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Statistical modelling

Suppose we have some dataset y = {y1, y2, . . . , yN}.

Posit a model (density function) fx(y) which generated (or could generate) y , which depends
upon (unknown) parameters x ∈ X = Rd .

Seek learn or infer values of the parameter x which are commensurate with the observed
dataset y .
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The Bayesian approach

Encode prior beliefs into a prior distribution ν(x), and define likelihood `y (x) := fx(y).

Given our observations, our posterior distribution is

π(x) = π(x |y) =
ν(x)`y (x)∫
ν(z)`y (z) dz

∝ ν(x)`y (x).

We are then interested in quantities of the form

I = π(f ) =

∫
X
f (x)π(x) dx ,

e.g. f (x) = ‖x‖p (posterior moments), f (x) = 1A(x) (credible sets / posterior tail
probabilities), etc.
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Sampling

So we wish to evaluate integrals

I = π(f ) =

∫
X
f (x)π(x) dx ,

where π is a probability density function (our posterior distribution).

Direct integration infeasible in high-dimensions (curse of dimensionality), furthermore only
have access to π up to a normalizing constant!

So instead, approximate I by sampling X1,X2, . . . ,Xn ∼ π and consider

In :=
1

n

n∑
i=1

f (Xi ) ≈ I =

∫
X
f (x)π(x) dx .

There are also optimization-based approaches such as Variational Inference, INLA, ...
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Monte Carlo

So instead, approximate I by sampling X1,X2, . . . ,Xn ∼ π.

Exact sampling hard (e.g. rejection sampling also suffers from a curse of dimensionality)
so instead: build an ergodic Markov chain X which possesses π as its stationary distribution.

We simulate a π-reversible ergodic Markov chain,

X1,X2, . . .

where Xn → π in distribution and considering

In :=
1

n

n∑
i=1

f (Xi ) ≈ I =

∫
X
f (x)π(x) dx .
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A brief history of MCMC

1940s: Von Neumann and Stanislav Ulam
- Monte Carlo methods

[Metropolis et. al. (1953)]

[Hastings (1970)]

[Rossky, Doll, Friedman (1978)]: MALA

[Geman and Geman (1984)]: Gibbs
sampling

[Duane et. al. (1987)]: HMC

[Meyn and Tweedie (1993)]: drift and
minorization; Lyapunov functions

[Green (1995)]: reversible jump MCMC

[Roberts, Gelman, Gilks (1997)]: optimal
scaling, diffusion limits

[Tavaré et. al. (1997)]: ABC

[Haario, Saksman, Tamminen (1999)]:
Adaptive MCMC

[Neal (2003)]: Slice sampling

[Andrieu and Roberts (2009)]:
Pseudo-marginal MCMC

[Andrieu, Doucet, Holenstein (2010)]:
Particle MCMC methods

[Girolami and Calderhead (2011)]:
Riemannian manifold HMC

...recent trends: next slide!
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[Tavaré et. al. (1997)]: ABC

[Haario, Saksman, Tamminen (1999)]:
Adaptive MCMC

[Neal (2003)]: Slice sampling

[Andrieu and Roberts (2009)]:
Pseudo-marginal MCMC

[Andrieu, Doucet, Holenstein (2010)]:
Particle MCMC methods

[Girolami and Calderhead (2011)]:
Riemannian manifold HMC

...recent trends: next slide!

Andi Q. Wang (Warwick) Explicit convergence bounds for Metropolis May 2024 7 / 32



A brief history of MCMC

1940s: Von Neumann and Stanislav Ulam
- Monte Carlo methods

[Metropolis et. al. (1953)]

[Hastings (1970)]

[Rossky, Doll, Friedman (1978)]: MALA

[Geman and Geman (1984)]: Gibbs
sampling

[Duane et. al. (1987)]: HMC

[Meyn and Tweedie (1993)]: drift and
minorization; Lyapunov functions

[Green (1995)]: reversible jump MCMC

[Roberts, Gelman, Gilks (1997)]: optimal
scaling, diffusion limits
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Recent trends in MCMC

