SUPPLEMENTARY MATERIALS FOR:

‘Jointness in Bayesian Variable Selection with Applications to Growth Regression'

Eduardo Ley
The World Bank, Washington DC, U.S.A.
Mark F.J. Steel
Department of Statistics, University of Warwick, U.K.

Version: February 22, 2008

Abstract

This document contains some supplementary graphs, and computational notes to accompany our paper E. Ley and M.F.J. Steel (2007), "Jointness in Bayesian Variable Selection with Applications to Growth Regression," Journal of Macroeconomics, 29(3): 476-493.

Address. Eduardo Ley, The World Bank, Washington DC 20433. Email: eduley@gmail.com. Mark F.J. Steel, Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K. Vox: $+44(0) 247652$ 3369. Email: M.F.Steel@stats.warwick.ac.uk

1. Overview

This document contains some supplementary materials for the paper E. Ley and M.F.J. Steel (2007), "Jointness in Bayesian Variable Selection with Applications to Growth Regression," Journal of Macroeconomics (LS henceforth).
Files in *. zip archive:

File	Directory	Contents	Format	See
Oreadme.pdf	ls5/	This file	PDF	-
ls5bma.f	ls5/code/	f77 source file	Text	Section on Fortran code
ls5bma.par	ls5/code/	Parameter file	Text	Section on Parameter file
grk41t72.dat	ls5/code/	FLS data file	Text	Section on Data
grk67t88.dat	ls5/code/	SDM data file	Text	Section on Data
k41i9_Std_.out	ls5/out/k41/std/	FLS standardized out file	Text	Section on Output Files
k41i9_Std_bj.dat	ls5/out/k41/std/	Bi-variate Jointness Measures	Text	Section on Output Files
k41i9_Std_tj.dat	ls5/out/k41/std/	Tri-variate Jointness Measures	Text	Section on Output Files
k41i9_NStd.out	ls5/out/k41/nstd/	FLS non-standardized out file	Text	Section on Output Files
k67i9_Std_.out	ls5/out/k67/std/	SDM standardized out file	Text	Section on Output Files
k67i9_Std_bj.dat	ls5/out/k67/std/	Bi-variate Jointness Measures	Text	Section on Output Files
k67i9_Std_tj.dat	ls5/out/k67/std/	Tri-variate Jointness Measures	Text	Section on Output Files
k67i9_NStd.out	ls5/out/k67/nstd/	SDM non-standardized out file	Text	Section on Output Files

2. Supplementary Figures and Tables for LS

Fig. 1 below displays the behavior of the measures of bivariate jointness for the SDM data, Fig. 2 from LS is also reproduced here for ease of comparison.

Fig 1. SDM data: Joint inclusion probabilities, bivariate jointness $\mathcal{J}_{i j}^{\star}$ and $\mathcal{J}_{i j}$.

Fig 2. FLS data: Joint inclusion probabilities, bivariate jointness $\mathcal{J}_{i j}^{\star}$ and $\mathcal{J}_{i j}$.
The enclosed k67i9_Std_. out output file (described below) includes the complete Table 6 in LS for all 67 regressors. The *NStd. out files also include the results for non-standardized regressors for both the SDM and FLS datasets.

3. Code and Data Files

Overview: In order to reproduce the results in the paper, you'll need to compile the $f 77$ file 1 s $5 \mathrm{bma} . \mathrm{f}$ and generate an executable, say, bma.exe. You'll need the data (*.dat) file and the parameter (ls5bma.par) file in the same directory-this file controls some options explained below.
The successful execution will always produce an output file $*$. out, and, if the jointness option (dojoint) is set to true, also two additional files containing the jointness measures for all pairs and triplets (see below).

3.1. Fortran code

The file 1 s 5 bma. f contains the $\mathbf{f 7 7}$ source code to produce the results in the paper. It is standard $\mathfrak{f 7 7}$ code except for the time-date functions. (If you cannot link to the standard Unix (-unixlib) or VAX/VMS (-vmslib) libraries, either remove the calls to wr_date() and wr_time (), or empty the body of these subroutines so that they do nothing when they are called.)

