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A. Proofs and Proposition 1

Proof of Theorem 1. For (i): We follow the proof in [4], which assumed α = 1. Using l’Hopital’s rule
twice, it follows that limt→0

log(− log(S(t|α,γ,θ))
log(t) = γ if and only if E(Λ|θ) < ∞. For (ii): S(t|α, γ, θ) is the

Laplace transform of the density of αΛ evaluated at tγ , which is unique.

Proof of Result 1. E(T ri ) exists if and only if
∫∞

0 tri f(ti|α, γ, θ) dti < ∞. Therefore, using Fubini’s theo-
rem and the r-th moment of the Weibull distribution it follows that E(T ri ) = Γ (1 + r/γ)α−r/γEΛi(Λ

−r/γ
i |θ).

An expression for cv is a direct application of this result.

Proof of Result 2. This proof consists in taking the expectation of minus the second derivatives of the like-
lihood for each observation and computing the FIM on the basis of the whole sample as the sum of the FIM
for single observations. Define Yi = e−x

′
iβTi. The functions k1(θ), k2(θ) and k3(θ) are

k1(θ) = nETi

[[∫
L λi e

−λiYi (1− λiYi) dP (λi|θ)
]2[∫

L λi e
−λiYi dP (λi|θ)

]2
]

−nETi

[∫
L λi e

−λiYi
(
1− 3λiYi + Y 2

i

)
dP (λi|θ)∫

L λi e
−λiYi dP (λi|θ)

]
(S1)

k2(θ) = nETi

[∫
L λi e

−λiYi (1− λiYi) dP (λi|θ)
∫
L λi e

−λiYi d
dθ dP (λi|θ)[∫

L λi e
−λiYi dP (λi|θ)

]2
]

−nETi

∫L λi e− e−x′iβλiTi
(

1− λiTi e−x
′
iβ
)

d
dθ dP (λi|θ)∫

L λi e
− e−x

′
i
βλiTi d

dθ dP (λi|θ)

 (S2)

k3(θ) = nETi


[∫
L λi e

− e−x
′
iβλiTi d

dθ dP (λi|θ)
]2

[∫
L λi e

− e−x
′
i
βλiTi dP (λi|θ)

]2
− nETi

[∫
L λi e

− e−x
′
iβλiTi d2

dθ2 dP (λi|θ)∫
L λi e

− e−x
′
i
βλiTi dP (λi|θ)

]
. (S3)

These functions do not depend on β because all the terms inside the expectations depend on Ti and β only
through Yi and the distribution of Yi does not depend on β nor i.

Proposition 1 Let t = (t1, . . . , tn)′ be the recorded survival times of n independent individuals, realiza-
tions of random variables distributed as in equation (6) (see main text). Without loss of generality, assume
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only the first no observations are uncensored (no ≤ n) and let to be the vector containing all uncensored
observations. A sufficient condition for the existence of π(β, γ, θ|t) is the propriety of π(β, γ, θ|to).

Proof of Proposition 1. The likelihood contribution of censored observations is 1−FT (ti), FT (ti) orFT (ti2)−
FT (ti1) for right, left or interval censoring, respectively. These quantities are upper bounded by 1. So, under
independence, the likelihood function is bounded by the likelihood of to. Hence, the marginal likelihood of
the complete data is bounded by the marginal likelihood of these no observations and the result follows.

Proof of Theorem 2. The posterior distribution of (β, γ, θ) given the data is proper if and only if∫
Rk

∫ ∞
0

∫
Θ

∫
Rn+
γn

n∏
i=1

tγ−1
i e−γ

∑n
i=1 x

′
iβ

n∏
i=1

λi e
−

∑n
i=1 e

−γx′iβλit
γ
i π(γ, θ)

n∏
i=1

dP (λi|θ) dθ dγ dβ <∞.

