance of each variable for explaining the response. Inter-

estingly, these probabilities are used to define another summary, namely the median probability

model (MPM) which is the model containing the covariates with inclusion probability larger than

0.5. This model is studied in (Barbieri and Berger, 2004) and they show that, in some situations, it

is optimal for prediction.

Extending the idea of inclusion probabilities, it is interesting to obtain measures of joint importance

of sets of regressors on the response. For instance, we can compute the posterior probability of two

(or more) covariates occurring together in the model or the probability that a covariate enters the

model given that another covariate is already present (or not). These quantities can be related to

the so-called “jointness” of covariates and are studied, with other related summaries, in Ley and

Steel (2007).

A measure of the model complexity is given by

Pr(W = w | y) =
∑

Mγ :pγ=w
Pr(Mγ | y), (10)

which is the posterior probability mass function of the model size.

The posterior distribution easily allows for obtaining model averaged estimates of any quantity of

interest Λ (assuming it has the same meaning across all models). Suppose Λ̂γ is the estimate of Λ

you would use if Mγ were the true model. Then the model averaged estimate of Λ is

Λ̂ =
∑
Mγ

Λ̂γ Pr(Mγ | y). (11)
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Similarly, the entire posterior distribution of Λ is given by

PΛ|y =
∑
Mγ

PΛ|y,Mγ
Pr(Mγ | y), (12)

which has the appeal of formally accounting for model uncertainty.

When Λ refers to regression coefficients (βi) the model averaged estimates should be used and

interpreted with caution as they could be potentially misleading since the ‘same’ parameter may have

a different meaning in different models (Berger and Pericchi, 2001). Also the posterior distribution

of βi is a discrete mixture and hence summaries like the mean are not natural descriptions.

One particular appealing application of this technique is in predicting new values y? of the dependent

variable associated with certain values of the covariates. In this case Λ could be the moments of y?

or even the whole predictive distribution. Apart from their intrinsic interest, predictions can be a

very useful tool to run predictive checks (often using score functions) e.g. to compare various prior

specifications.

Numerical methods

There are two main computational challenges in solving a model uncertainty problem. First is the

integral in (4) and second is the sum in the denominator of (3) which involves many terms if p is

moderate or large.

Fortunately, in normal models, conventional priors combine easily with the likelihood, and condi-

tionally on g lead to closed forms for mγ(y). Hence, at most, a univariate integral needs to be

computed when g is taken to be random. Interestingly, there have been recent proposals for prior

distributions, which despite assuming a hyper prior on g induce closed form marginals using special

mathematical functions. This characteristic includes the hyper-g and hyper-g/n of Liang et al.

(2008); the Robust prior of Bayarri et al. (2012); the prior of Maruyama and George (2011) and the

intrinsic prior in Womack et al. (2014).
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The second problem, related with the magnitude of the number of models inM (i.e. 2p), could be

a much more difficult one. If p is small (say, p in the twenties at most) exhaustive enumeration

is possible but if p is larger, heuristic methods need to be implemented. The question of which

method should be used has been studied in Garcia-Donato and Martinez-Beneito (2013) which

classify strategies as i) MCMC methods to sample from the posterior (3) in combination with

estimates based on model visit frequencies and ii) searching methods looking for ‘good’ models

with estimates based on renormalization (i.e with weights defined by the analytic expression of

posterior probabilities, cf. (3)). They show that i) is potentially more precise than ii) which could

be biased by the searching procedure. Approach i) is the most standard approach but different

implementations of ii) have lead to fruitful contributions. The proposals in Raftery et al. (1997) and

Fernández et al. (2001) which are based on a Metropolis-Hasting algorithm called MC3 (originally

introduced in Madigan and York, 1995) could be in either class above, while the implementation in

Eicher et al. (2011) based on a leaps and bound algorithm proposed by Raftery (1995) is necessarily

in ii), since model visit frequencies are not an approximation to model probabilities in this case.

CRAN packages screening

The computation of the posterior distribution in (3) can be implemented in generic Bayesian sofware.

This would allow the user a fully customizable (e.g. in terms of priors) environment but can require

considerable programming effort. Interesting examples of such approaches include Ntzoufras (2002,

2009) for implementations in WinBUGS (Lunn et al., 2000) or Joseph (2014) in JAGS (Plummer,

2003). Here our focus is different and we are mainly interested in searching for R-packages specifically

designed to calculate the posterior distribution (3) and to provide tools for its further analysis.

These are expected to be fully automatic for the user.

In what follows we will write the name of the packages using the font package; functions as

function() and arguments as argument.
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We seek in CRAN all possible packages that, potentially, could be used to implement the Bayesian

approach to variable selection. The key words used to search in CRAN were Model Selection, Variable

Selection, Bayes Factor and Averaging. Conducting this search on February 17, 2017, we found a

total of 13 packages (the version in parentheses) : VarSelectIP(0.2-1); spikeslab(1.1.5) (Ishwaran

et al., 2013); spikeslabGAM(1.1-11) (Scheipl, 2011); ensembleBMA(5.1.3) (Fraley et al., 2015);

dma(1.2-3) (McCormick et al., 2014); BMA(3.18.6) (Raftery et al., 2015); mglmn(0.0.2) (Katabuchi

and Nakamura, 2015); varbvs(2.0-8) (Carbonetto and Stephens, 2012); INLABMA(0.1-8) (Bivand

et al., 2015);

tpackBAS(1.4.3) (Clyde, 2017); BayesFactor(0.9.12-2) (Morey et al., 2015); BayesVarSel(1.7.1)

(Garcia-Donato and Forte, 2015); BMS(0.3.4) (Zeugner and Feldkircher, 2015) and mombf(1.8.3)

(Rossell et al., 2014). As suggested by a referee, we also searched for related packages in rseek.org

and in the CRAN task view devoted to Bayesian Inference, where the packages monomvn(1.9-7)

(Gramacy, 2017) and BoomSpikeSlab(0.7.0) (Scott, 2016) also appeared.