Analysis of Langevin MCMC

[Dalalyan (2016)], [Durmus and Moulines (2017)];

Nonreversible MCMC

[Bouchard-Côté, Vollmer, Doucet (2018)], [Bierkens, Fearnhead, Roberts (2019)],
[Cao, Lu , Wang (2023)];

Applications to machine learning / big models

[Neal (1995)], [Bardenet, Holmes, Walker (2017)], [Syed et. al. (2022)], talks of Alain!
Privacy / federated learning: [Dai, Pollock, Roberts (2023)], [Vono et. al. (2022)];

Nonasymptotic convergence bounds via functional inequalities

[Chen et. al. (2019)], [Chewi et. al. (2021)], these lectures!
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Overview of lectures

Lecture 1 (now!): Andrieu, C., Lee, A., Power, S., Wang, A. Q. (2022+). Explicit
convergence bounds for Metropolis Markov chains: isoperimetry, spectral gaps and
profiles. To appear in Ann. Appl. Probab.

Lecture 2: Andrieu, C., Lee, A., Power, S., Wang, A. Q. (2022). Comparison of Markov
chains via weak Poincaré inequalities with application to pseudo-marginal MCMC. The
Ann. Statist., 50(6), 3592-3618.

Lecture 3: Power, S., Rudolf, D., Sprungk, B., Wang, A. Q. (2024). Weak Poincaré
inequality comparisons for ideal and hybrid slice sampling.
https://arxiv.org/abs/2402.13678.
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Quick overview

We will be discussing (new) bounds for the convergence to equilibrium of MCMC algorithms.

I will present fundamental bounds on the spectral gap of Random Walk Metropolis, which has
been an open problem for many years!

Along the way I will introduce a new technique for deriving convergence bounds based on
isoperimetry and conductance.

We also have follow up work for the subgeometric case (not discussed today).

Andrieu, C., Lee, A., Power, S., Wang, A. Q. (2023). Weak Poincaré Inequalities for Markov
chains: theory and applications. https://arxiv.org/abs/2312.11689
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Metropolis–Hastings

Algorithm 1 Metropolis–Hastings (MH)

1: initialise: X0 = x0, i = 0
2: while i < N do
3: i ← i + 1
4: simulate Yi ∼ Q(Xi−1, ·)
5: α(Xi−1,Yi ) = 1 ∧ q(Yi ,Xi−1)π(Yi )

q(Xi−1,Yi )π(Xi−1)

6: with probability α(Xi−1,Yi )
7: Xi ← Yi

8: else
9: Xi ← Xi−1

10: return (Xi )i=1,...,n
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Random walk Metropolis

We will focus on Random Walk Metropolis (RWM) [Metropolis et. al. (1953)]:
Q(Xi−1, ·) = N (Xi−1, σ

2 · I).

A ‘fundamental’ MCMC method – first port of call, benchmark method.

Very simple to implement, and yet surprisingly robust [Livingstone and Zanella (2022)].

But tuning of σ2 · I is critical for good performance.

And suprisingly some things were still unknown! (Spectral gap.)
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MH example
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Tuning of RWM

Tuning proposal variance σ2 is critical for good performance of RWM.

σ2 too large ⇒ most proposals rejected; wasted computational effort.

σ2 too small ⇒ proposing tiny moves; wasted computational effort.

One beautiful way to approach this problem is optimal scaling [Roberts, Gelman, Gilks (1997)]:

It was shown that for a restricted class of targets π, in the high-dimensional limit, when
scaling the variance like σ2 ∼ d−1, the RWM chain has a stable acceptance ratio, and
converges to a Langevin diffusion, and that the cost is like O(d).
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Optimal scaling

So optimal scaling tells us that for certain targets π, we should choose σ2 ∼ d−1 to get a
stable acceptance ratio in high dimensions, and even that we should aim for average
acceptances rates of 0.234.

But optimal scaling is purely asymptotic and does not say anything about any particular
algorithm.

For example, suppose I am doing Bayesian logistic regression in d = 1000 and I have chosen
σ2 = 5× 10−4. How long should I run my chain for?
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Our approach

Instead, we take a different perspective to analyse the high-dimensional properties of RWM:

We seek to explicitly give bounds on the convergence rate of RWM (via spectral gap) in
arbitrary dimensions d and for any value of the proposal variance σ2.