(S4)
We use Fubini’s theorem to change the order of the integrals. We integrate with respect to β, using a similar
argument as in [6]. For ti > 0 and any value of (β, γ, λi) ∈ Rk ×R+, fTi(ti|β, γ, λi) is bounded by a finite
constant. Therefore, the integral in (S4) has an upper bound proportional to∫

Rk

∫ ∞
0

∫
Θ

∫
Rk+
γk
∏
i∈I

tγ−1
i e−γ

∑
i∈I x

′
iβ
∏
i∈I

λi e
−

∑
i∈I e

−γx′iβλit
γ
i π(γ, θ)

∏
i∈I

dP (λi|θ) dθ dγ dβ, (S5)

for any I = {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n}. Define the transformation U = g(β) = X∗β, where
X∗ is a k × k matrix containing the i1, . . . , ik rows of X . The rank of X∗ is k since X is of full rank.
Therefore, g(·) is bijective with Jacobian det((X∗)−1) and (S5) is proportional to∫ ∞

0

∫
Θ

∫
Rk+
γk

k∏
i=1

tγ−1
i

k∏
i=1

λi

[
k∏
i=1

∫ ∞
−∞

e−γui e−e
−γuiλit

γ
i dui

]
k∏
i=1

π(γ, θ) dP (λi|θ) dθ dγ. (S6)

Using wi = e−γui , the later integral simplifies to
∏k
i=1 t

−1
i

∫∞
0

∫
Θ π(γ, θ) dθ dγ. Therefore, if ti 6= 0 for

all i ∈ I and π(γ, θ) is a proper prior for (γ, θ), then the posterior distribution of (β, γ, θ) given the data
exists.
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B. Bayesian inference implementation details

Bayesian inference for the AFT-RMW model under the weakly informative priors presented in Section 3.1
is implemented via an Adaptive Metropolis-within-Gibbs algorithm with Gaussian Random Walk proposals
[9]. We assume right-censoring, which is most common for survival data. Mixing parameters are handled
through data augmentation [11]. Although the usual approach for dealing for censored (and set) observa-
tions is also by data augmentation, we do not use it for that because the Weibull survival function has a
known simple form [5, 7]. Code to implement RMW-AFT regression models is provided as an R library.
This includes the MCMC algorithm, criteria for Bayesian model comparison and a procedure for outlier
detection. Because of space reasons, some details of the implementation were omitted in the article. These
are explained below. Throughout, equation numbers refer to the main article.

Update of γ

In principle, γ can take any value in (0,∞). However, numerical problems are observed when very small
values of γ are proposed, in which case cvW (γ) becomes very large (in fact, cvW (γ) → ∞ when γ → 0).
As a solution, regardless of the mixing distribution, we truncate the range of γ to (0.06,∞). This has no
practical consequences as such small values of γ are very rarely required for real datasets.

Update of the mixing parameters

This implemented sampler involves the update of Λ1, . . . ,Λn at each step of the chain. This may be compu-
tationally inefficient (especially in situations in which sampling from the mixing variables is cumbersome).
In order to avoid this problem, the Λi’s will be sampled only every Q iterations of the chain. The value of
Q is chosen by considering the Effective Sample Size (ESS) of the chain and the CPU time required. Even
though longer chains are required for Q > 1 (the mixing of the chains is affected), the reduction in term of
CPU time can be substantial.

For the inverse gamma and inverse Gaussian mixing distributions, the full conditionals of the mixing param-
eters are given by Generalized Inverse Gaussian distributions. The algorithm proposed in [8] is used when
sampling from these full conditionals.

Detection of outliers and influential observations

For each observation, the modelsM0 : λi = λref andM1 : λi 6= λref are contrasted. Bayes factors between
them can be computed as the generalized Savage-Dickey density ratio proposed by [12] and stated in (23).
When the parameter θ does not appear in the model, this simplifies to the original version of the Savage-
Dickey ratio in (24). However, if θ is unknown, the procedure is computationally intensive, since a reduced
run of the MCMC algorithm (in which λi is fixed at λref ) is required for each observation i. Nevertheless,
as the n runs are independent, the process can be easily parallelized. Our R functions for outlier detection
receive i as input in order to facilitate this. In a multi-core environment, each run can be sent to a different
node (e.g. using the “parallel” library in R).