From these, VarSelectIP appeared no longer supported and, from the rest, only the last five of the list

found in CRAN seem clearly oriented towards the implementation of conventional priors described

in the previous section to perform variable selection in linear models. Hence these will be considered

for detailed description and comparison in the following sections. Particularly, BayesVarSel, BAS

and BMS seem to be specifically conceived for that task, while the main motivations in BayesFactor

and mombf seem different. BayesFactor provides many interesting functionalities to carry out

t-tests, ANOVA-type studies and contingency tables using (conventional) Bayes factors with special

emphasis on the specification of the hyper parameter g for certain design matrices. The package

mombf focuses on a particular type of prior for the model parameters, namely the non-local prior

(Johnson and Rossell, 2010, 2012), applied to either the normal scenario considered here or probit

models.

Of the other packages we found, spikeslab and spikeslabGAM, implement spike and slab priors in

the spirit of the approach by George and McCulloch (1993) and hence are not directly comparable

with packages that compute the posterior distribution over the model space. Interestingly, the
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original spike and slab approach by Mitchell and Beauchamp (1988) (i.e. point-mass mixtures) is

implemented in BoomSpikeSlab and in monomvn, with many possibilities to be used as prior inputs

such as the Horseshoe (Carvalho et al., 2010) or the Bayesian lasso (Hans, 2010). Additionally,

this point-mass spike and slab methodology is used as the base methodology in varbvs but with a

specific development by Carbonetto and Stephens (2012) with extreme high dimensional problems

(p >> n) in mind. Finally, BMA which, as noted by a referee, was a pioneering R-package covering

the topic in this paper, provides the posterior distribution over the model space, but based on the

BIC criterion. BMA also uses the Monte Carlo model composition MC3, sampling algorithm in

Raftery et al. (1997), but with a somewhat different prior.

Some other packages consider statistical models that are not of the type studied here (linear regression

models). This is the case for ensembleBMA, which implements BMA for weather forecasting models

and dma which focuses on dynamic models.

INLABMA interacts with the INLA (Rue et al., 2009) methodology for performing model selection

within a given list of models. The priors used there are those in the R package INLA which are not

model selection priors.

The package mglmn is not Bayesian and it uses the Akaike Information Criterion (AIC).

Selected packages for further comparison

The R packages BAS, BayesFactor, BayesVarSel, BMS and mombf provide functionalities to calculate

and study the posterior distribution (3) corresponding to some of the conventional priors described in

Table 1. The commands for such calculation are bas.lm() in BAS; regressionBF() in BayesFactor;

Bvs(), PBvs() and GibbsBvs() (for exhaustive enumeration, distributed enumeration and Gibbs

sampling) in BayesVarSel; bms() in BMS and finally modelSelection() in the package mombf.
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Package BAS BayesFactor BayesVarSel BMS mombf

Main command bas.lm() regressionBF() Bvs(),PBvs(),GibbsBvs() bms() modelSelection()

Prior/Argument prior= rscaleCont= prior.betas= g= priorCoef=

C1 "g-prior",

alpha=n

- "gZellner" "UIP" zellnerprior

(tau=n)

C2 "g-prior",

alpha=p2

- - "RIC" zellnerprior

(tau=p2)

C3 "g-prior",

alpha=max(n,p2)

- "FLS" "BRIC" zellnerprior

(tau=max(n,p2))

C4 "g-prior",

alpha=log(n)

- - "HQ" zellnerprior

(tau=log(n)))

C5 "EB-local" - - "EBL" -

R1 "ZS-null" 1 "ZellnerSiow" - -

R2 "hyper-g",

alpha=a

- - "hyper=a" -

R3 "hyper-g-n",

alpha=a

- "Liangetal" - -

R4 - - "Robust" - -

Table 2: Priors for the parameters within each model. Main commands and corresponding modifying

arguments for the different specifications for the hyper parameter g (entries in column ‘Prior’ refer to Table 1).

R3 implemented in BayesVarSel is the case with a = 3 as recommended in Liang et al. (2008).

Prior inputs The different conventional priors available in each package and the corresponding

argument for their use are described in Table 2.

The implementation of the conventional priors in mombf have certain peculiarities that we now

describe. The priors for the common parameters, (α, σ), in mombf do not exactly coincide with (7).

In this package, the simplest model M0 only contains the error term and hence α is not a common

parameter. The more popular problem with fixed intercept examined in this paper (cf. (7)) is

handled via the modifying argument center=TRUE (given by default) which in turn is equivalent

to a prior for α degenerate at its maximum likelihood estimate. This will, especially if n is large

enough, often lead to very similar results as with a flat prior on α but small differences could occur

because in mombf the variability in this parameter is not taken into account. Also, for σ2 this

package uses an inverse gamma which has the non informative σ−2 as a limiting density. Thus,

13



Package BAS BayesFactor BayesVarSel BMS mombf

Prior/Argument modelprior= newPriorOdds

(BFobject)=

prior.models= mprior= priorDelta=

θ = 1/2 uniform() rep(1,2ˆ p) "constant" "fixed" modelunifprior()

θ ∼ Unif(0,1) beta.binomial(1,1) - "ScottBerger" "random" modelbbprior(1,1)

Table 3: Most popular default priors over the model space (see (8)) within the selected packages. For more

flexible options see the text.

differences among the two are expected to be negligible if the parameters in the inverse gamma

are small (values of 0.01 are given by default). Another logical argument in modelSelection() is

scale. If it is set to TRUE the y’s and the x’s are scaled to have unitary variance. In this article we

are fixing it to scale=FALSE so that the data that enter in all the main functions exactly coincide.

