
Contents

1 Bayes factors based on g-priors for variable selection 1
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Variable selection can be naturally seen as a model selection problem where the entertained
models differ in which subset of variables explains the outcome of interest. In this setting,
posterior probabilities of the models are a simple combination of Bayes factors, a well-known
inferential tool that is key in the formal Bayesian approach to testing and model choice. This
approach to variable selection automatically provides sparse answers that, quite importantly,
are accompanied with probabilistic assessments regarding the confidence we have in them.
This methodology is, however, not exempt from difficulties including prior elicitation and
numerical challenges related with its practical implementation. Particularly in the context
of linear and generalized linear models, the so-called g-priors have attracted the interest of
many researchers due to their appealing properties formally described in [2]. In this chapter
we review the main aspects concerned with the implementation of the Bayesian approach
to variable selection based on Bayes factors in linear and generalized linear models, using
g-priors. The material presented here has a clear focus on applicability and emphasis is
placed on providing: i) practical guides for implementation, including documentation for
the use of R packages (particularly BayesVarSel and glmBfp) and ii) the analysis of real
examples which illustrate the enormous potential of this approach to variable selection.
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2 Bayes factors based on g-priors for variable selection

1.1 Bayes factors

Variable selection with Bayes factors is a methodology based on the significance tests by
Sir Harold Jeffreys. These were introduced in a series of papers published during the first
decades of the 20th century and culminated in his famous book “Theory of Probability”
[19], the first edition of which dates back to 1939. The reader is referred to [12] for an
interesting account of the history of Bayes factors, and to [33] for a modern revision of
Jeffreys’ influential book.

Jeffreys’ significance tests provide a solution to testing precise null hypotheses (ie. that
a certain parameter is zero) through the evidence that data give to each of the tested
hypotheses. A key consideration is that hypotheses define statistical models and hence such
evidence can be measured utilizing the relative support that each model receives from the
data. The number that contains that relative evidence is what we call today the Bayes
factor.

In the simple case with only two hypotheses, the data y follows a certain distribution
under the null hypothesis M0 : y ∼ f0(y | θ0), while under the alternative M1 : y ∼ f1(y |
θ1).

To decide which of these models/hypotheses provides a more appropriate representation
for the underlying data generating process of y we obtain the Bayes factor of M1 to M0 as:

B1 =
m1(y)

m0(y)
, mγ(y) =

∫
fγ(y | θγ) pγ(θγ) dθγ , γ = 0, 1. (1.1)

Above, m1 and m0 are the prior predictive marginals (often called marginal likelihoods)
and p1(·) and p0(·) are the priors for the parameters within each model.

The Bayes factor B1 is a measure of evidence in favor of M1 and against M0 provided
by the sample under the chosen prior distributions. The larger B1, the stronger is the
evidence supporting M1. Several authors have provided rules to interpret B1 [19, 21] but it
is common to use them through their relation with the posterior probabilities of the models
being compared. It can easily be seen that posterior odds ratios between models are equal
to the prior odds multiplied by the appropriate Bayes factor:

p(M1 | y)

p(M0 | y)
=
p(M1)

p(M0)
B1, (1.2)

where p(Mγ) is the prior probability assigned to Mγ . Thus, conditionally on either M0 or
M1 being the true model, the posterior probability of M1 is

p(M1 | y) =
p(M1)B1

p(M1)B1 + p(M0)
.

In order to make an explicit model selection we have to choose a threshold for the posterior
probability for M1. If p(M1 | y) is larger than this threshold we choose M1 and otherwise
we choose M0. Such a threshold could, of course, be guided by a utility or loss function in
a decision-theoretic setting (see e.g. [6]).

An important characteristic of this approach to model selection is that both models
are given full consideration (different from methodologies where the selection is based on
consideration of only the largest model). The advantages of this approach are nicely reviewed
in [5] and here we want to emphasize two that we find particularly relevant. Firstly, the
approach is automatically parsimonious (choosing the simplest model for a similar fit).
This is essentially because, in logarithmic scale, Bayes factors can be approximated by a



Bayes factors 3

goodness-of-fit term minus a penalty for complexity that provides the mentioned automatic
‘protection’ to simpler models (for more details and related references on this issue see eg.
[20]). Secondly, the method comes accompanied with a measure of uncertainty regarding the
model selection exercise since it is based on the full posterior probability distribution over
all considered models. This gives an accurate idea of the remaining uncertainty regarding
which model to use. In this chapter we show, through real applications, the potential of
the approach based on Bayes factors to variable selection highlighting the richness of the
obtained inference.

The probability distribution over models provided by the formal Bayesian approach
sketched above also allows us to formally include the uncertainty regarding models in our
inference and decision-making by averaging over models with the posterior model distribu-
tion. This so-called Bayesian model averaging is the natural Bayesian response to uncer-
tainty and was already described in [23] and used in e.g. [32] and [13]. This is a natural step
to fully incorporate the model uncertainty, and is available in the packages used here. Key
posterior quantities mentioned in the chapter, such as the posterior probability of inclusion
of a regressor are derived by averaging over models.

