
5 Central limit theorem in high dimensions

This section is based on Chernozhukov et al. (2017).

5.1 Introduction

Let X1, . . . , Xn be independent random vectors in Rp, where p ≥ 3 may be large or even much
larger than n. Denote Xij the jth coordinate of Xi, so that Xi = (Xi1, . . . , Xip)

⊤. We assume
that each Xi is centred, namely E(Xij) = 0 and E(X2

ij) < ∞, for all i = 1, . . . , n and j = 1, . . . , p.
Defined the normalised sum

SX
n = (SX

n1, . . . , S
X
np)

⊤ =
1√
n

n!

i=1

Xi.

We consider Gaussian approximation to SX
n . Let Y1, . . . , Yn be independent centred Gaussian ran-

dom vectors in Rp such that each Yi have the same covariance matrix asXi, i.e. Yi ∼ N (0,E[XiX
⊤
i ]).

Define the normalised sum

SY
n = (SY

n1, . . . , S
Y
np)

⊤ =
1√
n

n!

i=1

Yi.

We are interested in bounding the quantity

ρn(A) = sup
A∈A

|P(SX
n ∈ A)− P(SY

n ∈ A)|,

where A is a class of Borel sets in Rp.
We are interested in how fast p = p(n) → ∞ is allowed to grow while guaranteeing ρ(A) → 0.

• When X1, . . . , Xn are i.i.d. with E(XiX
⊤
i ) = I,

ρ(A) ≤ Cp(A)
E($X1$3)√

n
,

where Cp(A) is a constant that depends only on p and A.

– When A is the class of all Euclidean balls in Rp, Cp(A) is bounded by a universal
constant.

– When A is the class of Borel measurable convex sets in Rp, Cp(A) ≤ 400p1/4. In this
case, since E($X1$3) ≥ {E($X1$2)}3/2 = p3/2, once we require ρ(A) → 0, it is required
that p = o(n1/3).

• WhenA is the class of all Borel measurable convex sets, it was shown that ρ(A) ≥ cE($X1$3)/
√
n,

for some universal constant c > 0.

Let A be the class of all hyperrectangles in the sequel. This allows us to consider Kolmogorov–
Smirnov type statistics.
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5.2 Main results

Let A be the collection of all sets A of the form

A = {w ∈ Rp : aj ≤ wj ≤ bj , ∀j = 1, . . . p},

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p. To describe the bound on ρ(A), we need some additional
notation. Define

Ln = max
j=1,...,p

n!

i=1

E(|Xij |3)/n.

For φ ≥ 1, define

Mn,X(φ) = n−1
n!

i=1

E
.

max
j=1,...,p

|Xij |3
%

max
j=1,...,p

|Xij | >
√
n/(4φ log(p))

&0
,

Mn,Y (φ) = n−1
n!

i=1

E
.

max
j=1,...,p

|Yij |3
%

max
j=1,...,p

|Yij | >
√
n/(4φ log(p))

&0

and
Mn(φ) = Mn,X(φ) +Mn,Y (φ).

Theorem 13. Suppose that there exists some constant b > 0 such that n−1
#n

i=1 E(X2
ij) ≥ b for

all j = 1, . . . , p. Then there exist constants K1,K2 > 0 depending only on b such that for every
constant Ln ≥ Ln, we have

ρ(A) ≤ K1

=

>
?
Ln

2
log7(p)

n

@1/6

+
Mn(φ)

Ln

A

B , (4)

where

φ = K2

?
Ln

2
log4(p)

n

@−1/6

. (5)

If X1, . . . , Xn are such that E(X2
ij) = 1 and for some Bn ≥ 1, |Xij | ≤ Bn for all i = 1, . . . , n

and j = 1, . . . , p, then Theorem 13 shows that

ρ(A) ≤ K
4
n−1B2

n log
7(pn)

51/6
.

The bound (4) depends on Mn(φ) whose values are problem specific.

Proposition 14. Suppose

• n−1
#n

i=1 E(X2
ij) ≥ b, for all j = 1, . . . , p and b > 0 some constant;

• n−1
#n

i=1 E(|Xij |2+k) ≤ Bk
n, for all j = 1, . . . , p, k = 1, 2 and Bn ≥ 1 a sequence of constants;

• E{exp(|Xij |/Bn)} ≤ 2, for all i = 1, . . . , n and j = 1, . . . , p.