All five packages are very rich and flexible regarding the choice of the prior over the model space,

Pr(Mγ). The access to the standard approaches is described in Table 3. Apart from these standard

priors, BMS, following the proposals in Ley and Steel (2009), also allows for the use of a beta

distribution for θ in (8) by using mprior="random" and modifying the argument mprior.size to

specify the desired expectation for the model prior distribution (the default option is p/2 hence

providing the uniform prior on model size). Similarly the mombf package provides a beta prior

for θ with parameter (a, b) by setting the corresponding argument to modelbbprior(a,b). In

BayesVarSel particular specifications of prior probabilities are available with mprior="User" and a

p+ 1 dimensional vector defined in priorprobs which describes the prior probability, Pr(Mγ), of

a single model of each possible size (models of the same size are assumed to have the same prior

probability). Finally, BAS handles Pr(Mγ) through the argument modelprior that allows for a

direct implementation of (8) with either a fixed θ (using modelprior=Bernoulli(probs=theta))

or following a beta(a, b) distribution (using modelprior=beta.binomial(a,b)). Interestingly, BAS

allows for other possibilities like truncating the dimension of the models.

For illustration purposes consider the FLS dataset in Ley and Steel (2009) with p = 41 potential

regressors. These authors study the prior (8) with θ ∼ Beta(1, b = (41 − ω?)/ω?) and ω? = 7,
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reflecting that, a priori, the expected number of regressors is ω? = 7. Such a prior can be implemented

in BMS with mprior="random", mprior.size=7; in mombf with modelbbprior(1,34/7) and in

BAS with modelprior=beta.binomial(1,(41-7)/7). In BayesVarSel the syntax is quite different

and we have to specify prior.models="User" and

priorprobs = dbetabinom.ab(x = 0 : 41, size = 41, shape1 = 1, shape2 = 34/7)/choose(41, 0 : 41).

Summaries and model averaging The result of executing the main commands for inference

under model uncertainty (see Table 2) is an object describing, with a specific structure depending on

the package, the posterior distribution (3). For ease of exposition suppose the object created is called

ob. We compare here the different possibilities to summarize this distribution under each package.

This is illustrated in the Supplementary Material which shows the different ways of summarizing

the results for each package using one of the studied data sets.

• In BayesFactor, a list of the most probable models and their corresponding Bayes factors (to

the null model) can be obtained with the command head(ob) or plot(ob) over the resulting

object.

• In mombf, this list can be obtained with postprob(ob) but now best models are displayed

with their posterior probabilities. Additionally, inclusion probabilities (9) are contained in

ob$margpp. In the context of large model spaces, having a list with all the models sampled

can be very useful so that the user may program his/her own needs, such as model averaged

predictions. Such a list is contained in binary matrix form in mombf in ob$postSample. To

obtain model averaged estimates we also have the command rnlp which produces posterior

samples of regression coefficients (from which it is easy to obtain any Λ̂ in (11) that relates to

coefficients).

• In BayesVarSel most probable models and their probabilities are viewed printing the object

created, ob, while summary(ob) displays a table with the inclusion probabilities, the HPM

and the MPM (see Subsection ). The posterior distribution of the model size (10) is in
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ob$postprobdim which can be graphed with plotBvs(ob,option="d"). Plots of several

measures of the joint importance of two covariates (e.g. joint inclusion probabilities) can be

visualized as an image plot with plotBvs(ob, option="j"). With the function GibbsBvs()

all models visited are saved in the matrix ob$modelslogBF which, in the last column, have

the Bayes factors of each model in log scale. With the function Bvs(), hence performing full

enumeration, the most probable models are stored in ob$modelslogBF that contains in the last

column the posterior probabilities. BayesVarSel is armed with the function BMAcoeff(ob) (and

histBMA() for representation of the object created) that allows to perform model averaged

estimates of coefficients through simulations of the posterior distribution. Similarly, predictions

based on the posterior distribution can be obtained with the command predictBvs(ob)

that again produces simulations from the underlying (model averaged) posterior predictive

distribution.

• In BMS the top best models with their probabilities are displayed using topmodels(ob), that

can also be plotted with image(ob). A summary(ob) of the resulting object also prints the

posterior of the model size (10) that can be plotted with the command plotModelSize(ob).

Printing ob displays a table with model averaged estimates of regression coefficients, namely

their expected posterior mean and standard deviation (column Post Mean and Post SD respec-

tively). Interestingly, it is possible to compute predictions with the commands predict(ob)

(expected predictive mean a posteriori) and pred.density(ob) (mixture predictive density

based on a selected number of best models). This package does not save all the models visited

but only a (necessarily small) list of the best models sampled in ob$topmod expressed in

hexadecimal code.

• In BAS a summary of ob prints the best models, their posterior probabilities and Bayes

factors (expressed in relation to the HPM). Here, printing ob we obtain the posterior inclusion

probabilities (PIPs). Executing plot(ob) several useful plots are produced, including a

graph of PIPs and model size a posteriori. Using image(ob) generates an image plot of the

best models providing more insights about which are the most important covariates. We
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can obtain estimations of regression parameters of various types using the command coef

and accompanying functions confint (for intervals) and plot. Finally, BAS allows us to

produce predictions from the object created with the function predict() whose result can be

summarized in credible intervals with the function confint().

Numerical methods Exhaustive enumeration can be performed with BayesFactor, BayesVarSel

(command Bvs()), BMS (modifying argument mcmc="enumerate") and in BAS (specifying the

option method="deterministic")).