There are several parameters that you may need to modify before compiling the code if you are going to make different runs than the ones included here:
maxm Specifies the maximum number of models expected to be visited, currently set to 300,000 . If you run longer chains, or use different datasets, and find the chain visiting more than maxm models, you'll have to set this parameter to a larger value. The number of 'visits out' in the $*$. out file will be an upper bound on the increment needed to maxm, since some of these may be to repeated models.
maxk Maximum number of regressors in your dataset.
maxn Maximum number of observations in your dataset.
maxnf Maximum number of observations to be used for out-of-sample prediction, if lpsloop set to true in ls5bma. par file.

The program has been tested on different machines and with different compilers:

- Absoft's Pro Fortran for MacOS X v9.0 on a G4 iMac. It is important to use static storage (-s). Other suggested options include: optimization (-03 -cpu: host), fold to upper case (-N 109), maximum internal handle (-T 100000), temporary string size (-t102400).
- Intel Fortran Compiler 9.1 for MacOS on an Intel Core 2 duo iMac, under MacOS X. You simply need to disable the compiler's inline expansion (-Ob 0):

```
> ifort ls5bma.f -ObO -o bma.exe
```

- Intel Fortran Compiler 10 for MacOS on an Intel Core 2 duo iMac, under MacOS X; no directives required:
$>$ ifort ls5bma.f -o bma.exe
A typical run on a 2.16 GHz Intel Core 2 duo iMac takes less than 30 minutes.
- Compaq Visual Fortran 6.6 on a dual Xeon workstation running Windows XP. Full optimization settings can be used.

3.2. Parameter File

The ls 5 bma . par file controls some of the execution time parameters.
The first line sets the name of the different output files (the bivariate and trivariate $*$. dat files will have ' $b j$ ' and ' tj ' appended to this name.
The second line must contain the exact name of the data file.
The rest of the parameters are fairly self-explanatory. (Also, check the routine setup in ls 5 bma.f to see what the parameters do.) For a description of prediction issues and the G\&M convergence estimate refer to FLS, and random θ priors are discussed in LSb.

An example of a ls 5 bma . par file follows:

```
useanyname OUT namefile, char10
grk41t72.dat DAT namefile
-81665432 negative int to init random number generator
4 int 1-9, choice for g, see computefj and [FLS]
100000 warmup draws
500000 chain draws
T standard --- standardise Xs?
F LPSloop --- do prediction?
10 integer specifying nf
0.85d0 real taking care of sample split
T wrpost --- write posterior results
T dogm --- do G&M 2nd chain to assess convergence?
T dojoint --- produce jointness results?
T fixed theta --- F means random theta, see [LS]
5 20.5 prior expected model size
```


3.3. Data File

We enclose the two data files used in LS; FLS has $k=41, t=72$, and SDM has $k=67, t=88$. As noted, the exact name of the data file to use at execution must be specified in the second line in 1s5bma.par.

The data file must have the following structure.
Line 1: The first line must have the number of observations (ntot).
Line 2: The second line the number of regressors (kreg).
Lines 3 to $(\mathrm{kreg}+2)$: Then there must follow kreg lines with the corresponding variable names.
Lines $(\mathrm{kreg}+3)$ to $(2 \times$ ntot +2$)$: Next, another ntot lines, each with the values of the dependent variable, y, and the kreg regressors, X, in free format-i.e., each with a total of $\mathrm{kreg}+1$ columns.