In the situation where more than two models are entertained, the index γ takes values in
a setM (called model space) and the posterior probability of any of the competing models
is

p(Mγ | y) ∝ p(Mγ)Bγ ,

where Bγ is the ratio of the marginal likelihood mγ(y) to the marginal likelihood of a fixed
model (say, without loss of generality M0). A multiple model selection problem naturally
arises in variable selection. In this situation, the proposed models share a common functional
form (e.g. a normal linear regression model) but differ in which explanatory variables, from
a given set, are included to explain the response. The focus of this chapter will be on variable
selection in the context of normal linear models (Section 1.2) and generalized linear models
(Section 1.3).

Although very sound and cogent, the implementation of this methodology has two main
challenges that we next describe. The first difficulty is a conceptual issue, namely that the
prior used is going to have an important effect on the results. In contrast to the situation
where we formulate a prior on the parameters of a single uncontested model, we do not
have the luxury of priors that are “non-informative” in the sense that their effect is easily
swamped by the data as we collect more observations. In addition, the prior needs to be
proper on model-specific parameters. Indeed, any arbitrary constant in pγ(θγ) will affect
the marginal likelihood mγ(y) in (1.1). Thus, if this constant emanating from an improper
prior does not multiply the marginal likelihoods of all possible models, it clearly follows
from (1.2) that posterior model probabilities are not determined. In this chapter, we pay
special attention to the family of priors named g-priors. Strongly inspired by the work of
Jeffreys to implement his significance tests, g-priors were introduced by [39, 38] and they
have been the topic of renewed research interest over the last fifteen years or so. These
types of priors, which some authors have also called conventional [5, 1], are introduced in
Section 1.2.1.

A second challenge for the practical implementation is computational. In some cases (in
particular, the linear Gaussian model with the class of g-priors mentioned in Subsection
1.2.1) the integral in (1.1) can be solved analytically, but in many other cases it does not
admit an explicit solution and we need to resort to a simulated or approximated answer. In
addition, the number of models in the model space can, for many applications be very large
indeed, thus precluding an exhaustive enumeration of all possible models. As an example,
the genetic example in Subsection 1.2.1 has a model space with 24088 models, which is far
larger than what can be dealt with exhaustively (typically, we can deal with model spaces
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up to size 230 or so if we use complete enumeration). We discuss these numerical issues in
Section 1.2.2. Fortunately, these methods are easily accesible to practitioners with specific
R [30] packages. Here, we illustrate the use of the freely available packages BayesVarSel

and glmBfp. All our examples are run on a Macbook pro laptop with 2.6 GHz Intel Core i5
processor without parallel computation, clearly indicating that the analysis of practically
relevant problems is readily accessible.

1.2 Variable selection in the Gaussian linear model

Consider a random sample Y = (Y1, . . . , Yn)T with components Yi being independent,
normally distributed with unknown variance σ2. In the regression setup, the mean µi of
Yi is assumed to be a linear combination of a subset of p possible explanatory variables
{X1, . . . , Xp}, but it is uncertain which is the relevant subset. This situation implicitly
defines 2p entertained regression models which can be expressed by making use of a vector
parameter γ = (γ1, . . . , γp)

T where γi ∈ {0, 1} and γi = 1 indicates that xi is included in
the model. Hence the model space is M = {0, 1}p, where each γ ∈M assumes that

µi = α+

p∑
j=1

γj xijβj , ∀i = 1, 2, . . . , n

where xij denotes the ith observation of variable xj , i.e. the (i, j)th element of the full
(n × p) covariate matrix X. Using the notation in the introduction, now θγ = (α,βγ , σ)
and the entertained models

Mγ : Y ∼ fγ(y | α,βγ , σ) = Nn(y | α1n +Xγβγ , σ
2In)

where Xγ is a (n× pγ)-dimensional (pγ =
∑p
j=1 γj) data matrix formed using the included

variables inMγ (abusing notation, βγ is empty when γ is the null vector) and 1n represents a
n-dimensional unitary column vector . The covariates are standardized by subtracting their
means, which makes them orthogonal to the intercept and renders the interpretation of the
intercept common to all models.

Assuming that one of the models in M is the true model, the posterior probability of
any model γ∗ is

p(Mγ∗ | y) =
Bγ∗(y)p(Mγ∗)∑
γ Bγ(y)p(Mγ)

, (1.3)

where p(Mγ) is the prior probability of Mγ and Bγ is the Bayes factor of Mγ with respect to
a fixed model, say M0 (without any loss of generality) and hence Bγ = mγ/m0 and B0 = 1.

1.2.1 Objective prior specifications

Priors for the within model parameters: the g-priors

The prior on the model parameters assigns posterior point mass at zero for those regression
coefficients that are not included in Mγ , which automatically induces sparsity. Without loss
of generality, the prior distributions pγ can be expressed as

pγ(βγ , α, σ) = pγ(βγ | α, σ)pγ(α, σ).
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The common parameters is assumed to be equal for all models and for p(α, σ) a very
commonly used objective prior is assumed

pγ(α, σ) = p(α, σ) ∝ σ−1. (1.4)

In the g-priors, the model-specific parameters have the following distribution specified
conditionally on a hyper-parameter g > 0 (which is the reason for the name of these priors):

pγ(βγ | α, σ, g) = Npγ (βγ | 0pγ , gσ2(XT
γXγ)−1). (1.5)

This prior structure already appeared in [13, 5] and is now the most commonly used prior
in the context of the normal linear model.