When p is larger, exhaustive enumeration is not feasible and this is solved in mombf, BayesVarSel,

BMS and BAS by providing specific routines to approximate the posterior distribution in such

big model spaces. All four packages implement similar MCMC strategies. BAS, with the option

method="MCMC" uses a combination of the Metropolis Hastings in Madigan and York (1995) and

Raftery et al. (1997) (called MC3) and a random swap selection of a variable excluded in the

current model (see Clyde et al., 2011, for more details). A different technique is offered by BAS,

with the option method="MCMC+BAS". In this case the package implements the sampling method

(without replacement) called Bayesian Adaptive Sampling (BAS) described in Clyde et al. (2011).

With BAS, we have access with method="MCMC" to estimates of PIP based on the frequency of

visits (ob$probne0.MCMC) or on the renormalization of posterior probabilities of sampled models

(ob$probne0.RN). Of course, both estimates should be close to each other when convergence has

been achieved. The rest of the packages essentially implement strategy i) briefly described in

Section with the following peculiarities: The packages mombf and BayesVarSel implement the same

Gibbs sampling scheme. A minor difference between both is that frequency-based estimates of

inclusion probabilities in mombf are refined using Rao-Blackwellization. The methods programmed

in BMS are also MCMC strategies to explore the posterior distribution which can be of the type

birth and death (modifying argument mcmc="bd") or a reversible jump (mcmc="rev.jump"). There

is an important difference between the algorithms in mombf, BayesVarSel and in BMS. While in

each MCMC step the inclusion/exclusion of all p covariates is sampled in mombf and BayesVarSel
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only one is sampled in BMS. So the updates in BMS will be more “local” and thus typically faster

to implement, but convergence may take more updates.

Performance in selected datasets

To compare the selected packages two different scenarios will be considered:

• Exact scenario: data sets with small p and hence all the models can be enumerated.

• Sampling scenario: data sets with moderate to large p where only a small proportion of models

can be explored.

As we previously mentioned, mombf does not accommodate the exact scenario nor can BayesFactor

be considered in the sampling scenario. Ideally, we should compare all possible packages (in each

setup) under the same prior. Table 2 indicates which comparisons are possible. We compared

BayesFactor with BayesVarSel using the Zellner-Siow prior (labelled as R1) while we compared mombf

and BMS and BayesVarSel using the UIP (C1). In all cases, and strictly for comparative purposes

(e.g. BayesFactor does not allow for the Scott and Berger, 2010, prior) the constant prior over the

model space was used.

As expected, all four packages produced very similar results in the analyzed datasets. Hence, the

question of comparing them reduces basically to comparing computational times and the availability,

clarity and organisation of the output.

For the computational comparisons to be fair all the calculations have been done on an iMac

computer with Intel Core i5, 2.7 GHz processor. The code used to compute results provided here is

publicly available as supplementary material to this paper accesible through the journal website.
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Exact Scenario

We considered two data sets that we briefly describe.

US crime data. The US Crime data set was first examined by Ehrlich (1973) and is available

from R-package MASS (Venables and Ripley, 2002). This data set has a total of n = 47 observations

(corresponding to states in the US) of p = 15 potential covariates aimed at explaining the crime

rate in a particular category per head of the population.

Returns to schooling. This data set, used by Tobias and Li (2004) and Ley and Steel (2012),

concerns returns to education. As these are microeconomic data, the number of observations is

much larger. In particular, we have a response variable (log of hourly wages) recorded for n = 1190

white males in the US in 1990, and a total of p = 26 possible regressors.

For both scenarios we directly compare the time needed to exactly calculate the posterior distribution

with BAS, BayesVarSel and BMS using the C1 prior for the model parameters and the uniform prior

(with fixed θ = 1/2) on the model space. A referee pointed out that BAS is very demanding in

terms of memory allocation and indeed we experienced that, for large enough p, this may cause an

unexpected halt of execution. For the returns to schooling data set this was even the case when

we changed from a 8GB RAM computer to a machine with more memory resource (48GB). These

memory problems are likely due to a computational strategy where all the models sampled are

retained in RAM memory. This ‘limitation’ is acknowledged in the documentation of the package

which states that “For p less than 20-25, BAS can enumerate all models depending on memory

availability”.

The computational times for this experiment are presented in Table 4. Results clearly indicate that

BayesVarSel is more affected by the sample size since it performs better than BMS for the Crime

data set (n = 47) but not for the returns to schooling application (n = 1190). The Bayes factors
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depend on the data only through the sum of squared errors and we know that BayesVarSel computes

this statistic from scratch for each model and, thus, the n matters in that calculation. Hence a likely

reason for the differences in computational time between BayesVarSel and BMS packages when n

increases would be that the algorithms in BMS have implemented specific numerical recipes (see e.g.

Eklund and Karlsson, 2007; Hammarling and Lucas, 2008) to update the sum of squared errors once

a variable is added/dropped without the need to compute the sum of squared errors from scratch.

The comparison between BayesFactor and BayesVarSel, now using the R1 prior, is summarized in

the same table for the Crime data set where we can clearly see that BayesFactor is outperformed

by BayesVarSel. For the Crime data, running time for BAS is approximately constant for the two

priors considered while the time in BayesVarSel increases with R1 compared to C1. This behaviour

is likely due to the numerical integration algorithm implemented for the Zellner-Siow prior (also

used in R3 but not in R4).

Data set Prior BMS BayesVarSel BayesFactor BAS mombf

Crime p = 15 C1 unif 3.07 secs 0.35 secs - 0.10 secs 0.92 secs

Returns to schooling p = 26 C1 unif 1.69 hrs 11.32 hrs - - -

Crime p = 15 R1 unif - 1.26 secs 12.59 mins 0.12 secs -

Table 4: Computational times in exact scenario (observed variations over repetitions of the experiment were

negligible)

Table 4 also illustrates the large difference in computational cost between an exhaustive analysis

with p = 15 covariates (whereM has 215 = 32, 768 models) and p = 26, leading to a model space

with 67 million models, which is about 2000 times larger. Computational cost goes up by a factor

of about 2000 for BMS, which is therefore roughly linear in the size of model space, and thus seems

virtually unaffected by the number of observations n. Our intuition is that this is a consequence of

how the statistics are computed within each package, as commented above. Notice that the returns

to schooling data have not been analysed by BAS due to RAM memory limitations; 48GB of RAM

was not enough for this example. A referee pointed out that it does work with more resources but

we do not know how much RAM memory is needed for problems of this size.
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Sampling Scenario

We considered here he following three data sets.