For appropriately regular targets, we will show that scaling σ2 ∼ d−1 does indeed imply a
spectral gap of order d−1, and that this is optimal.

Unlike previous work, we do not need to restrict the state space to a compact set
[Belloni and Chernozhukov (2009), Dwivedi et. al. (2019), Chen et. al. (2019)].

However we are restricted to considering RWM, as opposed to MALA/HMC
[Dwivedi et. al. (2019), Chen et. al. (2019)].
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Spectral gap

Recall that a reversible π-invariant Markov kernel P defines an operator on L2(π), and its
convergence to equilibrium can be bounded by the spectral gap γ (and this is the best rate):

‖Pnf − π(f )‖2 ≤ (1− γ)n‖f ‖2.

Under the commmon assumptions of L-smoothness and m-strong convexity of the potential U
[Dwivedi et. al. (2019), Chen et. al. (2019)], we can give straightforward results (but
framework more general!).

Such densities can be sandwiched between N (x∗, L
−1Id) and N (x∗,m

−1Id) densities.
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Main result

Theorem ([Andrieu, Lee, Power, W. (2022)])

For an L-smooth and m-strongly convex and twice differential potential U on Rd , RWM
targeting π ∝ exp(−U) with proposal increments N (0, σ2Id) has spectral gap γ satisfying

C · L · d · σ2 · exp(−2Ldσ2) · m
L
· 1

d
≤ γ ≤ L · σ2

2
∧ (1 + m · σ2)−d/2,

where C = 1× 10−4.

To maximise the lower bound, take σ = ς · L−1/2 · d−1/2, and then

C · ς2 · exp(−2ς2) · m
L
· 1

d
≤ γ ≤ ς2

2
· 1

d
.
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Comments

Theorem ([Andrieu, Lee, Power, W. (2022)])

For an L-smooth and m-strongly convex and twice differential potential U on Rd , RWM
targeting π ∝ exp(−U) with proposal increments N (0, σ2Id) with σ2 = ς · L−1/2 · d−1/2 has
spectral gap γ satisfying

C · ς2 · exp(−2ς2) · m
L
· 1

d
≤ γ ≤ ς2

2
· 1

d
.

So indeed we see the spectral gap of RWM is O(d−1).

Note that this applies for any d and for any ς, i.e. it actually says something about the
algorithm you are running!
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Overview

1 Introduction: Current developments in MCMC

2 Explicit bounds for Metropolis chains

3 Convergence framework: conductance and isoperimetry
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Convergence framework: Conductance

Definition: Conductance

The conductance of a π-invariant Markov kernel P is

Φ∗P := inf

{
(π ⊗ P)(A× A{)

π(A)
: π(A) ≤ 1/2

}
, v ∈ (0, 1/2].

Theorem (Cheeger inequalities)

For a positive chain, such as RWM, we have the bounds on the spectral gap,

1

2
· [Φ∗P ]2 ≤ γ ≤ Φ∗P .

Thus our goal is to lower bound the conductance.
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Isoperimetry

Fix target density π on metric space (E, d).

Definition: isoperimetric profile / minorant, c.f. [Milman (2009)]

Given a measurable set A, define the r -enlargment of A via Ar := {x ∈ E : d(x ,A) ≤ r}, and
set

π+(A) := lim inf
r↓0

π(Ar )− π(A)

r
.

Then the isoperimetric profile of π is

Iπ(p) := inf{π+(A) : A ∈ E , π(A) = p}, p ∈ (0, 1).

A function Ĩπ : (0, 1)→ (0,∞) is a regular isoperimetric minorant of π if Ĩπ is continuous,
monotone increasing, symmetric about 1/2 and Ĩπ ≤ Iπ.
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Close coupling

Definition: close coupling

Given ε, δ > 0, we say that a Markov kernel P is (d, δ, ε)-close coupling if

d(x , y) ≤ δ ⇒ ‖P(x , ·)− P(y , ·)‖TV ≤ 1− ε, ∀x , y ∈ E.