Evidence of influential observations is evaluated through the effect on the posterior distribution when delet-
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ing one observation at the time. This evidence is quantified by means of the Kullback-Leiber divergence
function Ki = KL(π(β, σ2, θ|t), π(β, σ2, θ|t−i)). As explained in [3] it can easily be computed from
MCMC output. Occasionally, numerical issues can lead to a negative estimate of Ki. In such a situation, a
warning is printed.

Marginal likelihood calculation

The marginal likelihood is defined as

m(t) =

∫ ∞
−∞

∫ ∞
0

∫
Θ
f(t|β, σ2, θ)π(β, σ2, θ) dβ dσ2 dθ,

and log(m(t)) is computed using the algorithm in [1] and [2].

Convergence and mixing of the sampler

Convergence of the MCMC chains was never a problem with the burn-in used for the examples displayed
in Section 4. Mixing is very good for models without an extra parameter θ in the mixing distribution
(e.g. Weibull and RMW model with exponential(1) mixing). In the presence of an unknown θ, reliable
inference is obtained through the described algorithms, but the chains are mixing a bit less well for some of
the parameters (higher autocorrelation and occasional excursions to extreme values), requiring MCMC run
lengths of the order used throughout the case studies described in the manuscript.
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C. Simulation study

This section displays the results of a simulation study designed to illustrate the performance of the proposed
methodology and to assess the effectiveness of the suggested Bayesian model comparison criteria.

Covariates were simulated by randomly sub-sampling the Cerebral Palsy dataset described in Section 4.2 of
the manuscript. Due to the small proportion of children where 1 and 2 impairments were observed, these
categories were merged into a single one for the purpose of the simulation (this is to avoid sub-sampled
datasets that contain a covariate with constant value across all observations). Regression coefficients were
defined as the posterior estimates obtained for the full Cerebral Palsy dataset under a Weibull-AFT regres-
sion model (i.e. β = (β0, β1, β2, β3)′ = (3.56, 3.32, 1.56,−0.07)′). Datasets were simulated by random
sampling from the following models: (i) Weibull-AFT, (ii) RMW-AFT with log-normal(0,2) mixing and
(iii) RMW-AFT with exponential(1) mixing to cover scenarios with increasing amounts of unobserved het-
erogeneity. Throughout, we used γ = 1 (which is the most challenging case for inference), but similar
results were observed for other values of γ (not shown).

Four different scenarios are defined as a combination of sample size (n = 100, 500) and percentage of
censoring (high: 85%-95%; low: 35%-45%). Independent censoring times are sampled from a uniform
distribution in (0, C) where the value of C is tuned in order to control the percentage of censoring. These
rather small sample sizes are often observed in survival datasets. For each model, 20 independent datasets
are simulated under each scenario. The Weibull-AFT and RMW-AFT models (with exponential, Gamma
and log-normal mixing) were fitted to each dataset. These mixing distributions were chosen to cover the
models used to generate the data, also including the Gamma mixing distribution as it is a popular choice in
the context of frailty models.

MCMC chains are run for 100,000 iterations with a burn-in period of 25,000 and thinning period equal to
10 (i.e. we use 7,500 draws for the results presented here). Results of these simulations are displayed in
terms of the performance of the adopted Bayesian model comparison criteria and the bias observed in the
estimation of model parameters.

C.1. Model comparison

Here, we evaluate the performance of the suggested Bayesian model comparison criteria. Since BF and
PsBF estimates were highly correlated (see Figure 10 in the manuscript), only PsBF results are shown. In
all cases, PsBF is calculated with respect to the Weibull-AFT model (no mixing) so that, in log scale, positive
values of PsML indicate that a RMW-AFT model (presence of unobserved heterogeneity) is preferred.

As additional information, the results based on the Deviance Information Criteria (DIC) [10] are also dis-
played. The DIC provides a fast tool for model comparison. It is defined as DIC ≡ E(D(β, γ, θ, t)|t) + pD,
where D(β, γ, θ, t) = −2 log(f(t|β, γ, θ)) (deviance function) and pD = E(D(β, γ, θ, t)|t) − D(β̂, γ̂, θ̂, t)

(effective number of parameters) with β̂,γ̂ and θ̂ being the posterior medians of β,γ and θ, respectively. DIC
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is computed using the marginal model (after integrating the λi’s), and lower values suggest better models.
Results are displayed in terms of the DIC difference with respect to the Weibull-AFT model (no mixing).
Hence, negative values of this difference indicate that a RMW-AFT model (presence of unobserved hetero-
geneity) is preferred.