Ozone. These data were used by Casella and Moreno (2006), Berger and Molina (2005) and

Garcia-Donato and Martinez-Beneito (2013) and contain n = 178 measures of ozone concentration

in the atmosphere with a total of p = 35 covariates. Details on the data can be found in Casella

and Moreno (2006).

GDP growth. This dataset is larger than Ozone with a total of p = 67 potential drivers for the

annual GDP growth per capita between 1960 and 1996 for n = 88 countries. This data set was used

in Sala-I-Martin et al. (2004) and revisited by Ley and Steel (2007).

Boston housing. This dataset was used recently in Schäfer and Chopin (2013) and contains

n = 506 observations of p = 103 covariates formed by the 13 columns of the original data set, all

first order interactions and a squared version of each covariate (except for the binary variable CHAS).

For the Ozone dataset, exact inclusion probabilities, (9), are reported in Garcia-Donato and Martinez-

Beneito (2013) for the C1 prior. These are the result of an intensive computational experiment

aimed at comparing different searching methods. These numbers provide a “gold standard” and

thus allow us to define a simple measure to compare the computational efficiency of the different

packages. For a given computational time, t, we calculate

∆t = max
i=1,...,p

|P̂ rt(γi = 1 | y)− Pr(γi = 1 | y)|,

where P̂ rt(γi = 1 | y) is the estimate of the corresponding PIP at time t provided by the package.

Clearly, the faster ∆t approaches zero, the more efficient is the package. In Figure 1 we have plotted

∆t for mombf; BayesVarSel (label Bvs); the two algorithms in BMS (the label BMSbd indicates
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Figure 1: Ozone dataset: maximum difference with the real inclusion probabilities (∆t) as a function of

computational time. The labels used are defined in the text.

birth/death and BMSrv corresponds to reversible jump) and two in BAS (BASmc is obtained

with method="MCMC" with PIP obtained via frequency of visits and BASmcbas corresponds to

method="MCMC+BAS" with PIP calculated by renormalization of Bayes factor). The same labels will

be used for the rest of the paper. Notice that all estimates are based on frequencies except for

BASmcbas.

All approaches –except for BASmcbas– behave quite satisfactorily, providing very reliable estimates

with a small computational time (a maximum discrepancy with the exact values of 0.01 in less

than 2.5 minutes). It seems that BASmc and mombf are slightly more efficient than the rest

while BMSrv in BMS is less efficient. The observed less optimal behaviour of BASmcbas could be

explained by the known bias introduced by the combination of heuristic methods to search good

models plus estimation based on renormalization (an effect fully reported in Garcia-Donato and

Martinez-Beneito, 2013).

In the GDP growth and the Boston housing examples, we cannot compute ∆t simply because the

PIPs are unknown. Nevertheless, we observe that for a sufficiently large computational time, all
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Figure 2: GDP growth data: variations in PIP (∆t,t−dt) as a function of computational time with dt = 60

seconds (starting after the burning period).

procedures except for BASmcbas, converged to almost identical PIPs. Hence, and even in the

unlikely case that none of them were capturing the ‘truth’ it seems that the fairest way to compare

the packages is computing time until ‘convergence’. This is what we have represented in Figures 2

and 3 where the y-axes display the difference between estimates at consecutive computational times,

i.e.

∆t,t−dt = max
i=1,...,p

|P̂ rt(γi = 1 | y)− P̂ rt−dt(γi = 1 | y)|,

where dt = 60 seconds was used and we have verified that PIPs converge.

In the GDP growth data set, we can not find big differences in the performance of all but BASmcbas

and all of these behave, again, very satisfactorily. It seems that the procedure Bvs (implemented by

BayesVarSel) tends to 0 faster than the rest of algorithms while the performance of the package

mombf manifests slightly more variability.

In the Boston housing problem the package BayesVarSel is clearly penalized (with respect to the GDP

growth data) by the large number of observations, hence displaying slower convergence. Nevertheless,

even in this challenging example with more than 100 possible covariates (and over 500 observations),
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Figure 3: Boston Housing data: variations in PIP (∆t,t−dt) as a function of computational time with dt = 60

seconds (starting after the burning period). The BASmc line is shorter than the rest because the programme

stops automatically due to some internal convergence criteria.

all methods barring BASmcbas lead to practical convergence within 10 minutes of running time.

Other Features

Besides the characteristics analysed so far (prior inputs, numerical methods and summaries), there

are several other features of the packages that are potentially relevant for the applied user. We list

some here under three categories: the interface, extra functionalities and documentation.

The interface In general, all five packages have simple interfaces with quite intuitive syntaxes.

One minor difference is that in BAS, BayesVarSel and BayesFactor the dependent and explanatory

variables are defined with the use of formula (hence inspired by well-known R commands like lm)

while in mombf these are defined through the arguments y and x. In BMS the dependent variable

should be in the first column of the data provided and the rest play the role of explanatory variables.
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Extra functionalities

• Fixed covariates. By default only the intercept is included in all the competing models (cf. (1))

in all packages (but recall this is handled in mombf via centering). There could be situations

where we wish to assume that certain covariates affect the response and these should always

be included in the analysis (see, for instance Camarero et al., 2015). Packages BAS, BMS and

BayesVarSel include this possibility in their main commands.

