5 Central limit theorem in high dimensions

This section is based on Chernozhukov et al. (2017).

5.1 Introduction

Let X_{1}, \ldots, X_{n} be independent random vectors in \mathbb{R}^{p}, where $p \geq 3$ may be large or even much larger than n. Denote $X_{i j}$ the j th coordinate of X_{i}, so that $X_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)^{\top}$. We assume that each X_{i} is centred, namely $\mathbb{E}\left(X_{i j}\right)=0$ and $\mathbb{E}\left(X_{i j}^{2}\right)<\infty$, for all $i=1, \ldots, n$ and $j=1, \ldots, p$. Defined the normalised sum

$$
S_{n}^{X}=\left(S_{n 1}^{X}, \ldots, S_{n p}^{X}\right)^{\top}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}
$$

We consider Gaussian approximation to S_{n}^{X}. Let Y_{1}, \ldots, Y_{n} be independent centred Gaussian random vectors in \mathbb{R}^{p} such that each Y_{i} have the same covariance matrix as X_{i}, i.e. $Y_{i} \sim \mathcal{N}\left(0, \mathbb{E}\left[X_{i} X_{i}^{\top}\right]\right)$. Define the normalised sum

$$
S_{n}^{Y}=\left(S_{n 1}^{Y}, \ldots, S_{n p}^{Y}\right)^{\top}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}
$$

We are interested in bounding the quantity

$$
\rho_{n}(\mathcal{A})=\sup _{A \in \mathcal{A}}\left|\mathbb{P}\left(S_{n}^{X} \in A\right)-\mathbb{P}\left(S_{n}^{Y} \in A\right)\right|
$$

where \mathcal{A} is a class of Borel sets in \mathbb{R}^{p}.
We are interested in how fast $p=p(n) \rightarrow \infty$ is allowed to grow while guaranteeing $\rho(\mathcal{A}) \rightarrow 0$.

- When X_{1}, \ldots, X_{n} are i.i.d. with $\mathbb{E}\left(X_{i} X_{i}^{\top}\right)=I$,

$$
\rho(\mathcal{A}) \leq C_{p}(\mathcal{A}) \frac{\mathbb{E}\left(\left\|X_{1}\right\|^{3}\right)}{\sqrt{n}}
$$

where $C_{p}(\mathcal{A})$ is a constant that depends only on p and \mathcal{A}.

- When \mathcal{A} is the class of all Euclidean balls in $\mathbb{R}^{p}, C_{p}(\mathcal{A})$ is bounded by a universal constant.
- When \mathcal{A} is the class of Borel measurable convex sets in $\mathbb{R}^{p}, C_{p}(\mathcal{A}) \leq 400 p^{1 / 4}$. In this case, since $\mathbb{E}\left(\left\|X_{1}\right\|^{3}\right) \geq\left\{\mathbb{E}\left(\left\|X_{1}\right\|^{2}\right)\right\}^{3 / 2}=p^{3 / 2}$, once we require $\rho(\mathcal{A}) \rightarrow 0$, it is required that $p=o\left(n^{1 / 3}\right)$.
- When \mathcal{A} is the class of all Borel measurable convex sets, it was shown that $\rho(A) \geq c \mathbb{E}\left(\left\|X_{1}\right\|^{3}\right) / \sqrt{n}$, for some universal constant $c>0$.

Let \mathcal{A} be the class of all hyperrectangles in the sequel. This allows us to consider KolmogorovSmirnov type statistics.