Figures S1, S2, S3 and S4 display the results of these comparisons for the four simulation scenarios de-
scribed above in terms of sample size and censoring percentage.

For datasets generated using the Weibull-AFT model with no mixing (no unobserved heterogeneity), we
observe that RMW-AFT models indexed by a free parameter θ can accommodate the data by adjusting the
value of this parameter. This leads to similar PsML and DIC values across all models (yet the Weibull-AFT
model with no mixing will still be preferred as a more parsimonious choice). In contrast, the RMW-AFT
model with exponential(1) mixing is less flexible and does not provide a good fit for data with little or no
unobserved heterogeneity. This is more pronounced when the data are more informative (either the sample
size is large or the censoring percentage is small). These results suggest that the proposed Bayesian model
comparison criteria do not incorrectly prefer the mixture models in the absence of unobserved heterogeneity.

If the data is generated by a model that includes an unobserved heterogeneity term (i.e. log-normal(0,2) and
exponential(1) mixing), the evidence in favour of the mixture models strongly depends upon the sample
size: only marginal evidence for n = 100 but strong evidence for n = 500 (particularly when the cen-
soring percentage is low). However, while the information contained in the data is enough to distinguish
between the cases with and without unobserved heterogeneity, selecting the correct mixing distribution is
more challenging (at least for the simulated sample sizes and censoring percentages).

C.2. Parameter estimation

This section summarises the results of the simulations in terms of the bias observed in the estimation of
model parameters. For each parameter, the bias is estimated as the difference between its posterior median
and the true value used to generate the data. These results are summarized in Figures S5, S6, S7 and S8.

Our simulations suggest some bias in the estimation of the regression coefficients when the sample size is
small. However, as it can be expected, this effect is attenuated for larger sample sizes (e.g. for n = 500) and
as the censoring becomes less important.

Overall, our findings are in line with what is observed for the Cerebral Palsy dataset. In particular, we
found that the bias observed in the estimation of the regression coefficients (excluding the intercept term)
is somewhat robust to the choice of mixing distribution. This is similar to the small differences observed
between the regression coefficients estimated under each mixture for the Cerebral Palsy data and can be
interpreted as an analogy of what occurs in linear regression models with heteroscedastic errors, where least
square estimates remain unbiased when fitting a homoscedastic model (in fact, RMW-AFT models can be
interpreted as a heteroscedastic linear regression model for the log-survival times).

A different result is observed for the estimation of the intercept parameter β0 and Weibull shape parameter
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γ. Firstly, we observe that biases on the estimation of γ tend to be compensated by biases in the estimation
of β0. This is not surprisingly due to the weak identifiability that occurs between the intercept and γ when
γ ≈ 1 (see last paragraph in Section 3.1). We also note that the choice of mixing distribution substantially
affects the amount of the bias that is observed for these parameters. This is critical, as a biased estimate of
γ can lead to a wrong interpretation of the subject-level hazard rate.

In particular, our simulations suggest that, in order to attenuate this bias, it is critical for the mixing distri-
bution to be flexible enough and accommodate the strength of unobserved heterogeneity that generated the
data. For example, models that are indexed by a free parameter θ (e.g. Gamma and log-normal mixing) can
accommodate data generated by a Weibull-AFT model by adjusting the value of θ. Instead, the exponen-
tial mixing distribution is less flexible and does not perform well for data simulated using a Weibull-AFT
model. Similarly, since the exponential mixing distribution is linked to very strong levels of unobserved
heterogeneity (e.g. leading to an infinite value for cv for γ = 1), models that only allow for moderate or no
unobserved heterogeneity (i.e. Gamma, log-normal and no mixing) lead to higher bias when estimating the
parameters.