We show the listing of the first 48 lines of grk41t72. dat below. (Note that, to save space, lines from 44 onwards, each containing a $(k r e g+1)$ array of data for each observation, are shown here truncated, without wrapup.)

```
72
41
GDPsh560
Confuncious
```

```
5 Life Exp
6 ~ E q u i p ~ I n v
SubSahara
Muslim
Rule of Law
Yrs Open
Eco Org
Protestants
NEquip Inv
Mining
LatAmerica
PrSc Enroll
Buddha
Bl Mkt Pm
Catholic
Civl Lib
Hindu
Pr Exports
Pol Rights
R FEX Dist
Age
War Dummy
English %
Foreign %
Lab Force
Spanish Col
EthnoL Frac
std(BMP)
French Col
Abs Lat
Work/Pop
High Enroll
Pop g
Brit Col
Outwar Or
Jewish
Rev & Coup
%Publ Edu
Area
1.36900 7.438972 0.000 47.30 0.05070 0.0 0.990 0.3333 0.000 0.0 0.005 0.19070 0.196 0.0 0.46 0.00 0.131 0.000 5.88
45 5.61950 6.284134 0.000 45.70 0.13090 1.0 0.000 0.8333 0.356 5.0 0.250 0.15300 0.533 0.0 0.42 0.00 0.072 0.250 3.00
46 1.22390 6.546785 0.000 43.40 0.00400 1.0 0.160 0.5000 0.156 5.0 0.170 0.12500 0.088 0.0 0.65 0.00 0.050 0.160 5.5!
47 2.23220 6.968851 0.000 47.30 0.04980 1.0 0.020 0.3333 0.000 1.0 0.250 0.23840 0.168 0.0 0.78 0.00 0.050 0.250 6.1
48-0.05530 5.517453 0.000 42.20 0.00600 1.0 0.420 0.5000 0.000 0.0 0.000 0.04880 0.001 0.0 0.07 0.00 0.156 0.000 6.6
```

\qquad

3.4. Output Files

For each run, we produce three output files. The $*$. out file contains the output of the chain, while the two $*$. dat files contain the different bi- or tri-variate jointess measures. (These two files are only generated when dojoint in the ls5bma. par file is set to true (T).)

4. Updating of the code to handle $k>52$

A model is represented by an array of 0 s and $1 \mathrm{~s}: m=\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ with $m_{i} \in\{0,1\}$. An index $i d x \in$ $\left\{1,2, \ldots, 2^{k}\right\}$ tracks the 2^{k} possible models.

When $i d x$ is a real* $* 8$ variable, it can count only to 2^{52}. This means that the loop below will print 53 - same result will be obtained in GAUSS and Matlab.

```
initiliaze ( }d=1,i=1
while (d>0) do
    i
    x
    x}\leftarrow\leftarrow(1+\mp@subsup{2}{}{i}
    d\leftarrow(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{})
enddo
print i
```

Thus, we cannot distinguish between 2^{52} and $1+2^{52}$
To get around this problem, we can use 2 indices to keep track of models - $i d x_{1}$ keeps track of the first 52 vars and $i d x_{2}$ keeps track of the remaining $k-52$ vars. Now w can handle up to 104 vars, or 2^{104} models.
Example: 4 variables; $2^{4}=16$ models. If we could only count to 4 , we could just use 2 indexes, $i d x_{1}$ and $i d x_{2}$, each in $\{1,2,3,4\}$ to account for the 16 models indexed by $i d x$.

Counting—Notice that the first $2^{k-1}=2^{3}=8$ integers are associated with vectors that have with $m_{1}=0$. Start out with $i=1$, then a 1 in m_{1} adds $2^{k-1}=8$ to $i d x$, a 1 in m_{2} adds $2^{k-2}=4$ to $i d x, \ldots$, a 1 in $m_{k} \operatorname{simply}$ adds $2^{0}=1$ to $i d x$.