5.2 Main results

Let \mathcal{A} be the collection of all sets A of the form

$$
A=\left\{w \in \mathbb{R}^{p}: a_{j} \leq w_{j} \leq b_{j}, \quad \forall j=1, \ldots p\right\}
$$

for some $-\infty \leq a_{j} \leq b_{j} \leq \infty, j=1, \ldots, p$. To describe the bound on $\rho(\mathcal{A})$, we need some additional notation. Define

$$
L_{n}=\max _{j=1, \ldots, p} \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i j}\right|^{3}\right) / n
$$

For $\phi \geq 1$, define

$$
\begin{aligned}
M_{n, X}(\phi) & =n^{-1} \sum_{i=1}^{n} \mathbb{E}\left[\max _{j=1, \ldots, p}\left|X_{i j}\right|^{3} \mathbb{1}\left\{\max _{j=1, \ldots, p}\left|X_{i j}\right|>\sqrt{n} /(4 \phi \log (p))\right\}\right] \\
M_{n, Y}(\phi) & =n^{-1} \sum_{i=1}^{n} \mathbb{E}\left[\max _{j=1, \ldots, p}\left|Y_{i j}\right|^{3} \mathbb{1}\left\{\max _{j=1, \ldots, p}\left|Y_{i j}\right|>\sqrt{n} /(4 \phi \log (p))\right\}\right]
\end{aligned}
$$

and

$$
M_{n}(\phi)=M_{n, X}(\phi)+M_{n, Y}(\phi)
$$

Theorem 13. Suppose that there exists some constant $b>0$ such that $n^{-1} \sum_{i=1}^{n} \mathbb{E}\left(X_{i j}^{2}\right) \geq b$ for all $j=1, \ldots, p$. Then there exist constants $K_{1}, K_{2}>0$ depending only on b such that for every constant $\overline{L_{n}} \geq L_{n}$, we have

$$
\begin{equation*}
\rho(\mathcal{A}) \leq K_{1}\left[\left(\frac{{\overline{L_{n}}}^{2} \log ^{7}(p)}{n}\right)^{1 / 6}+\frac{M_{n}(\phi)}{\overline{L_{n}}}\right] \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=K_{2}\left(\frac{{\overline{L_{n}}}^{2} \log ^{4}(p)}{n}\right)^{-1 / 6} \tag{5}
\end{equation*}
$$

If X_{1}, \ldots, X_{n} are such that $\mathbb{E}\left(X_{i j}^{2}\right)=1$ and for some $B_{n} \geq 1,\left|X_{i j}\right| \leq B_{n}$ for all $i=1, \ldots, n$ and $j=1, \ldots, p$, then Theorem 13 shows that

$$
\rho(\mathcal{A}) \leq K\left\{n^{-1} B_{n}^{2} \log ^{7}(p n)\right\}^{1 / 6}
$$

The bound (4) depends on $M_{n}(\phi)$ whose values are problem specific.

Proposition 14. Suppose

- $n^{-1} \sum_{i=1}^{n} \mathbb{E}\left(X_{i j}^{2}\right) \geq b$, for all $j=1, \ldots, p$ and $b>0$ some constant;
- $n^{-1} \sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i j}\right|^{2+k}\right) \leq B_{n}^{k}$, for all $j=1, \ldots, p, k=1,2$ and $B_{n} \geq 1$ a sequence of constants;
- $\mathbb{E}\left\{\exp \left(\left|X_{i j}\right| / B_{n}\right)\right\} \leq 2$, for all $i=1, \ldots, n$ and $j=1, \ldots, p$.

Then we have

$$
\rho(\mathcal{A}) \lesssim\left(\frac{B_{n}^{2} \log ^{7}(p n)}{n}\right)^{1 / 6}
$$

Consider the multiplier bootstrap. Let e_{1}, \ldots, e_{n} be a sequence of i.i.d. $\mathcal{N}(0,1)$ random variables that are independent of $X_{1}^{n}=\left\{X_{i}\right\}_{i=1}^{n}$. Let

$$
\bar{X}=\left(\frac{1}{n} \sum_{i=1}^{n} X_{i 1}, \ldots, \frac{1}{n} \sum_{i=1}^{n} X_{i p}\right)^{\top}
$$

and consider the normalised sum

$$
S_{n}^{e X}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i}\left(X_{i}-\bar{X}\right)
$$