• Main terms and interactions. On occasion, it is convenient to conserve the hierarchy between

the explanatory variables in the way that interactions (or higher polynomial terms) are only

included if the main terms are included (Peixoto, 1987). In Chipman et al. (1997) this is

called the “heredity principle”. This would translate into a reduction of the model space. The

package BMS accommodates this possibility through a modification of the sampling algorithm.

• Model comparison. A complementary tool to the BMA exercise would be comparing separately

some of the competing models (e.g. comparing the HPM and the MPM). These type of

comparisons can be performed in BMS, BayesVarSel and BayesFactor.

• Convergence. BAS and BMS include several interesting tools to analyse the convergence of the

sampling methods implemented. For instance, in BAS the command diagnostics() produce

a comparative plot of the estimations of PIP based on frequencies and on re-normalization.

Similarity of both estimates suggests convergence of the MCMC (see e.g. Fernández et al.,

2001).

• Parallel computation. BMS, BayesVarSel and mombf have facilities to perform computations

in parallel.

• Jointness measures. BayesVarSel provides the functions Jointness() and plotBvs() (with

certain values of the argument option) to compute and visualize these type of measures. It is

also worth mentioning the post on the blog https://modelaveraging.wordpress.com describing

how different jointness measures can be computed using BMS
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Documentation The five packages come with a detailed help with useful examples. Further,

mombf, BMS and BAS have a comprehensive vignette with additional illustrations and written more

pedagogically than the help documentations. The main functionalities and usage of the package

BayesVarSel are explained in the paper Garcia-Donato and Forte (2016).

The packages BMS and BayesFactor are documented in the websites associated with Feldkircher and

Zeugner (2014) (http://bms.zeugner.eu) and Morey (2015) (http://bayesfactor.blogspot.com.es),

respectively. These sites contain manuals as well as valuable additional information, especially to

users less familiar with model uncertainty techniques.

Conclusions and recommendations

In this paper, we have examined the performance and the built-in possibilities of various R-packages

available in CRAN for the purpose of Bayesian variable selection in linear regression. In particular,

we compare the packages BAS, BMS, BayesVarSel, mombf and BayesFactor. It is clear that all

packages concerned lead to very similar results (with the only exception of the method BAS in BAS),

which is reassuring for the user. However, they do differ in the prior choices they allow, the way

they present the output and the numerical strategies used. The latter affects both CPU times and

memory requirements. In this regard, BAS is overall faster than the rest but with a very high cost

in terms of memory allocation (particularly problematic for large p and/or long runs of MCMC).

BayesVarSel and BMS do not have such stringent requirements about memory and we believe that

BayesVarSel is a good choice for small or moderate values of n, while BMS is preferable when n is

large. The package BayesFactor can not deal with larger values of p and seems relatively slow, thus

is not recommended for general use. mombf uses a slightly different prior from the one we focus on

here (and which is the most commonly used), but is relatively competitive and closely approximates

the PIPs after a short run time, albeit with slightly more variability than BMS or BayesVarSel.

In practice, users may be interested in specific features, such as always including certain covariates,
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that will dictate the choice of package. On the basis of its performance, the flexibility of prior choices

and the extra features allowed, we would generally recommend the use of BAS (using BASmc) in

an ideal situation with extremely large memory resources, and whenever memory allocation is an

issue (as it often is in practice) we would recommend BayesVarSel for small or moderate values of n,

and BMS when n is large.

Throughout the paper, we have assumed that n > p but there is an obvious and increasing interest

in the problem with n < p and particularly with n << p. In principle conventional priors cannot

handle this situation since the prior covariance matrix is singular for many of the competing models.

This is of course a limitation that does not affect other choice of priors like the spike-and-slab family

since they assume independence, but then the attractive properties of the conventional priors are

lost. Yet there is a simple way to overcome this difficulty within the conventional methodology

through assigning zero prior probability to singular models (this has been assumed, for example, in

the context of non-local priors in Johnson and Rossell (2012)). This approach is assumed by default

in the packages mombf and BMS and can be easily incorporated with the arguments priorprobs

and modelprior in BayesVarSel and BAS respectively. Another possibility is the approach described in

Berger et al. (2016) which can be viewed as a formalization of the suggestion in Liang et al. (2008)

about the use of generalized inverses. As this is a very recent proposal, it is still not incorporated in

any of the packages (but we expect it be in the near future).
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Appendix A: Supplementary Material: Summarizing the output

for the Crime data set

BMS

• Call

> library(BMS)#Version: 0.3.4

> ob <- bms(X.data=lUScrime, g="UIP", mprior="uniform", nmodel=100,g.stats = F)

• print()

> ob

## PIP Post Mean Post SD Cond.Pos.Sign Idx

## Ineq 0.9886667 1.43717383 0.38685782 1.00000000 12

## Ed 0.9836667 1.88879241 0.60288400 1.00000000 2

## Prob 0.8800000 -0.20653933 0.11614165 0.00000000 13
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## M 0.8406667 1.15074387 0.69006929 1.00000000 1

## NW 0.6100000 0.05948973 0.05845147 1.00000000 8

## U2 0.6016667 0.20400737 0.21596352 0.99889197 10

## Po1 0.5996667 0.56267682 0.54463150 1.00000000 3

## Po2 0.4906667 0.40936002 0.55299266 0.96535326 4

## Pop 0.3606667 -0.02271586 0.03980480 0.00000000 7

## GDP 0.3080000 0.18101443 0.35033505 1.00000000 11

## So 0.2760000 0.03782410 0.09277546 0.97463768 15

## Time 0.2670000 -0.06113723 0.14041361 0.05617978 14

## U1 0.1640000 -0.01984539 0.14783355 0.35772358 9

## LF 0.1453333 0.05646821 0.27907629 0.86009174 5

## M.F 0.1373333 -0.01963118 0.66576789 0.46116505 6

##

## Mean no. regressors Draws Burnins

## "7.6533" "3000" "1000"

## Time No. models visited Modelspace 2^K

## "0.522115 secs" "1426" "32768"

## % visited % Topmodels Corr PMP

## "4.4" "48" "0.6996"

## No. Obs. Model Prior g-Prior

## "47" "uniform / 7.5" "UIP"

• plot() and image()