Without g, the prior covariance matrix above coincides with the expected Fisher infor-
mation matrix corresponding to βγ obtained from the model Mγ . The parameter g has the
role of scaling the resulting matrix, for example such that the prior reflects a similar amount
of information as one observation (this corresponds to a fixed value g = n and leads to log
Bayes factors that behave asymptotically like the BIC, see [13]). Several authors have argued
in favor of treating g as an unknown hyper-parameter for which a hyper-prior needs to be
assigned. There are theoretical reasons for the introduction of this extra layer of variability
that relate to information consistency, which implies that the posterior probability tends to
one for a model with arbitrarily large sampling evidence in its favour. In addition, from a
practical perspective, treating g as random provides a prior for βγ with flatter tails, hence
accommodating regressors with a moderate impact on the response. In the section devoted
to the sensitivity analysis, we will see a manifestation of this effect in practice. In Table 1.1
we have collected the most popular proposals for g. There are subtle conceptual differences
that have lead the different authors to propose these specific proposals and the reader is
referred to the original reference for more details. Hence, the g-priors have, manifestly, been
proposed based on constructive arguments. Nevertheless, much later [3] showed that these
priors can also be derived using a mathematical formal rule based on the “distance” between
competing models.

The ensuing methodology based on g-priors is endorsed by many appealing theoretical
properties. A number of these have a frequentist flavor like consistency (ability to select
the true model when the sample size grows to infinity or when the evidence in favour of
a model becomes overwhelming) but others are specifically related with the desiderata for
objective priors for testing and model selection. Within the latter category, we emphasize
that g-priors are predictive matching (reporting inconclusive evidence when the sample size
is extremely small). Finally, these priors produce Bayes factors that are invariant to affine
transformations of the covariates. The reader is referred to [2] for a comprehensive discussion
of these properties.

Priors over the model space M

For priors over the model space M, a very popular starting point is

p(Mγ | θ) = θpγ (1− θ)p−pγ , (1.6)

where pγ is the number of covariates in Mγ , and the hyperparameter θ ∈ (0, 1) has the inter-
pretation of the common prior probability that a given variable is included (independently
of all others).

For the specific assignment in (1.6), some of the most popular default choices for θ are

• Fixed θ = 1/2, which assigns equal prior probability to each model, i.e p(Mγ) = 1/2p;

• Random θ ∼ U(0, 1), giving equal probability to each possible number of covariates or
model size.
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Proposal Reference Name
Fixed g
g = n [38, 21] Unit Information prior
g = p2 [15] Risk inflation criterion prior
g = max{n, p2} [13] Benchmark prior
g = log(n) [13] Hannan-Quinn
Random g
g ∼ IGa(1/2, n/2) [19, 39, 40] Cauchy prior
g | a ∼ p(g) ∝ (1 + g)−a/2 [27] hyper-g
g | a ∼ p(g) ∝ (1 + g/n)−a/2 [27] hyper-g/n
g ∼ p(g) ∝ (1 + g)−3/2, g > 1+n

pγ+1 − 1 [2] Robust prior

TABLE 1.1
Specific proposals for the hyperparameter g in the literature.

Of course many other choices for θ – both fixed and random– have been considered in
the literature. In general, fixed values of θ have been shown to perform poorly in controlling
for multiplicity (the occurrence of spurious explanatory variables as a consequence of per-
forming a large number of tests) and can lead to rather informative priors. This issue can
be avoided by using random distributions for θ as, for instance, the second proposal above
that has been studied in [35]. Additionally, [25] consider the use of θ ∼ Beta(1, b) which
results in a binomial-beta prior for the number of covariates in the model or the model size,
W :

p(W = w | b) =
b

Γ(b+ p+ 1)

(
p

w

)
Γ(1 + w)Γ(b+ p− w), w = 0, 1, . . . , p.

Notice that for b = 1 this reduces to the uniform prior on θ and also on W . As [25] highlight,
this setting is useful to incorporate prior information about the mean model size, say w?.
This would translate into b = (p− w?)/w?.

In variable selection, applications with a large number of explanatory variables p are
becoming very common. In these situations, depending on the context and the prior infor-
mation, it is typically a good idea to use a prior which implies a multiplicity correction or a
prior which induces sparsity along the lines suggested in [8]. Additionally, in such contexts,
we usually have to face situations where p > n (or even p >> n) and the set M contains
models with pγ + 1 > n that are hence rank deficient (in the Gaussian setting these models
are not estimable). Normally, these models are given zero prior probability (they are dis-
carded) and the prior assignment in (1.6) applies only to those models for which pγ < n
with a proportionality sign. A different treatment for these singular models in the normal
case is given in [4]. These authors argue that while full rank models may contain decisive
information concerning which covariates are related with the response, the rank deficient
ones are not informative but will add uncertainty reflecting the fact that p is large compared
to n. In this regard, [4] observe that rank deficient models are “copies” (reparameteriza-
tions) of the saturated model with pγ + 1 = n with the same marginal likelihood (cf. (1.7)
with SSEγ = 0 and pγ + 1 = n). This justifies the use of unitary Bayes factors for all rank
deficient models and thus avoids the need to assign zero prior probability to these models.
In practical terms, both approaches are expected to provide similar results, unless n is very
small. We have observed this agreement in the second of our applications which concerns a
high dimensional study with n = 71 and p = 4088.
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1.2.2 Numerical issues

As already mentioned in Subsection 1.1 there are two main computational challenges in
solving a model uncertainty problem through Bayes factors. Firstly, the integral in (1.1) and,
secondly, the sum in the denominator of (1.3) which involves many terms if p is moderate
or large.