Then we have

ρ(A) ≲
+
B2

n log
7(pn)

n

,1/6

.
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Consider the multiplier bootstrap. Let e1, . . . , en be a sequence of i.i.d. N (0, 1) random variables
that are independent of Xn

1 = {Xi}ni=1. Let

X̄ =

?
1

n

n!

i=1

Xi1, . . . ,
1

n

n!

i=1

Xip

@⊤

and consider the normalised sum

SeX
n =

1√
n

n!

i=1

ei(Xi − X̄).

We have that, under some mild conditions, for every constant ∆̄n > 0, on the event ∆n,r ≤ ∆̄n,

ρMB(A) = sup
A∈A

|P(SeX
n ∈ A|Xn

1 )− P(SY
n ∈ A)| ≲ ∆̄1/3

n log2/3(p),

where
∆n,r = max

1≤j,k≤p
|"Σjk − Σ/jk|,

"Σ = n−1
n!

i=1

(Xi − X̄)(Xi − X̄)⊤ and Σ = n−1
n!

i=1

E(XiX
⊤
i ).

Consider the empirical bootstrap. Let X∗
1 , . . . , X

∗
n be i.i.d. draws from the empirical distribution

of X1, . . . , Xn. Theorem 13 can also lead to an upper bound on

sup
A∈A

|P(SX∗
n ∈ A|Xn

1 )− P(SY
n ∈ A)|,

where SX∗
n = n−1/2

#n
i=1(X

∗
i − X̄).

5.3 Proof of Theorem 13

Define
0 = sup

y∈Rp, v∈[0,1]
|P(

√
vSX

n +
√
1− vSY

n ≤ y)− P(SY
n ≤ y)|,

where Y1, . . . , Yn are assumed to be independent of the random vectors X1, . . . , Xn.

Lemma 15. Suppose that there exists some constant b > 0 such that n−1
#n

i=1 E(X2
ij) ≥ b for all

j = 1, . . . , p. Then 0 satisfies the following inequality for all φ ≥ 1,

0 ≲ φ2 log2(p)

n1/2
{φLn0+ Ln log

1/2(p) + φMn(φ)}+
log1/2(p)

φ

up to a constant K that depends only on b.

Define
0′ = sup

A∈A, v∈[0,1]
|P(

√
vSX

n +
√
1− vSY

n ∈ A)− P(SY
n ∈ A)|.

An immediate corollary of Lemma 15 is as follows.
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Corollary 16. Suppose that there exists some constant b > 0 such that n−1
#n

i=1 E(X2
ij) ≥ b for

all j = 1, . . . , p. Then 0′ satisfies the following inequality for all φ ≥ 1,

0′ ≲ φ2 log2(p)

n1/2
{φLn0

′ + Ln log
1/2(p) + φMn(φ)}+

log1/2(p)

φ

up to a constant K that depends only on b.

Proof of Corollary 16. Pick any hyperrectangle

A = {w ∈ Rp : wj ∈ [aj , bj ] ∀j = 1, . . . , p}.

For i = 1, . . . , n, consider the random vectors X̃i and Ỹi in R2p defined by X̃ij = Xij and Ỹij = Yij
for j = 1, . . . , p, and X̃ij = −Xi,j−p and Ỹij = −Yi,j−p for j = p+ 1, . . . , 2p. Then

P(SX
n ∈ A) = P(SX̃

n ≤ y) and P(SY
n ∈ A) = P(SỸ

n ≤ y),

where y ∈ R2p is defined by yj = bj for j = 1, . . . , p and yj = −aj−p for j = p + 1, . . . , 2p. The
result then follows from Lemma 15.

Proof of Theorem 13. The proof relies on Lemma 15 and Corollary 16. Let K ′ denote a constant
from the conclusion of Corollary 16. This constant depends only on b. Set K2 = 1/(K ′ ∨ 1) in (5),
so that

φ =
1

K ′ ∨ 1

?
Ln

2
log4(p)

n

@−1/6

.

The result follows from Corollary 16.

Proof of Lemma 15. We begin with preparing some notation. LetW1, . . . ,Wn be a copy of Y1, . . . , Yn.
Without loss of generality, we may assume that X1, . . . , Xn, Y1, . . . , Yn and W1, . . . ,Wn are inde-
pendent. Consider SW

n = n−1/2
#n

i=1Wi. Then SY
n and SW

n are the same distribution. Then

0 = sup
y∈Rp, v∈[0,1]

|P(
√
vSX

n +
√
1− vSY

n ≤ y)− P(SW
n ≤ y)|.

Pick any y ∈ Rp and v ∈ [0, 1]. Let β = φ log(p) and define the function

Fβ(w) = β−1 log

C

D
p!

j=1

exp{β(wj − yj)}

E

F , w ∈ Rp.

