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Sampling

We wish to evaluate integrals

I = π(f ) =

∫
X
f (x)π(x) dx ,

where π is a probability density function (our posterior distribution).

MCMC: build an ergodic Markov chain X which possesses π as its stationary distribution.

We simulate a π-reversible ergodic Markov chain,

X1,X2, . . .

where Xn → π in distribution and considering

In :=
1

n

n∑
i=1

f (Xi ) ≈ I =

∫
X
f (x)π(x) dx .
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Metropolis–Hastings

Algorithm 1 Metropolis–Hastings (MH)

1: initialise: X0 = x0, i = 0
2: while i < N do
3: i ← i + 1
4: simulate Yi ∼ Q(Xi−1, ·)
5: α(Xi−1,Yi ) = 1 ∧ q(Yi ,Xi−1)π(Yi )

q(Xi−1,Yi )π(Xi−1)

6: with probability α(Xi−1,Yi )
7: Xi ← Yi

8: else
9: Xi ← Xi−1

10: return (Xi )i=1,...,n

Andi Q. Wang (Warwick) Convergence of pCN April 2023 2 / 16



Setting: Bayesian Inverse Problems

Target density

We assume that we are targeting a density on Rd of the form

π(dx) ∝ N (dx ; 0,C) · exp(−Ψ(x)),

where Ψ is assumed convex, L-smooth and minimized at x = 0, and N denotes a Gaussian
density, where C is a positive definite covariance matrix.

Such densities arise naturally in Bayesian Inverse Problems, where C is a finite section of some
infinite-dimensional trace-class covariance operator.

In this case ν(dx) := N (dx ; 0,C) is the prior and Ψ is the (log-)likelihood term corresponding
to the observed data.
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Preconditioned Crank–Nicolson

π(dx) ∝ N (dx ; 0,C) · exp(−Ψ(x)), ν(dx) := N (dx ; 0,C).

The preconditioned Crank–Nicolson algorithm (pCN) [Beskos et. al. (2008), Stuart (2010),
Example 5.3] is a Metropolis–Hastings chain with ν-reversible Gaussian proposal Q: for fixed
ρ ∈ (0, 1),

Q(x ,A) =

∫
1A(ρx + ηz) ν(dz),

where ρ2 + η2 = 1.

pCN remains stable even in infinite dimensions, since the proposal preserves the (prior)
measure ν, unlike pure Random Walk Metropolis.
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Tuning of pCN

In general, tuning the ‘step-size’ η is important for good performance:

η2 too large ⇒ many proposals rejected; wasted computational effort.

η2 too small ⇒ proposing tiny moves; wasted computational effort.

We will be interested to derive non-asymptotic bounds on the resulting spectral gap, which
can be applied for a given target and given step-size. (C.f. optimal scaling framework of
[Roberts, Gelman, Gilks (1997)].)
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Spectral gap

Recall that a reversible π-invariant Markov kernel P defines an operator on L2(π), and its
convergence to equilibrium can be bounded by the spectral gap γ (and this is the best rate):

‖Pnf − π(f )‖2 ≤ (1− γ)n‖f ‖2.

Want an explicit bound; see related work of [Hairer, Stuart, Vollmer (2014)].
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Main result

Recall we assumed potential Ψ is convex, L-smooth.

Theorem ([Andrieu, Lee, Power, W. (2022)])

Under our previous assumptions on π, setting η = ς · (L · Tr(C))−1/2, we have the following
bound on the spectral gap:

γ ≥ 2−9 · C 2
g · exp(−2ς2) · ς2 · (L · Tr(C))−1.

Optimizing over ς, we obtain

γ ≥ 3.62784× 10−5 · (L · Tr(C))−1.

This is an explicit lower bound, which only depends on the dimension through Tr(C).
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Conductance

Definition: Conductance

The conductance profile of a π-invariant Markov kernel P is

ΦP(v) := inf

{
(π ⊗ P)(A× A{)

π(A)
: π(A) ≤ v

}
, v ∈ (0, 1/2].

The conductance of P is Φ∗P := ΦP(1/2).