> plot(ob)
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Figure 4: Prior/Posterior probabilities of model size and convergence performance plotted using

plot(ob)

> image(ob)

• Predictive density

> plot(pred.density(ob, newdata = lUScrime[1,-1]))
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BayesFactor

• Call:

library(BayesFactor)#Version: 0.9.12-2

ob <- regressionBF(formula=y~. ,data=lUScrime, rscaleCont = 1, noSample=TRUE)

> head(ob)

## Bayes factor analysis

## --------------

## [1] M + Ed + Po1 + NW + U2 + Ineq + Prob + Time : 23217774828 ±0%

## [2] M + Ed + Po1 + NW + U2 + Ineq + Prob : 22390162522 ±0%

## [3] M + Ed + Po2 + NW + U2 + Ineq + Prob : 15146223575 ±0%

## [4] M + Ed + Po1 + Pop + NW + U2 + Ineq + Prob : 13801956643 ±0%

## [5] M + Ed + Po1 + U2 + Ineq + Prob : 12988208736 ±0%

## [6] M + Ed + Po1 + NW + U2 + GDP + Ineq + Prob + Time : 11922310558 ±0%

##

## Against denominator:

## Intercept only

## ---

## Bayes factor type: BFlinearModel, JZS

• plot(head(ob))

> plot(head(ob))
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Figure 7: Bayes Factors using package BayesFactor
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BayesVarSel

• Call:

> library(BayesVarSel)#Version: 1.7.1

> ob <- Bvs(formula="y~.", data=lUScrime, prior.betas="gZellner",

+ prior.models = "Constant", n.keep=10)

• print() and summary()

> ob

##

## Call:

## Bvs(formula = "y~.", data = lUScrime, prior.betas = "gZellner",

## prior.models = "Constant", n.keep = 10)

##

## The 10 most probable models and their probabilities are:

## M Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time So prob

## 1 * * * * * * * 0.024695841

## 2 * * * * * * * * 0.023987471

## 3 * * * * * * * 0.016258755

## 4 * * * * * * 0.014728156

## 5 * * * * * * * * 0.013640810

## 6 * * * * * * * 0.012415831

## 7 * * * * * * * * * 0.010720692

## 8 * * * * * * * * 0.010106903

## 9 * * * * * * 0.009834356

## 10 * * * * * * * 0.008994454
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> summary(ob)

##

## Call:

## Bvs(formula = "y~.", data = lUScrime, prior.betas = "gZellner",

## prior.models = "Constant", n.keep = 10)

##

## Inclusion Probabilities:

## Incl.prob. HPM MPM

## M 0.8504 * *

## Ed 0.9776 * *

## Po1 0.6655 * *

## Po2 0.4216

## LF 0.1567

## M.F 0.1603

## Pop 0.3302

## NW 0.6793 * *

## U1 0.2083

## U2 0.5996 * *

## GDP 0.3125

## Ineq 0.9975 * *

## Prob 0.8963 * *

## Time 0.3333

## So 0.2307

## ---

## Code: HPM stands for Highest posterior Probability Model and

## MPM for Median Probability Model.

##
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• plotBvs() The BayesVarSel package has its own plot function named as plotBvs() which

shows different information depending of the value of the argument option. If option is

“d” a Barplot of the posterior probabilities of each model dimension is printed. If we set

option=“j” we obtain the posterior probability of every two covariates being together in the

model. option=“c” present the posterior conditional probability of a variable (in rows) given

an other variable (in columns) is already in the model. Finally option=“n” plots the posterior

conditional probability of a variable (in rows) being in the model given than other variable (in

columns) is not.

> plotBvs(ob, option="d")
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Figure 8: Posterior probabilities of each dimension
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> ob.cond <- plotBvs(ob,option="c")

Inclusion prob. of column var. given the row var. is included
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mombf

• Call:

> library(mombf)#Version: 1.8.3

> ob <- modelSelection(y=lUScrime$y, x=lUScrime[,-1],center=TRUE,scale=FALSE,

+ priorCoef=zellnerprior(tau=length(lUScrime$y)),

+ priorDelta=modelunifprior(),priorVar=igprior(alpha=.001,lambda=.001))

• print()

> ob

## msfit object with 15 variables and normal residual distribution

## Use postProb() to get posterior model probabilities

## Elements $margpp, $postMode, $postSample and $coef contain further information (see

help('msfit') and help('modelSelection') for details)

> ob$margpp #PIP

## M Ed Po1 Po2 LF M.F Pop

## 0.8620971 0.9809170 0.6519821 0.4323931 0.1576645 0.1600437 0.3314804

## NW U1 U2 GDP Ineq Prob Time

## 0.6939326 0.2110625 0.6176200 0.3199392 0.9978756 0.9058535 0.3410301

## So

## 0.2317813

> ob$postMode #Posterior Mode

## M Ed Po1 Po2 LF M.F Pop NW U1 U2 GDP Ineq Prob Time So

## 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0
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BAS

• Call:

> library(BAS)#Version: 1.4.3

> ob <- bas.lm(formula="y~.", data = lUScrime, prior = "g-prior",

+ alpha = dim(lUScrime)[1], modelprior = uniform(),

+ method = "deterministic",n.models = 2^(dim(lUScrime)[2]))

• print()

> ob

##

## Call:

## bas.lm(formula = "y~.", data = lUScrime, n.models = 2^(dim(lUScrime)[2]), prior =

"g-prior", alpha = dim(lUScrime)[1], modelprior = uniform(), method = "deterministic")