We have that, under some mild conditions, for every constant $\bar{\Delta}_{n}>0$, on the event $\Delta_{n, r} \leq \bar{\Delta}_{n}$,

$$
\rho^{\mathrm{MB}}(\mathcal{A})=\sup _{A \in \mathcal{A}}\left|\mathbb{P}\left(S_{n}^{e X} \in A \mid X_{1}^{n}\right)-\mathbb{P}\left(S_{n}^{Y} \in A\right)\right| \lesssim \bar{\Delta}_{n}^{1 / 3} \log ^{2 / 3}(p)
$$

where

$$
\begin{gathered}
\Delta_{n, r}=\max _{1 \leq j, k \leq p}\left|\widehat{\Sigma}_{j k}-\Sigma / j k\right|, \\
\widehat{\Sigma}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\top} \quad \text { and } \quad \Sigma=n^{-1} \sum_{i=1}^{n} \mathbb{E}\left(X_{i} X_{i}^{\top}\right) .
\end{gathered}
$$

Consider the empirical bootstrap. Let $X_{1}^{*}, \ldots, X_{n}^{*}$ be i.i.d. draws from the empirical distribution of X_{1}, \ldots, X_{n}. Theorem 13 can also lead to an upper bound on

$$
\sup _{A \in \mathcal{A}}\left|\mathbb{P}\left(S_{n}^{X^{*}} \in A \mid X_{1}^{n}\right)-\mathbb{P}\left(S_{n}^{Y} \in A\right)\right|,
$$

where $S_{n}^{X^{*}}=n^{-1 / 2} \sum_{i=1}^{n}\left(X_{i}^{*}-\bar{X}\right)$.

5.3 Proof of Theorem 13

Define

$$
\varrho=\sup _{y \in \mathbb{R}^{p}, v \in[0,1]}\left|\mathbb{P}\left(\sqrt{v} S_{n}^{X}+\sqrt{1-v} S_{n}^{Y} \leq y\right)-\mathbb{P}\left(S_{n}^{Y} \leq y\right)\right|,
$$

where Y_{1}, \ldots, Y_{n} are assumed to be independent of the random vectors X_{1}, \ldots, X_{n}.
Lemma 15. Suppose that there exists some constant $b>0$ such that $n^{-1} \sum_{i=1}^{n} \mathbb{E}\left(X_{i j}^{2}\right) \geq b$ for all $j=1, \ldots, p$. Then ϱ satisfies the following inequality for all $\phi \geq 1$,

$$
\varrho \lesssim \frac{\phi^{2} \log ^{2}(p)}{n^{1 / 2}}\left\{\phi L_{n} \varrho+L_{n} \log ^{1 / 2}(p)+\phi M_{n}(\phi)\right\}+\frac{\log ^{1 / 2}(p)}{\phi}
$$

up to a constant K that depends only on b.
Define

$$
\varrho^{\prime}=\sup _{A \in \mathcal{A}, v \in[0,1]}\left|\mathbb{P}\left(\sqrt{v} S_{n}^{X}+\sqrt{1-v} S_{n}^{Y} \in A\right)-\mathbb{P}\left(S_{n}^{Y} \in A\right)\right| .
$$

An immediate corollary of Lemma 15 is as follows.

Corollary 16. Suppose that there exists some constant $b>0$ such that $n^{-1} \sum_{i=1}^{n} \mathbb{E}\left(X_{i j}^{2}\right) \geq b$ for all $j=1, \ldots, p$. Then ϱ^{\prime} satisfies the following inequality for all $\phi \geq 1$,

$$
\varrho^{\prime} \lesssim \frac{\phi^{2} \log ^{2}(p)}{n^{1 / 2}}\left\{\phi L_{n} \varrho^{\prime}+L_{n} \log ^{1 / 2}(p)+\phi M_{n}(\phi)\right\}+\frac{\log ^{1 / 2}(p)}{\phi}
$$

up to a constant K that depends only on b.
Proof of Corollary 16. Pick any hyperrectangle

$$
A=\left\{w \in \mathbb{R}^{p}: w_{j} \in\left[a_{j}, b_{j}\right] \quad \forall j=1, \ldots, p\right\}
$$