The function getmodidx (k, m) starts with $i d x=1$ and makes $i d x=i d x+z m_{i}$ for $z=2^{k-1}$ down to 1 . Now it will have to be replaced by a subroutine with 2 calls to the old FLS function, each call taking care of a portion of the binary array m.

```
C
C**********************************************
    real*8 function getmodidx(k,m)
c**********************************************
5 c
c inputs:
```

```
c k.le.52......is the number of all possible regressors
c m(k)....contains 0s or 1s in each coordinate
c output:
c getmodidx..is the real*8 associated with the state vector
C
    real*8 idx,z
    integer k,i,m(k)
        z = 2.0d0**(k-1)
        idx = 1
        do 10 i=1,k
            idx = idx + z*m(i)
            z = z/2.0d0
        continue
        getmodidx = idx
        return
    end
C
C
C**********************************************
    subroutine get2modidx(k,m,idx1,idx2)
c***************************************************
C
c inputs:
k>52.......is the number of all possible regressors
m(1:k)....contains 0s or 1s in each coordinate
c output:
idx1..is the real*8 associated with the 1st 52-var state vector
idx2..is the real*8 associated with the 2nd 52-var state vector
C
integer i,k,m(k), m1(52), m2(52)
real*8 idx1,idx2,getmodidx
k1=min(52,k)
do 10 i=1,k1
        m1(i)=m(i)
10 continue
idx1 = getmodidx(k1,m1)
k2 = k-52
if (k2.ge.1) then
        do 15 i=1,k2
            m2(i)=m(i+52)
```

```
1 5
    continue
c
```

```
        idx2 = getmodidx(k2,m2)
```

 idx2 = getmodidx(k2,m2)
 else
 else
 idx2=0.0d0
 idx2=0.0d0
 endif
 endif
 return
 return
 end
 end
    ```
C*************************************************
```

```
C*************************************************
```

60

The subroutine gmodel (idx, k, m) does the reverse-starting with $i d x$ constructs the binary array m representing the model. (If $i d x>2^{k-j}$ then $m_{j}=1$, otherwise $m_{j}=0$, for $j=1, k-1$.) Now it will be replaced by another routine specifying 2 indexes: $i d x_{1}$ and $i d x_{2}$.

```
c*************************************************
    subroutine gmodel(idx,k,m)
C**************************************************
c
c given the model index idx and the number of all possible regressors
c k<53
c it returns a binary array, m, of dimension k. if the ith coordinate is 1
c the ith regressor is included in the model. otherwise it is excluded.
c
c inputs:
c idx.....is the model index (real*8)
c k......is the number of all possible regressors k=1..52
c
c output:
c m(k)...contains 0s or 1s in each coordinate
c
    integer i, k, m(k)
    real*8 idx,x,z
    x = 2.0d0**(k-1)
    z = idx
    do 20 i=1,k
        if (z.gt.x) then
            m(i) = 1
            z = z - x
            else
                m(i) = 0
            endif
            x = x / 2.0d0
```

```
20
    continue
    return
    end
C
C****************************************************
    subroutine g2model(idx1,idx2,k,m)
C***********************************************
C
c given the model index idx and the number of all possible regressors k
c it returns a binary array, m, of dimension k. if the ith coordinate is 1
c the ith regressor is included in the model. otherwise it is excluded.
C
c inputs:
c idx.....is the model index (real*8)
c k>52....is the number of all possible regressors
c
c output:
c m(k)...contains 0s or 1s in each coordinate
c
    integer i,k,m1(52),m2(52),m(k)
    real*8 idx1,idx2
    k1 = min(k,52)
    call gmodel(idx1,k1,m1)
    do 10 i=1,k1
        m(i)=m1 (i)
    10 continue
    k2 = k-52
    if (k2.ge.1) then
        call gmodel(idx2,k2,m2)
        do 15 i=1,k2
                m(52+i)=m2(i)
            continue
        endif
        return
        end
c
C**********************************************
```


5. References

[FLS] Fernández, Carmen, Eduardo Ley and Mark F.J. Steel (2001) "Model Uncertainty in Cross-Country Growth Regressions," Journal of Applied Econometrics, 16: 563-76.
[LS5] Ley, Eduardo and Mark F.J. Steel (2007) "Jointness in Bayesian Variable Selection with Applications to Growth Regression," Journal of Macroeconomics 29(3): 476-493.
[LS6] Ley, Eduardo and Mark F.J. Steel (2008) "On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression," Journal of Applied Econometrics, forthcoming.
[SDM] Sala-i-Martin, Xavier X., Gernot Doppelhofer and Ronald I. Miller (2004) "Determinants of Long-Term Growth: A Bayesian averaging of classical estimates (BACE) approach." American Economic Review, 94: 813-835.