D. Software and Example Results

Code to implement RMW-AFT regression models is provided as an R library freely available at **URL
suppressed for reasons of anonymity**. Additionally, the R code used to generate the results displayed in
Section 4 of the manuscript is provided in the additional file “SuppMaterialSectionD.html”. The latter also
includes numerical and graphical summaries of the analysed datasets, together with traceplots and other
convergence diagnostics for the associated MCMC chains. Please note that the vignette in the additional
html file does not work using Internet Explorer, but works well for other browsers such as Mozilla Firefox,
Google Chrome and Safari.
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Figure S1: Simulation results for sample size n = 100, high censoring and γ = 1. Performance of PsML
and DIC as model comparison criteria. Panel titles indicate the true model used to simulate the data.
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Figure S2: Simulation results for sample size n = 100, low censoring and γ = 1. Performance of PsML
and DIC as model comparison criteria. Panel titles indicate the true model used to simulate the data.
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Figure S3: Simulation results for sample size n = 500, high censoring and γ = 1. Performance of PsML
and DIC as model comparison criteria. Panel titles indicate the true model used to simulate the data.

10



None Exp Gam LN

−
20

−
10

0
10

20

No mixing

Mixing

lo
gP

sB
F

 w
.r.

t. 
no

 m
ix

in
g

None Exp Gam LN

−
30

−
10

0
10

20
30

No mixing

Mixing

D
IC

 d
iff

er
en

ce
 w

.r.
t. 

no
 m

ix
in

g

●

None Exp Gam LN

−
20

−
10

0
10

20

LN(0,2) mixing

Mixing

lo
gP

sB
F

 w
.r.

t. 
no

 m
ix

in
g

●

None Exp Gam LN

−
30

−
10

0
10

20
30

LN(0,2) mixing

Mixing

D
IC

 d
iff

er
en

ce
 w

.r.
t. 

no
 m

ix
in

g

None Exp Gam LN

−
20

−
10

0
10

20

Exp(1) mixing

Mixing

lo
gP

sB
F

 w
.r.

t. 
no

 m
ix

in
g

None Exp Gam LN

−
30

−
10

0
10

20
30

Exp(1) mixing

Mixing

D
IC

 d
iff

er
en

ce
 w

.r.
t. 

no
 m

ix
in

g

Figure S4: Simulation results for sample size n = 500, low censoring and γ = 1. Performance of PsML
and DIC as model comparison criteria. Panel titles indicate the true model used to simulate the data.
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Figure S5: Simulation results for sample size n = 100 and high censoring. From top to bottom, panels
display the bias on the estimation of γ, β0, β1 and β2. Posterior estimates are defined as the posterior
median of each parameter. Panel titles indicate the true model used to simulate the data.
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Figure S6: Simulation results for sample size n = 100 and low censoring. From top to bottom, panels
display the bias on the estimation of γ, β0, β1 and β2. Posterior estimates are defined as the posterior
median of each parameter. Panel titles indicate the true model used to simulate the data.
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Figure S7: Simulation results for sample size n = 500 and high censoring. From top to bottom, panels
display the bias on the estimation of γ, β0, β1 and β2. Posterior estimates are defined as the posterior
median of each parameter. Panel titles indicate the true model used to simulate the data.
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Figure S8: Simulation results for sample size n = 500 and low censoring. From top to bottom, panels
display the bias on the estimation of γ, β0, β1 and β2. Posterior estimates are defined as the posterior
median of each parameter. Panel titles indicate the true model used to simulate the data.
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[4] B.E. Honoré. Simple estimation of a duration model with unobserved heterogeneity. Econometrica,
58:453–473, 1990.

[5] J.G. Ibrahim, M-H. Chen, and D. Singha. Bayesian Survival Analysis. Springer, 2001.

[6] S.W. Kim and J.G. Ibrahim. On Bayesian inference for proportional hazards models using noninfor-
mative priors. Lifetime Data Analysis, 6:331–341, 2000.

[7] A. Kottas. Nonparametric Bayesian survival analysis using mixtures of Weibull distributions. Journal
of Statistical Planning and Inference, 136:578–596, 2006.
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