Lemma: close coupling for Metropolis chains

For Metropolis chains, we have the bound:

‖P(x , ·)− P(y , ·)‖TV ≤ ‖Q(x , ·)− Q(y , ·)‖TV + 1− α0,

α0 := inf
x∈E

α(x), α(x) :=

∫
α(x , y)Q(x , dy).

Thus we can choose δ such that |x − y | ≤ δ ⇒ ‖Q(x , ·)− Q(y , ·)‖TV ≤ α0/2 to obtain P is
close coupling with ε ≥ α0/2, provided we can bound α0!
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Close coupling, conductance and isoperimetry

Theorem: Conductance lower bound; c.f. [Dwivedi et. al. (2019)]

Suppose Ĩπ is a regular, concave isoperimetric minorant of π. Let P be (d, δ, ε)-close coupling.
Then for any v ∈ (0, 1/2],

Φ∗P ≥
1

4
· ε · 1 ∧

(
δ

2
· Ĩπ(1/4)

1/4

)
.

Hence we have a lower bound on the spectral gap.

This result thus breaks the problem into two pieces:

For a given target π, establish a regular concave isoperimetric minorant Ĩπ.

For the chain P, establish close coupling.
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Isoperimetric minorants for π

There are various ways to establish isoperimetric minorants: for example, they can be derived
from functional inequalities, e.g. Poincaré inequalities, log-Sobolev inequalities, c.f.
[Bobkov (1999)].

The specific case of interest for this talk:

Lemma (Strongly convex case)

Suppose π ∝ exp(−U) possesses an m-strongly convex potential U. Then

Iπ(p) ≥ m1/2 · ϕ(Φ−1(p)) =: Ĩπ(p),

where ϕ,Φ are the standard Gaussian p.d.f. and c.d.f., and furthermore

Ĩπ(1/4) = m1/2 · Cg,

where Cg ≥ 0.317776.
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Close coupling for RWM

Previously: provided we can choose δ such that |x − y | ≤ δ ⇒ ‖Q(x , ·)− Q(y , ·)‖TV ≤ α0/2,
we obtain that P is close coupling with ε ≥ α0/2.

Since we have Gaussian N (0, σ2Id) proposals, we can use Pinsker’s inequality to obtain

Lemma

For v > 0,
|x − y | ≤ v · σ ⇒ ‖Q(x , ·)− Q(y , ·)‖TV ≤ v/2.

Thus by taking v = α0, i.e. δ = α0σ, we have that P is close coupling with ε = α0/2.

So all that remains is to get a handle on α0.
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Controlling acceptance probabilities

We now assume that the potential U is m-strongly convex and L-smooth:

m

2
|h|2 ≤ U(x + h)− U(x)− 〈∇U(x), h〉 ≤ L

2
|h|2, x , h ∈ E.

Then through a direct calculation, we obtain:

Lemma

Let σ = ς · d−1/2 · L−1/2, some ς > 0. Then

α0 ≥
1

2
· exp

(
− ς

2

2

)
.
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Main result

Putting together all of these pieces, we obtain the main result.

Theorem

We obtain the lower bound on the spectral gap of RWM, for σ = ς · d−1/2 · L−1/2

γ ≥ 2−9C 2
g · ς2 · exp(−2ς2) · d−1 · m

L
.

The upper bound on the spectral gap is derived through direct calculations.

In the strongly convex, smooth case had a nice isoperimetric minorant; but can be applied in
other cases too.

Using the full conductance profile can get much more intricate analysis of the mixing times.
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Concluding remarks

I have presented explicit lower and upper bounds on the spectral gap of the RWM algorithm,
focussing on the case of strongly convex and smooth potentials.

However the general framework developed is applicable much more broadly!

Furthermore the full conductance profile can give much more detailed mixing time bounds (not
presented today; see paper).

Our paper also discusses the preconditioned Crank–Nicolson (pCN) algorithm a popular
MCMC method for Bayesian Inverse Problems, which can be analysed in an analogous manner.