Theorem (Cheeger inequalities)

For a positive chain, such as pCN, we have the bounds on the spectral gap,

1

2
· [Φ∗P ]2 ≤ γ ≤ Φ∗P .

Thus our goal is to lower bound the conductance.
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Isoperimetry

Fix target density π on metric space (E, d).

Definition: isoperimetric profile / minorant, c.f. [Milman (2009)]

Given a measurable set A, define the r -enlargment of A via Ar := {x ∈ E : d(x ,A) ≤ r}, and
set

π+(A) := lim inf
r↓0

π(Ar )− π(A)

r
.

Then the isoperimetric profile of π is

Iπ(p) := inf{π+(A) : A ∈ E , π(A) = p}, p ∈ (0, 1).

A function Ĩπ : (0, 1)→ (0,∞) is a regular isoperimetric minorant of π if Ĩπ is continuous,
monotone increasing, symmetric about 1/2 and Ĩπ ≤ Iπ.
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Close coupling

Definition: close coupling

Given ε, δ > 0, we say that a Markov kernel P is (d, δ, ε)-close coupling if

d(x , y) ≤ δ ⇒ ‖P(x , ·)− P(y , ·)‖TV ≤ 1− ε, ∀x , y ∈ E.

Lemma: close coupling for Metropolis chains

For Metropolis chains, we have the bound:

‖P(x , ·)− P(y , ·)‖TV ≤ ‖Q(x , ·)− Q(y , ·)‖TV + 1− α0,

α0 := inf
x∈E

α(x), α(x) :=

∫
α(x , y)Q(x , dy).

Thus we can establish P is close coupling provided we can bound α0!
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Close coupling, conductance and isoperimetry

Theorem: Conductance lower bound; c.f. [Dwivedi et. al. (2019)]

Suppose Ĩπ is a regular, concave isoperimetric minorant of π. Let P be (d, δ, ε)-close coupling.
Then for any v ∈ (0, 1/2],

ΦP(v) ≥ 1

4
· ε · 1 ∧

(
δ

2
· Ĩπ(v/2)

v/2

)
.

Taking v = 1/2 immediately gives a lower bound on the conductance Φ∗P , and hence on the
spectral gap.

This result thus breaks the problem into two pieces:

For a given target π, establish a regular concave isoperimetric minorant Ĩπ.

For the chain P, establish close coupling.
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Isoperimetric minorants for π

There are various ways to establish isoperimetric minorants: for example, they can be derived
from functional inequalities, e.g. Poincaré inequalities, log-Sobolev inequalities, c.f.
[Bobkov (1999)].

The specific case of interest for this talk:

Lemma

Under our assumptions on π, we have minorant

Iπ(p) ≥ ϕ(Φ−1(p)) =: Ĩπ(p),

with respect to metric d = | · |−1
C , where ϕ,Φ are the standard Gaussian p.d.f. and c.d.f., and

furthermore
Ĩπ(1/4) = Cg,

where Cg ≥ 0.317776.
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Controlling acceptance probabilities

We saw that to establish close coupling, needed to get a handle on α0 := infx∈E α(x).

Through a direct calculation, we obtain:

Lemma

Let η = ς · (L · Tr(C))−1/2, some ς > 0. Then

α0 ≥
1

2
· exp

(
− ς

2

2

)
.

Andi Q. Wang (Warwick) Convergence of pCN April 2023 13 / 16



Controlling acceptance probabilities

We saw that to establish close coupling, needed to get a handle on α0 := infx∈E α(x).

Through a direct calculation, we obtain:

Lemma

Let η = ς · (L · Tr(C))−1/2, some ς > 0. Then

α0 ≥
1

2
· exp

(
− ς

2

2

)
.

Andi Q. Wang (Warwick) Convergence of pCN April 2023 13 / 16



Main result

Putting together all of these pieces, we obtain the main result.

Theorem

We obtain the lower bound on the spectral gap of pCN, for η = ς · (L · Tr(C))−1/2

γ ≥ 2−9 · C 2
g · ς2 · exp(−2ς2) · (L · Tr(C))−1.

In this convex, L-smooth case, we have a nice isoperimetric minorant; but can be applied in
other cases too.

