5 Central limit theorem in high dimensions

This section is based on Chernozhukov et al. (2017).

5.1 Introduction

Let Xi,...,X, be independent random vectors in RP, where p > 3 may be large or even much
larger than n. Denote X;; the jth coordinate of X;, so that X; = (X, ... ,Xl-p)T. We assume
that each X; is centred, namely E(X;;) = 0 and E(ij) <oo,foralli=1,...,nand j=1,...,p.
Defined the normalised sum

1 n
Sy = (S S ==X,
Vi

We consider Gaussian approximation to SX. Let Y1,..., Y}, be independent centred Gaussian ran-
dom vectors in R? such that each Y; have the same covariance matrix as X, i.e. V; ~ N'(0, E[X; X, ]).
Define the normalised sum

1 n
Sy = (S ST = =YW
(=
We are interested in bounding the quantity

pn(A) = sup [P(S; € A) —P(S) € A),
AcA

where A is a class of Borel sets in RP.
We are interested in how fast p = p(n) — oo is allowed to grow while guaranteeing p(A) — 0.

e When Xi,..., X, are i.id. with E(X;X;") =1,

E((IX1]1%)
\/FL )

where Cy(A) is a constant that depends only on p and A.

p(A) < Cp(A)

— When A is the class of all Euclidean balls in RP, C,(A) is bounded by a universal
constant.

— When A is the class of Borel measurable convex sets in RP, Cp(A) < 400p'/4. In this
case, since E(|| X1[|>) > {E(|| X1]|?)}*/? = p?/2, once we require p(A) — 0, it is required
that p = o(n'/?).

e When A is the class of all Borel measurable convex sets, it was shown that p(A) > cE(|| X1|®)/v/n,
for some universal constant ¢ > 0.

Let A be the class of all hyperrectangles in the sequel. This allows us to consider Kolmogorov—
Smirnov type statistics.
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5.2 Main results
Let A be the collection of all sets A of the form

A:{’wERpiajS’ijbj, Vj:L...p},

for some —oo < a; < bj < o0, j =1,...,p. To describe the bound on p(.A), we need some additional

notation. Define "

L, = jgapoquijP)/n.
EARRE) i=1

For ¢ > 1, define

Myx(6) =17 SO | max X3P { max 133 > Vi/(aolog(o) ||

Jj=1,..,

Moy (6) = S | e 1Pt { e 951> i/ (4010000}

and
Mn(¢) = Mn,X(¢) + Mn,Y(¢)-

Theorem 13. Suppose that there exists some constant b > 0 such that n=' Y71 | E(X3) > b for
all j =1,...,p. Then there exist constants K1, Ko > 0 depending only on b such that for every

constant L,, > L,,, we have

L.’ log™(p) 1o M, (¢)
p(A) < K; (;” & p) AN
n L,
where 16
L, 1
b= Ky ( Zg (p)> .

If Xy,...,X, are such that E(XZQJ) = 1 and for some B, > 1, |X;;| < By, foralli =1,...

and j =1,...,p, then Theorem 13 shows that
p(A) < K {n~ B2 log" (pm) }'/°.
The bound (4) depends on M, (¢$) whose values are problem specific.

Proposition 14. Suppose

o n 'YL E(XF) > b, forallj=1,...,p and b >0 some constant;

(4)

(5)

,n

o n 130 E(|Xij|2+k) < BE forallj=1,...,p, k=1,2 and B, > 1 a sequence of constants;

o E{exp(|Xi;|/Bn)} <2, foralli=1,...,nand j=1,...,p.

Then we have

B2log"(pn)\ "/
B )

pA) < (
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Consider the multiplier bootstrap. Let eq, ..., e, be a sequence of i.i.d. A/(0, 1) random variables
that are independent of X7' = {X;}I' ;. Let

1 — 1 & !
= (szil,...,ﬁzxip>
i=1 i=1
and consider the normalised sum

1 « _
SZX = —Zel(Xz —X)
\/ﬁizl

We have that, under some mild conditions, for every constant A, > 0, on the event Apr <Ay,

PMP(A) = sup [P(S;Y € AIXT) —P(S) € A)| S A log™(p),

AcA
where R
An,r = 1%,%);10 |Ejk: - E/]k|7
N n n
S=n)Y (X - X)(Xi-X)"T and S=n') E(X;X,).
i=1 i=1
Consider the empirical bootstrap. Let X7,..., X} bei.i.d. draws from the empirical distribution
of X1,...,X,. Theorem 13 can also lead to an upper bound on

sup [P(S; " € A|XT) —P(S) € A)],
AcA

where SX° =n"1/23°" (X7 - X).

5.3 Proof of Theorem 13

Define
o= sup [P(VuSy +V1-0vS) <y)-P(S; <y,
yERP ve(0,1]
where Yi,...,Y, are assumed to be independent of the random vectors X7, ..., X,.

Lemma 15. Suppose that there exists some constant b > 0 such that n~! hya E(XZQJ) > b for all
j=1,...,p. Then g satisfies the following inequality for all ¢ > 1,

- ¢*log*(p)

log'/?(p)
Q ~ n1/2

{¢Lno + Ly log'?(p) + oM, (8)} + p

up to a constant K that depends only on b.
Define

d= sup |P(VuSY +V1—uvSY € A)—P(SY € A)|.
A€A,ve(0,1]

An immediate corollary of Lemma 15 is as follows.
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Corollary 16. Suppose that there exists some constant b > 0 such that n=! Dy E(ij) > b for
all j=1,...,p. Then o satisfies the following inequality for all ¢ > 1,

272 1/2
§ 5 T (o1 + L tog () + o)) + 5P

up to a constant K that depends only on b.
Proof of Corollary 16. Pick any hyperrectangle
A:{’LUGR‘DZ wj € [aj,bj] ijl,...,p}.