Natural next steps would be to consider more advanced algorithms such as MALA, HMC, etc...
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Syed, S., Bouchard-Côté, A., Deligiannidis, G., Doucet, A. (2022). Non-reversible parallel tempering: A scalable highly parallel

MCMC scheme. J. Roy. Statist. Soc. Ser. B, 84(2), 321-350.

Andi Q. Wang (Warwick) Explicit convergence bounds for Metropolis May 2024 31 / 32



Thanks for listening! V
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Convergence of MCMC

What is the criteria for an MCMC chain to be ‘good’?

Classically, MCMC is good if it converges fast to equilibrium and mixes well.

One measure of the former is to look at rates of convergence:

Theorem ([Roberts and Tweedie (1996), Jarner and Hansen (2000)])

RWM converges to equilibrium exponentially fast if* and only if π has an exponential moment
(e.g. π(x) ∝ exp(−‖x − µ‖α), α ≥ 1.). Otherwise, the chain converges at a subgeometric
(e.g. polynomial) rate.
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L2 convergence and Dirichlet forms

We work on L2(π) = {f : X → R : ‖f ‖2
2 <∞}, 〈f , g〉 :=

∫
fg dπ,

L2
0(π) := {f ∈ L2(π) : π(f ) = 0}.

For a π-invariant Markov transition kernel P with L2(π)-adjoint P∗, define the Dirichlet form
E(P∗P, f ), for f ∈ L2

0(π):

E(P∗P, f ) := 〈(I − P∗P)f , f 〉 = ‖f ‖2 − ‖Pf ‖2.

This acts like a discrete derivative, and we will seek to lower bound it.

Furthermore if P is reversible and positive (so its spectrum σ(P) ⊂ [0, 1]), we have that

E(P∗P, f ) = E(P2, f ) ≥ E(P, f ).

So it will be sufficient to lower bound E(P, f ).
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Convergence framework

We focus now on lower bounding the spectral gap γ of the RWM.

Recall a reversible chain P is positive if for any f ∈ L2(π),

〈Pf , f 〉 ≥ 0.

Lemma ([Baxendale (2005)])

RWM with Gaussian proposals is a positive chain.
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Convergence framework: Conductance

Definition: Conductance

The conductance profile of a π-invariant Markov kernel P is

ΦP(v) := inf

{
(π ⊗ P)(A× A{)

π(A)
: π(A) ≤ v

}
, v ∈ (0, 1/2].

The conductance of P is Φ∗P := ΦP(1/2).

Theorem (Cheeger inequalities)

For a positive chain, such as RWM, we have the bounds on the spectral gap,

1

2
· [Φ∗P ]2 ≤ γ ≤ Φ∗P .

Thus our goal is to lower bound the conductance.
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Close coupling, conductance and isoperimetry

Theorem: Conductance lower bound; c.f. [Dwivedi et. al. (2019)]

Suppose Ĩπ is a regular, concave isoperimetric minorant of π. Let P be (d, δ, ε)-close coupling.
Then for any v ∈ (0, 1/2],

ΦP(v) ≥ 1

4
· ε · 1 ∧

(
δ

2
· Ĩπ(v/2)

v/2

)
.

Taking v = 1/2 immediately gives a lower bound on the conductance Φ∗P , and hence on the
spectral gap.

This result thus breaks the problem into two pieces:

For a given target π, establish a regular concave isoperimetric minorant Ĩπ.

For the chain P, establish close coupling.
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spectral gap.

This result thus breaks the problem into two pieces:

For a given target π, establish a regular concave isoperimetric minorant Ĩπ.

For the chain P, establish close coupling.
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Conductance and spectral profiles

Lemma ([Goel et. al. (2006)])

For nonconstant nonnegative g ∈ L2
0(π), we have the lower bound

E(P, g) ≥ Varπ(g) · 1

2
· ΛP

(
4[π(g)]2

Varπ(g)

)
,

where ΛP is the spectral profile of P.

Lemma

For π-reversible P, we have the further lower bound

ΛP(v) ≥

{
1
2 ΦP(v)2 0 < v ≤ 1/2,
1
2 [Φ∗P ]2 v > 1/2.
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