Andi Q. Wang (Warwick) Convergence of pCN April 2023 14 / 16



Main result

Putting together all of these pieces, we obtain the main result.

Theorem

We obtain the lower bound on the spectral gap of pCN, for η = ς · (L · Tr(C))−1/2

γ ≥ 2−9 · C 2
g · ς2 · exp(−2ς2) · (L · Tr(C))−1.

In this convex, L-smooth case, we have a nice isoperimetric minorant; but can be applied in
other cases too.

Andi Q. Wang (Warwick) Convergence of pCN April 2023 14 / 16



Concluding remarks

I have presented explicit lower bound on the spectral gap of the pCN algorithm, focussing on
the convex, L-smooth case.

However the general framework developed is applicable much more broadly!

Furthermore the full conductance profile can give much more detailed mixing time bounds (not
presented today; see paper).

Our paper actually discusses Random Walk Metropolis as the main example; see my
Algorithms Seminar.

Natural next steps would be to consider more advanced algorithms such as MALA, HMC, etc...
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Convergence framework

Recall a reversible chain P is positive if for any f ∈ L2(π),

〈Pf , f 〉 ≥ 0.

Lemma ([Doucet et. al. (2015)])

pCN with Gaussian proposals is a positive chain.

Andi Q. Wang (Warwick) Convergence of pCN April 2023 16 / 16



Convergence framework

Recall a reversible chain P is positive if for any f ∈ L2(π),

〈Pf , f 〉 ≥ 0.

Lemma ([Doucet et. al. (2015)])

pCN with Gaussian proposals is a positive chain.

Andi Q. Wang (Warwick) Convergence of pCN April 2023 16 / 16



Close coupling for pCN

Prevously: provided we can choose δ such that |x − y | ≤ δ ⇒ ‖Q(x , ·)− Q(y , ·)‖TV ≤ α0/2,
we obtain that P is close coupling with ε ≥ α0/2.

Since we have Gaussian N (0, σ2Id) proposals, we can use Pinsker’s inequality to obtain

Lemma

For v > 0,
|x − y |C−1 ≤ v · η

ρ
⇒ ‖Q(x , ·)− Q(y , ·)‖TV ≤ v/2.

Thus by taking v = α0, i.e. δ = α0 · η/ρ, we have that P is close coupling with ε = α0/2.

So all that remains is to get a handle on α0.
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Convergence of MCMC

What is the criteria for an MCMC chain to be ‘good’?

Classically, MCMC is good if it converges fast to equilibrium and mixes well.

One measure of the former is to look at rates of convergence:

Theorem ([?, ?])

RWM converges to equilibrium exponentially fast if* and only if π has an exponential moment
(e.g. π(x) ∝ exp(−‖x − µ‖α), α ≥ 1.). Otherwise, the chain converges at a subgeometric
(e.g. polynomial) rate.
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L2 convergence and Dirichlet forms

We work on L2(π) = {f : X → R : ‖f ‖2
2 <∞}, 〈f , g〉 :=

∫
fg dπ,

L2
0(π) := {f ∈ L2(π) : π(f ) = 0}.

For a π-invariant Markov transition kernel P with L2(π)-adjoint P∗, define the Dirichlet form
E(P∗P, f ), for f ∈ L2

0(π):

E(P∗P, f ) := 〈(I − P∗P)f , f 〉 = ‖f ‖2 − ‖Pf ‖2.

This acts like a discrete derivative, and we will seek to lower bound it.

Furthermore if P is reversible and positive (so its spectrum σ(P) ⊂ [0, 1]), we have that

E(P∗P, f ) = E(P2, f ) ≥ E(P, f ).

So it will be sufficient to lower bound E(P, f ).
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Conductance and spectral profiles

Lemma ([Goel et. al. (2006)])

For nonconstant nonnegative g ∈ L2
0(π), we have the lower bound

E(P, g) ≥ Varπ(g) · 1

2
· ΛP

(
4[π(g)]2

Varπ(g)

)
,

where ΛP is the spectral profile of P.

Lemma

For π-reversible P, we have the further lower bound

ΛP(v) ≥

{
1
2 ΦP(v)2 0 < v ≤ 1/2,
1
2 [Φ∗P ]2 v > 1/2.
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