Fortunately, in normal models, g-priors combine easily with the likelihood, and condi-
tionally on g lead to closed forms for mγ(y). Hence, at most, a univariate integral needs to
be computed when g is taken to be random. Thus Bayes factors have a very manageable
expression:

Bγ(y) =

∫ (
1 + g Qγ

)−(n−1)/2 (
1 + g

)(n−pγ−1)/2
p(g) dg. (1.7)

where Qγ , is the ratio sum of squared errors of model Mγ to the null model M0. Interest-
ingly, there have been recent proposals for prior distributions, which despite assuming a
hyper prior on g induce closed form marginals using special mathematical functions. This
characteristic is shared by the robust prior of [2], the prior of [28] and the hyper-g in [27].

The second problem, related with the magnitude of the number of models inM (i.e. 2p),
could be a much more difficult one. If p is small (say, p in the twenties at most) exhaustive
enumeration is possible but if p gets larger, exact approaches quickly become infeasible.
Interesting exceptions include the recent work by [9, 37] who have developed, for certain
particular problems (where n = p), exact algorithms that may handle problems with even
very large p. For the general variable selection case, however, it is hard to imagine an exact
solution and we will have to rely on some sort of approximation to the posterior distribution.
This question has been studied in [17]

who considered a simple Gibbs algorithm that was suggested by [18]. This algorithm
begins taking an initial model γ(0) = (γ1(0), γ2(0), . . . , γp(0)) with Bayes factor Bγ(0) then
repeating, for i = 1, . . . , N (N is the number of iterations) the following p+ 1 steps:

• Step j : 1 ≤ j ≤ p. Propose the model γ∗ = (γ1(i−1), . . . , 1 − γj(i−1), . . . , γp(i−1)) and
then compute Bγ∗ and the acceptance ratio r = Bγ∗p(Mγ∗)/Bγ(i−1)

p(Mγ(i−1)
). With

probability min{r, 1} re-define γ(i−1) = γ∗.

• Final step. Define and save γ(i) = γ(i−1).

The result is {γ(1),γ(2), . . . ,γ(N)}, a sample from the posterior distribution (1.3) which
is the only ingredient needed to obtain summaries solely based on the frequency of visits.
For instance, the vector of posterior inclusion probabilities is obtained as the sample mean
and so on.

Despite the apparent simplicity of the resulting approach, [17] show that it is potentially
more precise than heuristic searching methods looking for ‘good’ models with estimates
based on renormalization (i.e with weights defined by the analytic expression of posterior
probabilities, cf. (1.3)). They show that these last methods could be biased by the searching
procedure.

1.2.3 BayesVarSel and applications

There are several R packages that make it straightforward to implement variable selection
based on g-priors. These have been considered in some detail in [14] who concluded that the
results are comparable across the packages, although there are still important differences in
cover and focus.

The results in this section are obtained with the R package BayesVarSel ([16]). This
package was first released in December 2012 and has been periodically maintained and
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updated with new functionalities since then. The package was conceived as a suite of tools
to solve the variable selection problem for Gaussian linear models based on g-priors. It
comes armed with many possibilities to summarize the posterior distributions and is very
flexible regarding the choices of g (in particular, it incorporates the proposals in Table 1.1)
and p(Mγ). In our applications, we use the default choice in the package that corresponds to
using θ ∼ U(0, 1) for p(Mγ | θ) and the Robust prior [2] for p(g). This configuration of prior
inputs is the one that we ultimately recommend in general variable selection procedures.
The code for running the example is provided as supplementary material.

Example of a moderate p (enumeration is feasible)

OBICE ([41]) was a study conducted in Spain during the years 2007-2008 to determine the
association between diet, physical activity and obesity in children under 15 years of age. This
study has a case-control design and the collected data come from a questionnaire completed
by pediatricians. The survey collected a lot of information, some of which is redundant,
and here we are considering p = 15 variables that provide a complete description of the
aspects considered in the study (see Table 1.2). The model space contains 215 = 32, 768
models, a size that allows us to compute posterior probabilities exactly (through exhaustive
enumeration) in a few seconds. To avoid using imputation methods we include here only the
children without any missing value leading to a sample size of n = 996 (84% of the number
of recruited children). The response variable, yi, is the Body Mass Index (BMI) and the age
of the child is a variable that is always included (since it is known to influence BMI).