For $i=1, \ldots, n$, consider the random vectors \tilde{X}_{i} and \tilde{Y}_{i} in $\mathbb{R}^{2 p}$ defined by $\tilde{X}_{i j}=X_{i j}$ and $\tilde{Y}_{i j}=Y_{i j}$ for $j=1, \ldots, p$, and $\tilde{X}_{i j}=-X_{i, j-p}$ and $\tilde{Y}_{i j}=-Y_{i, j-p}$ for $j=p+1, \ldots, 2 p$. Then

$$
\mathbb{P}\left(S_{n}^{X} \in A\right)=\mathbb{P}\left(S_{n}^{\tilde{X}} \leq y\right) \quad \text { and } \quad \mathbb{P}\left(S_{n}^{Y} \in A\right)=\mathbb{P}\left(S_{n}^{\tilde{Y}} \leq y\right)
$$

where $y \in \mathbb{R}^{2 p}$ is defined by $y_{j}=b_{j}$ for $j=1, \ldots, p$ and $y_{j}=-a_{j-p}$ for $j=p+1, \ldots, 2 p$. The result then follows from Lemma 15.

Proof of Theorem 13. The proof relies on Lemma 15 and Corollary 16. Let K^{\prime} denote a constant from the conclusion of Corollary 16. This constant depends only on b. Set $K_{2}=1 /\left(K^{\prime} \vee 1\right)$ in (5), so that

$$
\phi=\frac{1}{K^{\prime} \vee 1}\left(\frac{{\overline{L_{n}}}^{2} \log ^{4}(p)}{n}\right)^{-1 / 6}
$$

The result follows from Corollary 16.
Proof of Lemma 15. We begin with preparing some notation. Let W_{1}, \ldots, W_{n} be a copy of Y_{1}, \ldots, Y_{n}. Without loss of generality, we may assume that $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ and W_{1}, \ldots, W_{n} are independent. Consider $S_{n}^{W}=n^{-1 / 2} \sum_{i=1}^{n} W_{i}$. Then S_{n}^{Y} and S_{n}^{W} are the same distribution. Then

$$
\varrho=\sup _{y \in \mathbb{R}^{p}, v \in[0,1]}\left|\mathbb{P}\left(\sqrt{v} S_{n}^{X}+\sqrt{1-v} S_{n}^{Y} \leq y\right)-\mathbb{P}\left(S_{n}^{W} \leq y\right)\right|
$$

Pick any $y \in \mathbb{R}^{p}$ and $v \in[0,1]$. Let $\beta=\phi \log (p)$ and define the function

$$
F_{\beta}(w)=\beta^{-1} \log \left(\sum_{j=1}^{p} \exp \left\{\beta\left(w_{j}-y_{j}\right)\right\}\right), \quad w \in \mathbb{R}^{p}
$$

The function $F_{\beta}(w)$ has the following property

$$
0 \leq F_{\beta}(w)-\max _{j=1, \ldots, p}\left(w_{j}-y_{j}\right) \leq \beta^{-1} \log (p)=\phi^{-1}, \quad \forall w \in \mathbb{R}^{p}
$$

Pick a thrice continuously differentiable function $g_{0}: \mathbb{R} \rightarrow[0,1]$ whose derivatives up to the third order are all bounded such that $g_{0}(t)=1$ for all $t \leq 0$ and $g_{0}(t)=0$ for $t \geq 1$. Define $g(t)=g_{0}(\phi t)$, $t \in \mathbb{R}$, and

$$
m(w)=g\left(F_{\beta}(w)\right), \quad w \in \mathbb{R}^{p}
$$

For brevity of notation, we will use indices to denote partial derivatives of m. For every $j, k, l=$ $1, \ldots, p$, there exists a function $U_{j k l}(w)$ such that

$$
\begin{aligned}
& \left|m_{j k l}(w)\right| \leq U_{j k l}(w) \\
& \sum_{j, k, l=1}^{p} U_{j k l}(w) \lesssim\left(\phi^{3}+\phi \beta+\phi \beta^{2}\right) \lesssim \phi \beta^{2} \\
& U_{j k l}(w) \lesssim U_{j k l}(w+\tilde{w}) \lesssim U_{j k l}(w)
\end{aligned}
$$