Fori=1,...,n, consifier the random vectors X; and Y; in R? defined by X’ij = X;; and }N/ij =Y
forj=1,...,p,and X;; = —X;;_pand Y;; = =Y ;_p, for j =p+1,...,2p. Then

P(Sy € A)=P(Sy <y) and P(S) € A)=P(S) <y),

where y € R? is defined by y; = b; for j = 1,...,p and y; = —a;_, for j = p+1,...,2p. The
result then follows from Lemma 15. O

Proof of Theorem 13. The proof relies on Lemma 15 and Corollary 16. Let K’ denote a constant
from the conclusion of Corollary 16. This constant depends only on b. Set Ko = 1/(K’V 1) in (5),

so that /6
5 1 (L_n2 log* (p)>

TKV1 n
The result follows from Corollary 16. O

Proof of Lemma 15. We begin with preparing some notation. Let Wi, ..., W, beacopy of Y1,...,Y,.
Without loss of generality, we may assume that X1,...,X,, Y1,...,Y, and Wy,..., W, are inde-
pendent. Consider S}V =n~/23"" | W;. Then S} and S} are the same distribution. Then

o= sup [P(VuSy +VI—0vS) <y)—P(SY <yl

yERP, vE[0,1]

Pick any y € R? and v € [0, 1]. Let 8 = ¢log(p) and define the function

p
Fy(w) = 87 og | Y _exp{B(w; —y;)} |, weRP.
i=1

The function Fg(w) has the following property

0 < Fp(w) — max (wj —y;) < B og(p) = ¢, Vw e R,
J=1,...,p
Pick a thrice continuously differentiable function gy : R — [0, 1] whose derivatives up to the third
order are all bounded such that go(t) = 1 for all t < 0 and go(t) = 0 for ¢t > 1. Define g(t) = go(¢t),
t € R, and
m(w) = g(Fs(w)), w e RP.
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For brevity of notation, we will use indices to denote partial derivatives of m. For every j, k,l =
1,...,p, there exists a function Uj(w) such that

|mjkl( w)| < Ujp(w),

Z Ujii(w) S (¢° + 68 + ¢8%) < 987,

ok i=1
Uil(w) S Ujp(w +0) S Uja(w).

Define the functions

h(w,t) =1 {—¢_1 —t/8 < max (wj —y;) <~ —I-t/ﬁ}, weRP >0,
J=1,.p

and .
w(t (0,1
)= = t€ O,
The proof consists of two steps. In the first step, we show that
210 2 P
BT S 8 (0L00+ Latog 2 (0) + 6M(0)),
where

= m(vVoSy +v1—vSY) —m(SY).
In the second step, we combine this bound with Lemma 17 to complete the proof.

Step 1. Define the Slepian interpolant

where

Zi(t) = %{ﬁ(ﬁxi VI oY) VI,

Note that Z(1) = y/uSX + /1 —vS) and Z(0) = S, and so

= m(iS +VI=ush) —m(st) = [ HAnlZO)
Denote
Z20 = 7Z(t) - Zi(t)
and ) ) 1
20 = S { v vimon) - L),

For brevity of notation, write Z = Z(t), Z; = Zi(t), Z% = ZW(t) and Z; = Z;(t).
It follows from Taylor’s expansion that

%ii/ )Zig)dt = (I+H+IH),

j=11i=1

27



where

j=11i=1
p n 1
1I= Z / E[mjk(Z( ))szsz]d
jk=11i=1"0
11T = Z Z/ / 1 - T m]kl(Z(i) + TZi)ZijZikZil]det.
7,k l=11i=1

By the independence of Z(®) from Zij together with E[Zij] = 0, we have I = 0. By independence
of Z® from ZijZik together with

. 1
E[ZijZik] = EE[’UXUXik + (1 - 'U)Yz]}/zk - szWzk] =0,

we have that 11 = 0. We skip the proof on II1 here.
Step 2. Let

Vi = VoSX + 1 —0vSY.

Then we have

P(Va <y—¢~") < P(Fp(Va) < 0) < Elm(V,)]
<P(F5(S,)) < ¢~ 1) + E[m(Vy)] — E[m(S,)]
<P(S Wéy +¢71) + [EZ|
<E(SY <y—o¢7) +Co ™ og'2(p) + [E(Z,)].
The other direction also holds and completes the proof. O

5.4 Auxiliary results

Lemma 17. LetY = (Y1,...,Y,)" be a centred Gaussian random vector in R such that IE(YJQ) >b
forall j=1,...,p and some constant b > 0. Then for every y € RP and a > 0,

P(Y <y+a) - P(Y <y) < Ca/log(p),
where C' > 0 is a constant depending only on b.

Lemma 18. Let ¢; : R — [0,00), i = 1,2 be non-decreasing functions, and let &, i = 1,2 be
independent real-valued random variables. Then

E[y1(&§E[12(&1)] < E[y1(61)92(61)],
E[11(§)|E[th2(€2)] < Elth1(£1)v2(&1)] + Elb1(€2)2(€2)],
E[11(§1)12(82)] < E[1(81)12(61)] + E[1(82)12(82)]-
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