The possibility of reporting the degree of uncertainty regarding the variable selection
problem in several informative ways is an important advantage of the methodology based
on Bayes factors illustrated here. For instance, the model that in this study is most probable
a posteriori (indicated as HPM in Table 1.2) contains (apart from the fixed one) 9 variables
and has a posterior probability of 0.06. The model that follows in probability is the full
model with a probability of 0.04. Interestingly, the smaller dimensionality of the HPM
indicates that the information in some of the explanatory variables is really contained in
others (e.g. the explanatory power of eating fruit and vegetables seem to be contained in
the habit of having five meals per day). The individual importance of the variables can be
assessed using the posterior inclusion probabilities. These are the aggregated probabilities
of all models that contain a certain variable and are presented in Table 1.2. As expected,
the variables included in the HPM are assigned large posterior inclusion probabilities (at
least “strong evidence” according to the classification in [16]). None of the others are clearly
ruled out, so the study doesn’t have enough information to clarify whether these have an
important role in the explanation of the body mass index. For instance, the sex of the child
has an inclusion probability of 0.54 (quite similar to its prior probability) so there is no
conclusive evidence whether this variable has any impact on obesity.

Additionally, we can explore the joint effect of variables in relation to their role in
explaining the response (for a detailed study on this and related concepts the reader is
referred to [24]). The information for such effect is contained in the probability that a
certain variable is included, given that another is not, leading to a p× p matrix represented
in Figure 1.1. To ease the interpretation, the row on top of the plot represents the marginal
inclusion probabilities and the interrelations worth mentioning are when this probability
differs substantially from the conditional probabilities in the table. In the great majority
of cases there is barely any change (meaning that not including any other variable has no
effect) but nevertheless several interesting facts arise. First is that we clearly see that either
not considering the weight or height at birth diminishes the inclusion probability of the
other (which makes sense since the response variable depends on both weight and height).
More interesting is what happens with the dietary habit of having afternoon snacks. The
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TABLE 1.2
Explanatory variables considered from the OBICE
study. The dependent variable is Body Mass Index
and the table contains posterior inclusion
probabilities and an indicator of which variables
appear in the highest posterior probability model
(HPM).

Variable Inc. Prob HPM
Weight at birth 0.99 Y
Height at birth 0.99 Y

Sex 0.54
The father is obese 1.00 Y

The mother is obese 1.00 Y

The child (regularly):
...has 5 daily meals 1.00 Y

...eats vegetables 0.37
...eats fruit 0.33

...consumes afternoon snacks 0.83 Y
...was breastfed 0.42

...practices sports 0.88 Y

Daily hours the child:
...watches TV 1.00 Y

...plays with electronic devices 0.39
...sleeps 0.42

Daily candy consumption 0.99 Y

importance of this variable increases substantially if the information contained in “having
or not 5 meals per day” is not considered, allowing to conclude that this last variable has
a similar role as afternoon snacks. In other words, the two variables are substitutes (even
though both appear in the HPM).

Example of a high dimensional setting

In [7], the relation of the production of riboflavin in Bacillus subtilis to the expression level
of p = 4088 genes is studied. The dataset is distributed with the package hdi [11], and
consists of n = 71 samples.

In [7], the authors are primarily interested in comparing the results among different
frequentist statistical methodologies for high dimensional variable selection based on con-
trolling false positive statements (type I error) and p-values. In this regard, the authors
obtain results that vary “to a certain extent” over the different methods. The LASSO
method selects 30 genes and the other methods either select no gene; select only the gene
called YXLD at or select three genes (LYSC at, YOAB at and YXLD at). These disparate results
provide an idea of the inherent difficulties in these high dimensional problems.

The model space for this problem contains (many) rank deficient models that were
assigned zero prior probability. In this case, the posterior probability of rank deficient models
is negligible so it does not make any difference whether these models are a priori ruled out
or not. With respect to the computation, we used Gibbs sampling with 50, 000 iterations
which took slightly more than 2 hours.

The genes with an estimated inclusion probability larger than 0.1 are collected in Ta-
ble 1.3. The influence of the gene YOAB at on the production of riboflavin is clear and is
strongly endorsed by the data, leading to an inclusion probability of 0.97. A main difference
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FIGURE 1.1
From the OBICE study, matrix of probabilities of inclusion probability of the column vari-
able given that the variable in the row not included.

with the results in the previous example is that several covariates in the HPM (also shown in
Table 1.3) have very small posterior inclusion probabilities and hence the interpretation of
the results is more subtle. The HPM has an estimated posterior probability of 0.01 and the
model that follows, with a probability of 0.002, contains four genes of which only YOAB at is
in the HPM. The third best model, which has a similar posterior probability, also proposes
four genes, two of which are not included in the HPM. These results suggest a situation
with multiple modes and hence several joint configurations of genes could provide a sensible
explanation for the riboflavin detection. On the other hand, the results clearly indicate the
great majority of genes are unimportant, with 97% of genes having an inclusion probability
below 0.005.

Our interest in this experiment is mainly for illustrative purposes and with the above
comments we wanted to highlight the richness of the posterior distribution to provide insight
in the nature of the influence of the explanatory variables that goes far beyond a single model
selected.