Define the functions

$$
h(w, t)=\mathbb{1}\left\{-\phi^{-1}-t / \beta<\max _{j=1, \ldots, p}\left(w_{j}-y_{j}\right) \leq \phi^{-1}+t / \beta\right\}, \quad w \in \mathbb{R}^{p}, t>0
$$

and

$$
w(t)=\frac{1}{\sqrt{t} \wedge \sqrt{1-t}}, t \in(0,1)
$$

The proof consists of two steps. In the first step, we show that

$$
\left|\mathbb{E}\left(\mathcal{I}_{n}\right)\right| \lesssim \frac{\phi^{2} \log ^{2}(p)}{n^{1 / 2}}\left(\phi L_{n} \varrho+L_{n} \log ^{1 / 2}(p)+\phi M_{n}(\phi)\right)
$$

where

$$
\mathcal{I}_{n}=m\left(\sqrt{v} S_{n}^{X}+\sqrt{1-v} S_{n}^{Y}\right)-m\left(S_{n}^{W}\right)
$$

In the second step, we combine this bound with Lemma 17 to complete the proof.
Step 1. Define the Slepian interpolant

$$
Z(t)=\sum_{i=1}^{n} Z_{i}(t), \quad t \in[0,1]
$$

where

$$
Z_{i}(t)=\frac{1}{\sqrt{n}}\left\{\sqrt{t}\left(\sqrt{v} X_{i}+\sqrt{1-v} Y_{i}\right)+\sqrt{1-t} W_{i}\right\}
$$

Note that $Z(1)=\sqrt{v} S_{n}^{X}+\sqrt{1-v} S_{n}^{Y}$ and $Z(0)=S_{n}^{W}$, and so

$$
\mathcal{I}_{n}=m\left(\sqrt{v} S_{n}^{X}+\sqrt{1-v} S_{n}^{Y}\right)-m\left(S_{n}^{W}\right)=\int_{0}^{1} \frac{d m(Z(t))}{d t} d t
$$

Denote

$$
Z^{(i)}=Z(t)-Z_{i}(t)
$$

and

$$
\dot{Z}_{i}(t)=\frac{1}{\sqrt{n}}\left\{\frac{1}{\sqrt{t}}\left(\sqrt{v} X_{i}+\sqrt{1-v} Y_{i}\right)-\frac{1}{\sqrt{1-t}} W_{i}\right\}
$$

For brevity of notation, write $Z=Z(t), Z_{i}=Z_{i}(t), Z^{(i)}=Z^{(i)}(t)$ and $\dot{Z}_{i}=\dot{Z}_{i}(t)$.
It follows from Taylor's expansion that

$$
\mathbb{E}\left(\mathcal{I}_{n}\right)=\frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{n} \int_{0}^{1} \mathbb{E}\left[m_{j}(Z) \dot{Z}_{i j}\right] d t=\frac{1}{2}(I+I I+I I I)
$$

where

$$
\begin{aligned}
& I=\sum_{j=1}^{p} \sum_{i=1}^{n} \int_{0}^{1} \mathbb{E}\left[m_{j}\left(Z^{(i)}\right) \dot{Z}_{i j}\right] d t \\
& I I=\sum_{j, k=1}^{p} \sum_{i=1}^{n} \int_{0}^{1} \mathbb{E}\left[m_{j k}\left(Z^{(i)}\right) \dot{Z}_{i j} Z_{i k}\right] d t \\
& I I I=\sum_{j, k, l=1}^{p} \sum_{i=1}^{n} \int_{0}^{1} \int_{0}^{1}(1-\tau) \mathbb{E}\left[m_{j k l}\left(Z^{(i)}+\tau Z_{i}\right) \dot{Z}_{i j} Z_{i k} Z_{i l}\right] d \tau d t .
\end{aligned}
$$