##

##

## Marginal Posterior Inclusion Probabilities:

## Intercept M Ed Po1 Po2 LF

## 1.0000 0.8504 0.9776 0.6655 0.4216 0.1567

## M.F Pop NW U1 U2 GDP

## 0.1603 0.3302 0.6793 0.2083 0.5996 0.3125

## Ineq Prob Time So

## 0.9975 0.8963 0.3333 0.2307

• summary()

> summary(ob)

## P(B != 0 | Y) model 1 model 2 model 3 model 4

45



## Intercept 1.0000000 1.00000 1.0000000 1.0000000 1.0000000

## M 0.8503615 1.00000 1.0000000 1.0000000 1.0000000

## Ed 0.9775864 1.00000 1.0000000 1.0000000 1.0000000

## Po1 0.6654873 1.00000 1.0000000 0.0000000 1.0000000

## Po2 0.4215797 0.00000 0.0000000 1.0000000 0.0000000

## LF 0.1567424 0.00000 0.0000000 0.0000000 0.0000000

## M.F 0.1603299 0.00000 0.0000000 0.0000000 0.0000000

## Pop 0.3301836 0.00000 0.0000000 0.0000000 0.0000000

## NW 0.6792925 1.00000 1.0000000 1.0000000 0.0000000

## U1 0.2082608 0.00000 0.0000000 0.0000000 0.0000000

## U2 0.5996084 1.00000 1.0000000 1.0000000 1.0000000

## GDP 0.3124840 0.00000 0.0000000 0.0000000 0.0000000

## Ineq 0.9974810 1.00000 1.0000000 1.0000000 1.0000000

## Prob 0.8963338 1.00000 1.0000000 1.0000000 1.0000000

## Time 0.3333490 0.00000 1.0000000 0.0000000 0.0000000

## So 0.2306890 0.00000 0.0000000 0.0000000 0.0000000

## BF NA 1.00000 0.9713161 0.6583609 0.5963832

## PostProbs NA 0.02470 0.0240000 0.0163000 0.0147000

## R2 NA 0.82650 0.8420000 0.8229000 0.8046000

## dim NA 8.00000 9.0000000 8.0000000 7.0000000

## logmarg NA 24.55728 24.5281755 24.1392769 24.0404071

## model 5

## Intercept 1.0000000

## M 1.0000000

## Ed 1.0000000

## Po1 1.0000000

## Po2 0.0000000

## LF 0.0000000
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## M.F 0.0000000

## Pop 1.0000000

## NW 1.0000000

## U1 0.0000000

## U2 1.0000000

## GDP 0.0000000

## Ineq 1.0000000

## Prob 1.0000000

## Time 0.0000000

## So 0.0000000

## BF 0.5523522

## PostProbs 0.0136000

## R2 0.8375000

## dim 9.0000000

## logmarg 23.9637095

• plot()

> plot(ob)
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Appendix B. Selected Packages. CRAN description

For the selected packages the actual descriptions on CRAN are:

BayesFactor (Morey et al., 2015)

• Version: 0.9.11-1

• Date: 2015-03-20

• Title: Functions to compute Bayes factor hypothesis tests for common research designs and

hypotheses.

• Description: This package contains function to compute Bayes factors for a number of research

designs and hypotheses, including t tests, ANOVA, and linear regression, and contingency

tables.

• Basic references: Rouder et al. (2012) and Rouder et al. (2009)

BayesVarSel, (Garcia-Donato and Forte, 2015)

• Version: 1.6.1

• Date: 2015-01-26

• Title: Bayes Factors, Model Choice And Variable Selection In Linear Models

• Description: Conceived to calculate Bayes factors in linear models and then to provide a

formal Bayesian answer to testing and variable selection problems. From a theoretical side,

the emphasis in the package is placed on the prior distributions and BayesVarSel allows using a

wide range of them (Jeffreys, 1961; Zellner and Siow, 1980, 1984; Zellner, 1986; Fernández et al.,

2001; Liang et al., 2008; Bayarri et al., 2012). The interaction with the package is through a
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friendly interface that syntactically mimics the wellknown lm command of R. The resulting

objects can be easily explored providing the user very valuable information (like marginal, joint

and conditional inclusion probabilities of potential variables; the highest posterior probability

model, HPM; the median probability model, MPM) about the structure of the true -data

generating- model. Additionally, BayesVarSel incorporates abilities to handle problems with

a large number of potential explanatory variables through parallel and heuristic versions

(Garcia-Donato and Martinez-Beneito, 2013) of the main commands.

• Basic references: Bayarri et al. (2012) and Garcia-Donato and Martinez-Beneito (2013)

BMS (Zeugner and Feldkircher, 2015)

• Version: 0.3.3

• Date: 2013-11-21

• Title: Bayesian Model Averaging Library.

• Description: Bayesian Model Averaging for linear models with a wide choice of (customizable)

priors. Built-in priors include coefficient priors (fixed, flexible and hyper-g priors), 5 kinds

of model priors, moreover model sampling by enumeration or various MCMC approaches.

Post-processing functions allow for inferring posterior inclusion and model probabilities, various

moments, coefficient and predictive densities. Plotting functions available for posterior model

size, MCMC convergence, predictive and coefficient densities, best models representation,

BMA comparison.

• Basic reference is Feldkircher and Zeugner (2009)

mombf(Rossell et al., 2014)

• Version: 1.6.0
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• Date: 2015-07-02

• Title: Moment and Inverse Moment Bayes Factors

• Description: Model selection and parameter estimation based on non-local priors. Routines

are provided to compute Bayes factors, marginal densities and to perform variable selection in

regression setups. Routines to evaluate prior densities, distribution functions, quantiles and

modes are included.
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