A final note is about the confidence in the numerical method used. As seems customary
in MCMC methods, we ran in parallel (thus not requiring extra computational time) two
other chains with randomly chosen initial values. The results were very similar to those
described suggesting an efficient exploration of this large model space providing a reliable
approximation to the posterior distribution.
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TABLE 1.3
Posterior inclusion
probabilities of genes with a
value larger than 0.1 and an
indicator of which genes
appear in the highest
posterior probability model
(HPM) in riboflavin dataset.

Gene Inc. Prob HPM
YOAB at 0.97 Y
YXLE at 0.43 Y
ARGF at 0.41
YXLD at 0.40
CARB at 0.21
YFII at 0.18 Y
YISU at 0.17
ARGB at 0.14 Y
YHDZ at 0.11
YHEA at 0.03 Y
YLXQ at 0.08 Y

1.2.4 Sensitivity to prior inputs

In the context of the two previous applications, we now conduct a sensitivity study to asses
the impact of the particular choice of p(g) within the g-prior family and that of p(Mγ) in
(1.6). Recall that in our applications we used the Robust prior and θ ∼ U(0, 1). Here we
also computed the posterior distribution using the Cauchy, hyper-g/n and unit information
priors for g (cf. Table 1.1) and using the fixed assignment θ = 1/2 on the model space.

Results for the OBICE study, in the form of posterior inclusion probabilities, are collected
in Table 1.2.4. These are quite insensitive to the choice of p(g) and p(Mγ) and the main
conclusions about the importance of entertained covariates remain unchanged. The largest
differences are observed between the unit information prior (with a fixed g = n) and the
rest (with random g, with p(g) a function of n). The extra layer assumed in p(g) provides
flatter tails to the prior on βγ hence producing methods that are more liberal (more easily
allowing for the presence of signals). This essentially explains the increment in the evidence
reported towards declaring influential covariates, with the unit information prior being the
most conservative, followed by Cauchy, then robust and finally hyper-g/n. We can also see
this effect through the comparison of the posterior model size, W | y, (summarized in this
same table with its mean and variance) which clearly shows this same ordering.

In this dataset, which has a moderate number of potential regressors, p = 15, the
choice of θ ∼ U(0, 1) or θ = 1/2 has barely any impact on the results although we see
θ = 1/2 behaving slightly more conservatively. This is a direct consequence of the intrinsic
tendency of θ ∼ U(0, 1) to favor models of dimensions that are shared by fewer models
(so downweighting models with dimensions around p/2, of which there are many) and it
so happens that in this problem many of the interesting models have a dimension which
is larger than p/2 (in the opposite case, we would observe that θ ∼ U(0, 1) favors simpler
models).

The results in high dimensional application in the riboflavin dataset were barely sensitive
to the prior for the regression parameter. In particular, with the Cauchy, hyper-g/n and
Unit Information priors we obtained posterior inclusion probabilities that were very similar
to those shown in Table 1.3. Furthermore, the HPM found with these priors coincide.
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θ ∼ U(0, 1)
Variable Robust Cauchy hyper-g/n Unit Inf.

Weight at birth 0.99 0.97 0.99 0.81
Height at birth 0.99 0.96 0.99 0.77

Sex 0.54 0.38 0.62 0.16
The father is obese 1.00 1.00 1.00 1.00

The mother is obese 1.00 1.00 1.00 1.00
...has 5 daily meals 1.00 1.00 1.00 0.99

...eats vegetables 0.37 0.21 0.45 0.06
...eats fruit 0.33 0.18 0.41 0.05

...afternoon snacks. 0.83 0.70 0.86 0.40
...was breastfed 0.42 0.25 0.50 0.07

...practices sports 0.88 0.82 0.90 0.65
...watches TV 1.00 1.00 1.00 1.00

...plays electronic 0.39 0.22 0.47 0.06
...sleeps 0.42 0.25 0.51 0.07

Daily candy consumption 0.99 0.97 0.99 0.92
E(W | y) 13.1 11.9 13.7 10√
V (W | y) 1.8 1.6 1.9 1.4

θ = 1/2
Weight at birth 0.98 0.96 0.98 0.82
Height at birth 0.97 0.94 0.97 0.78

Sex 0.32 0.25 0.35 0.13
The father is obese 1.00 1.00 1.00 1.00

The mother is obese 1.00 1.00 1.00 1.00
...has 5 daily meals 1.00 0.99 1.00 0.99

...eats vegetables 0.15 0.10 0.17 0.04
...eats fruit 0.12 0.09 0.14 0.03

...afternoon snacks. 0.67 0.58 0.69 0.36
...was breastfed 0.19 0.13 0.21 0.06

...practices sports 0.80 0.76 0.81 0.64
...watches TV 1.00 1.00 1.00 1.00

...plays electronic 0.16 0.11 0.18 0.04
...sleeps 0.19 0.13 0.22 0.06

Daily candy consumption 0.97 0.96 0.97 0.92
E(W | y) 11.5 11 11.7 9.9√
V (W | y) 1.2 1.1 1.2 1.1

