Skip to main content Skip to navigation

Padilla, Rinaldo & Yu

Padilla, Rinaldo & Yu Group

Change Point Detection and Localization in High-Dimensions: Theory and Methods

Funded by

  • DMS-NSF
  • EPSRC EP/V013432/1

Our Works

Software

Preprints

  • Shin, J., Ramdas, A., & Rinaldo, A. (2022). E-detectors: a nonparametric framework for online changepoint detection. arXiv preprint arXiv:2203.03532. [link]
  • Dubey, P., Xu, H., & Yu, Y. (2021). Online network change point detection with missing values. arXiv preprint arXiv:2110.06450. [linkLink opens in a new window]
  • Cappello, L., Padilla, O. H. M., & Palacios, J. A. (2021). Scalable Bayesian change point detection with spike and slab priors. arXiv preprint arXiv:2106.10383 . [link]
  • Yu, Y., Padilla, O. H. M., Wang, D., & Rinaldo, A. (2021). Optimal network online change point localisation. arXiv preprint arXiv:2101.05477. [link]
  • Wang, D., Yu, Y., & Willett, R. (2020). Detecting abrupt changes in high-dimensional self-exciting poisson processes. arXiv preprint arXiv:2006.03572. [link]
  • Padilla, O. H. M., Yu, Y., & Priebe, C. E. (2019). Change point localization in dependent dynamic nonparametric random dot product graphs. arXiv preprint arXiv:1911.07494. [link]
  • Wang, D., Yu, Y., Rinaldo, A., & Willett, R. (2019). Localizing changes in high-dimensional vector autoregressive processes. arXiv preprint arXiv:1909.06359. [link]

Publications

  • Wang, F., Padilla, O. H. M., Yu, Y., & Rinaldo, A. (2022). Denoising and change point localisation in piecewise-constant high-dimensional regression coefficients. AISTATS (oral). [link]
  • Yu, Y., Padilla, O. H. M., & Rinaldo, A. (2022). Optimal partition recovery in general graphs. AISTATS. [link]
  • Yu, Y., Chatterjee, S., & Xu, H. (2022). Localising change points in piecewise polynomials of general degrees. Electronic Journal of Statistics, 16(1), 1855-1890. [link]
  • Padilla, O. H. M., Yu, Y., Wang, D., & Rinaldo, A. (2021). Optimal nonparametric multivariate change point detection and localization. IEEE Transactions on Information Theory. [link]
  • Berrett, T., & Yu, Y. (2021). Locally private online change point detection. Advances in Neural Information Processing Systems, 34. [link]
  • Li, M., & Yu, Y. (2021). Adversarially robust change point detection. Advances in Neural Information Processing Systems, 34. [link]
  • Padilla, O. H. M., Yu, Y., Wang, D., & Rinaldo, A. (2021). Optimal nonparametric change point analysis. Electronic Journal of Statistics, 15(1), 1154-1201. [link]
  • Rinaldo, A., Wang, D., Wen, Q., Willett, R., & Yu, Y. (2021, March). Localizing changes in high-dimensional regression models. In International Conference on Artificial Intelligence and Statistics (pp. 2089-2097). PMLR. [link]
  • Wang, D., Yu, Y., & Rinaldo, A. (2021). Optimal covariance change point localization in high dimensions. Bernoulli, 27(1), 554-575. [link]
  • Wang, D., Yu, Y., & Rinaldo, A. (2020). Univariate mean change point detection: Penalization, cusum and optimality. Electronic Journal of Statistics, 14(1), 1917-1961. [link]
  • Wang, D., Yu, Y., & Rinaldo, A. (2021). Optimal change point detection and localization in sparse dynamic networks. The Annals of Statistics, 49(1), 203-232. [link]

Notes

  • Yu, Y. (2020). A review on minimax rates in change point detection and localisation. arXiv preprint arXiv:2011.01857. [link]
  • Yu, Y., Padilla, O. H. M., Wang, D., & Rinaldo, A. (2020). A note on online change point detection. arXiv preprint arXiv:2006.03283. [link]