By the independence of $Z^{(i)}$ from $\dot{Z}_{i j}$ together with $\mathbb{E}\left[\dot{Z}_{i j}\right]=0$, we have $I=0$. By independence of $Z^{(i)}$ from $\dot{Z}_{i j} Z_{i k}$ together with

$$
\mathbb{E}\left[\dot{Z}_{i j} Z_{i k}\right]=\frac{1}{n} \mathbb{E}\left[v X_{i j} X_{i k}+(1-v) Y_{i j} Y_{i k}-W_{i j} W_{i k}\right]=0
$$

we have that $I I=0$. We skip the proof on $I I I$ here.
Step 2. Let

$$
V_{n}=\sqrt{v} S_{n}^{X}+\sqrt{1-v} S_{n}^{Y}
$$

Then we have

$$
\begin{aligned}
& \mathbb{P}\left(V_{n} \leq y-\phi^{-1}\right) \leq \mathbb{P}\left(F_{\beta}\left(V_{n}\right) \leq 0\right) \leq \mathbb{E}\left[m\left(V_{n}\right)\right] \\
\leq & \mathbb{P}\left(F_{\beta}\left(S_{n}^{W}\right) \leq \phi^{-1}\right)+\mathbb{E}\left[m\left(V_{n}\right)\right]-\mathbb{E}\left[m\left(S_{n}^{W}\right)\right] \\
\leq & \mathbb{P}\left(S_{n}^{W} \leq y+\phi^{-1}\right)+\left|\mathbb{E}\left[\mathcal{I}_{n}\right]\right| \\
\leq & \mathbb{E}\left(S_{n}^{W} \leq y-\phi^{-1}\right)+C \phi^{-1} \log ^{1 / 2}(p)+\left|\mathbb{E}\left(\mathcal{I}_{n}\right)\right| .
\end{aligned}
$$

The other direction also holds and completes the proof.

5.4 Auxiliary results

Lemma 17. Let $Y=\left(Y_{1}, \ldots, Y_{p}\right)^{\top}$ be a centred Gaussian random vector in \mathbb{R}^{p} such that $\mathbb{E}\left(Y_{j}^{2}\right) \geq b$ for all $j=1, \ldots, p$ and some constant $b>0$. Then for every $y \in \mathbb{R}^{p}$ and $a>0$,

$$
\mathbb{P}(Y \leq y+a)-\mathbb{P}(Y \leq y) \leq C a \sqrt{\log (p)}
$$

where $C>0$ is a constant depending only on b.
Lemma 18. Let $\psi_{i}: \mathbb{R} \rightarrow[0, \infty), i=1,2$ be non-decreasing functions, and let $\xi_{i}, i=1,2$ be independent real-valued random variables. Then

$$
\begin{aligned}
& \mathbb{E}\left[\psi_{1}(\xi)\right] \mathbb{E}\left[\psi_{2}\left(\xi_{1}\right)\right] \leq \mathbb{E}\left[\psi_{1}\left(\xi_{1}\right) \psi_{2}\left(\xi_{1}\right)\right] \\
& \mathbb{E}\left[\psi_{1}(\xi)\right] \mathbb{E}\left[\psi_{2}\left(\xi_{2}\right)\right] \leq \mathbb{E}\left[\psi_{1}\left(\xi_{1}\right) \psi_{2}\left(\xi_{1}\right)\right]+\mathbb{E}\left[\psi_{1}\left(\xi_{2}\right) \psi_{2}\left(\xi_{2}\right)\right], \\
& \mathbb{E}\left[\psi_{1}\left(\xi_{1}\right) \psi_{2}\left(\xi_{2}\right)\right] \leq \mathbb{E}\left[\psi_{1}\left(\xi_{1}\right) \psi_{2}\left(\xi_{1}\right)\right]+\mathbb{E}\left[\psi_{1}\left(\xi_{2}\right) \psi_{2}\left(\xi_{2}\right)\right]
\end{aligned}
$$