TABLE 1.4
Posterior inclusion probabilities and summaries of the posterior distribution of the model
size, W , for different prior inputs.
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Nevertheless, results dramatically change if instead of θ ∼ U(0, 1) we use the prior with
a fixed probability θ = 1/2. In this case, if singular models are considered (with a unitary
Bayes factor) then the posterior distribution tends to essentially mimic the prior distribution
with all genes having posterior inclusion probabilities very close to 0.5. Results are not
more satisfactory if, still using θ = 1/2, singular models are given zero probability or if,
for instance, only models with a number of regressors up to certain fixed value are given
non null prior probability. Any of these assignments leads to a posterior distribution that
strongly concentrates on the largest possible dimension (showing a clear dependence on
the prior) and without identifying any sensible model (all posterior inclusion probabilities
again being approximately 0.5). In this problem, with such a large p, multiplicity correction
is of crucial importance and none of these prior assignments, based on fixed θ = 1/2,
provides any such control, letting the posterior distribution concentrate where there are
more models leading to useless results. A different path would be a a prior inducing strong
sparsity, strongly favoring models with few regressors through for instance the proposal in
[25] with a mean model size w? << p. Although the original motivation for using such
prior is sparsity, it seems to work well in practice although without explicitly addressing
the issue of multiplicity. Furthermore, and unlike for θ ∼ U(0, 1), the prior input w? has to
be specified and results depend critically on its assumed value.

1.3 Non-Gaussian variable selection

Consider a random sample Y = (Y1, . . . , Yn)T with components Yi being independent and
with a distribution in the exponential family ([29]):

Yi ∼ f(yi | θi, φ) = exp
{yiθi − b(θi)

φ/ωi
+ c(yi, φ/ωi)

}
,

where b(·) and c(·) are functions that specify a distribution for the random variables. The
mean of Yi is µi = b′(θi). This defines a wide family of models denoted by generalized linear
models (GLMs). In our covariate selection context, each γ ∈M assumes that

g(µi) = α+

p∑
j=1

γj xijβj , ∀i = 1, 2, . . . , n

where g(·) is the link function. In the special case of a linear Gaussian model, the link
function is the identity function.

The implementation of g-priors in GLMs is less advanced and in particular there is no
consensus about which proposal for the prior covariance matrix in (1.8) (see the Appendix)
best generalizes the arguments in the linear model case. There are various such matrices
that can be inspired by the information in y about βγ and the expected Fisher information
matrix (which would be the obvious candidate) cannot be used directly since it depends on
the parameters βγ themselves. We refer the reader to [34] and [26] (and references therein)
for a detailed exposition of the different possibilities. The proposal in [34] is a natural
extension of g-priors to non-Gaussian models. The authors propose using the expected
information matrix for βγ evaluated at (α,βγ) = (0,0) (imposing a similar prior scheme as
in the normal linear model in which βγ does not depend on α).

Another source of concern is the form assumed for the prior for the common parameters.
The resulting joint prior is improper and hence it is not guaranteed that the prior predictive
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marginal exists (or equivalently that the posterior is proper) for all models in M. As far
as we know, there is no general result that ensures that this condition holds and, given
the substantial mathematical differences within the GLM class, conditions under which
posterior propriety holds must be checked on a case-by-case basis. In our applications the
response yi is Bernoulli, with the intercept α as the only common parameter. As a theoretical
contribution of this chapter, the Appendix shows that for this likelihood and under very
mild conditions, the use of a constant prior in (1.4) for the common parameters and in (1.8)
for βγ with fixed g ensures the existence of the posterior for the usual link functions.

The discussion about the prior over the model space, p(Mγ), in Section 1.2.1 remains
valid in GLM variable selection as it is fully independent on the statistical models enter-
tained. Finally, the expression for the Bayes factor Bγ(y) does not have a closed form and
it has to be computed with numerical methods, usually based on Laplace integration. This
idea was already proposed in [31].

1.3.1 glmBfp and applications

The package glmBfp is distributed as accompanying software for the proposals in [34]. Its
main command is glmBayesMfp which provides a user-friendly interface since its usage is
similar to the base command glm to fit GLMs. Unfortunately, glmBfp seems to be in an
early phase of development (current version is 0.0.60) and its ability to explore the results
is limited. We expect that more functionalities will be incorporated in the near future.
Concerning the prior inputs, in our examples we use the unit information prior for g (see
Table 1.1). For p(Mγ) we use θ ∼ U(0, 1) as in [35], assuming that the prior probability for
rank deficient models is zero. The code is provided as supplementary material.

Variable selection in logit models with moderate p

As a first example we will consider again the OBICE study ([41]) about child obesity but now
the dependent variable is the indicator of whether the child was classified as obese (yi = 1) or
not (yi = 0) recorded by the pediatrician. In this situation, yi follows a Bernoulli distribution
(a member of the exponential family) with the probability of success as the mean µi. It is
well known that in this model φ = 1 and ωi = 1 and we will employ the logit link function
g(µi) = log{µi/(1− µi)} which corresponds to the canonical link function.

The potential explanatory variables are the same as in Subsection 1.2.3 plus age (which
now is not fixed). This makes a total of p = 16 variables and exhaustive enumeration is still
feasible (taking less than 5 minutes to run). Summaries of the posterior distribution in the
form of inclusion probabilities and the model which has the highest posterior probability
are displayed in Table 1.5.

The results are along the lines of those obtained in Table 1.2 but with interesting differ-
ences. In general, the posterior distribution points to simpler models with fewer explanatory
variables influencing the response. In this approach, where the obesity condition is to be
explained (and not the BMI as before), the weight and height at birth lose their explanatory
capacity while the family genetics remain key variables. Among the habits, afternoon snacks
and the practice of sports are no longer important determinants for being an obese child, a
role that is now assumed by consuming five daily meals, the intensity of watching TV and
daily candy intake.

Variable selection in probit models with large p

In our last applied example, we analyze the arthritis data in [36] which concern n = 31
patients with rheumatoid arthritis and osteoarthritis and p = 755 gene expression measure-
ments. This dataset has been used to study the influence of the prior assignments in [22] in
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TABLE 1.5
The dependent variable is the indicator of obesity.
The table contains posterior inclusion probabilities
and indicates which variables belong to the highest
posterior probability model (HPM).

Variable Inc. Prob HPM
Weight at birth 0.11
Height at birth 0.06

Sex 0.10
The father is obese 1.00 Y

The mother is obese 1.00 Y
Age 0.12

The child (regularly):
...has 5 daily meals 0.87 Y

...eats vegetables 0.03
...eats fruit 0.07

...consumes afternoon snacks 0.16
...was breastfed 0.03

...practices sports 0.18

Daily hours the child:
...watches TV 0.86 Y

...plays with electronic devices 0.03
...sleeps 0.03

Daily candy consumption 1.00 Y

a context similar to ours. The response variable is a binary variable (the indicator of having
the disease) and the link function is the probit function.

We draw 106 simulations from the posterior distribution taking approximately 47 min-
utes. We also run two other independent chains as a check on the reliability of the results.
We find that the great majority of genes do not have any impact on the classification of the
disease and only variables V 290 and V 258 have some role as determinants: their inclusion
probabilities are 0.31 and 0.29, while all the others are smaller than 0.1. It is also relevant
that the highest posterior probability model (with a probability of 0.13) is the one with only
V 290 followed very closely by the one with only V 258 (probability of 0.12). These results
are in agreement with [22] who also found these genes to be the most relevant.

1.4 Conclusion

Variable selection in regression models is a pervasive problem that occurs in a very wide
variety of applied fields. This chapter focuses on principled Bayesian methods based on Bayes
factors in the context of g-prior structures. Through empirical examples, we illustrate the
ease of implementation of these methods using freely available R packages for both normal
linear models and generalized linear models. We analyse applications with the number of
possible covariates ranging from 15 to 4088 and show that reliable inference can be obtained
quite rapidly with standard computing equipment. A rich tapestry of possible questions
can then be answered and the results are easily interpretable. We also highlight that prior
assumptions often have an important effect on the results, and we recommend robustifying
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the prior structures through priors on hyperparameters. In the Appendix we prove posterior
propriety for commonly used generalized linear models.
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Appendix

Theorem 1 Consider the problem of variable selection within the generalized linear model
where Yi follows a Bernoulli distribution. Suppose that i) the link function g(·) is either the
probit, the logit or the log-log function; ii) not all observed yi are equal and iii) the matrix
of covariates in the full model X is of full rank. If the prior assumed for Mγ is

pγ(βγ , α) ∝ Npγ (βγ | 0pγ , gΣγ), (1.8)

where g is a fixed scalar and Σγ is a positive definite matrix, then the marginal mγ(y) exists
for every model in M.

Proof

We have to show that the integral∫ ∫
f(y | α,β)Np(β | 0p, gΣ) dα dβ

is finite (for simplicity the subscript γ has been removed). We partially base our proof on
[10]: given the identity in their (4.4) the above integral can be expressed as:∫ ∫ ∫

1{αι? +X?β ≤ u}Np(β | 0p, gΣ) dα dβ dF (u),

where F (u) = (g−1(u1), . . . , g−1(un))T (i.e. component by component, the inverse of the
link function); ι? = (z1, . . . , zn)T where zi = 1 if yi = 0 and zi = −1 if yi = 1; X? is
the matrix with rows zi(xi1, . . . , xip) (i.e. X with row i multiplied by zi, i = 1, . . . , n).
Obviously, the above integral equals:∫ ∫ ∫

1{αι? ≤ u−X?β}Np(β | 0p, gΣ) dα dβ dF (u),

and now we apply Lemma 4.1 in [10] to bound the integral over α, resulting in the following
upper bound (up to a constant)∫ ∫

||u−X?β||Np(β | 0p, gΣ)dβ dF (u), (1.9)
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where || · || represents the Euclidean norm and the conditions in Lemma 4.1 apply given our
conditions ii) and iii). Finally, we use the triangle inequality to bound (1.9) by the sum∫

||u|| dF (u) +

∫
||X?β||Np(β | 0p, gΣ)dβ,

and both integrals exist because the first moment of dF (·) (for the cases assumed in i)) and
that of Np(β | 0p, gΣ) exist.
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