The function Fβ(w) has the following property

0 ≤ Fβ(w)− max
j=1,...,p

(wj − yj) ≤ β−1 log(p) = φ−1, ∀w ∈ Rp.

Pick a thrice continuously differentiable function g0 : R → [0, 1] whose derivatives up to the third
order are all bounded such that g0(t) = 1 for all t ≤ 0 and g0(t) = 0 for t ≥ 1. Define g(t) = g0(φt),
t ∈ R, and

m(w) = g(Fβ(w)), w ∈ Rp.
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For brevity of notation, we will use indices to denote partial derivatives of m. For every j, k, l =
1, . . . , p, there exists a function Ujkl(w) such that

|mjkl(w)| ≤ Ujkl(w),
p!

j,k,l=1

Ujkl(w) ≲ (φ3 + φβ + φβ2) ≲ φβ2,

Ujkl(w) ≲ Ujkl(w + w̃) ≲ Ujkl(w).

Define the functions

h(w, t) =

%
−φ−1 − t/β < max

j=1,...,p
(wj − yj) ≤ φ−1 + t/β

&
, w ∈ Rp, t > 0,

and

w(t) =
1√

t ∧
√
1− t

, t ∈ (0, 1).

The proof consists of two steps. In the first step, we show that

|E(In)| ≲
φ2 log2(p)

n1/2
(φLn0+ Ln log

1/2(p) + φMn(φ)),

where
In = m(

√
vSX

n +
√
1− vSY

n )−m(SW
n ).

In the second step, we combine this bound with Lemma 17 to complete the proof.

Step 1. Define the Slepian interpolant

Z(t) =
n!

i=1

Zi(t), t ∈ [0, 1],

where

Zi(t) =
1√
n
{
√
t(
√
vXi +

√
1− vYi) +

√
1− tWi}.

Note that Z(1) =
√
vSX

n +
√
1− vSY

n and Z(0) = SW
n , and so

In = m(
√
vSX

n +
√
1− vSY

n )−m(SW
n ) =

; 1

0

dm(Z(t))

dt
dt.

Denote
Z(i) = Z(t)− Zi(t)

and

Żi(t) =
1√
n

%
1√
t
(
√
vXi +

√
1− vYi)−

1√
1− t

Wi

&
.

For brevity of notation, write Z = Z(t), Zi = Zi(t), Z
(i) = Z(i)(t) and Żi = Żi(t).

It follows from Taylor’s expansion that

E(In) =
1

2

p!

j=1

n!

i=1

; 1

0
E[mj(Z)Żij ]dt =

1

2
(I + II + III),
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where

I =

p!

j=1

n!

i=1

; 1

0
E[mj(Z

(i))Żij ]dt,

II =

p!

j,k=1

n!

i=1

; 1

0
E[mjk(Z

(i))ŻijZik]dt,

III =

p!

j,k,l=1

n!

i=1

; 1

0

; 1

0
(1− τ)E[mjkl(Z

(i) + τZi)ŻijZikZil]dτdt.

By the independence of Z(i) from Żij together with E[Żij ] = 0, we have I = 0. By independence
of Z(i) from ŻijZik together with

E[ŻijZik] =
1

n
E[vXijXik + (1− v)YijYik −WijWik] = 0,

we have that II = 0. We skip the proof on III here.

Step 2. Let
Vn =

√
vSX

n +
√
1− vSY

n .

Then we have

P(Vn ≤ y − φ−1) ≤ P(Fβ(Vn) ≤ 0) ≤ E[m(Vn)]

≤P(Fβ(S
W
n ) ≤ φ−1) + E[m(Vn)]− E[m(SW

n )]

≤P(SW
n ≤ y + φ−1) + |E[In]|

≤E(SW
n ≤ y − φ−1) + Cφ−1 log1/2(p) + |E(In)|.

The other direction also holds and completes the proof.

5.4 Auxiliary results

Lemma 17. Let Y = (Y1, . . . , Yp)
⊤ be a centred Gaussian random vector in Rp such that E(Y 2

j ) ≥ b
for all j = 1, . . . , p and some constant b > 0. Then for every y ∈ Rp and a > 0,

P(Y ≤ y + a)− P(Y ≤ y) ≤ Ca
-

log(p),

where C > 0 is a constant depending only on b.

Lemma 18. Let ψi : R → [0,∞), i = 1, 2 be non-decreasing functions, and let ξi, i = 1, 2 be
independent real-valued random variables. Then

E[ψ1(ξ)]E[ψ2(ξ1)] ≤ E[ψ1(ξ1)ψ2(ξ1)],

E[ψ1(ξ)]E[ψ2(ξ2)] ≤ E[ψ1(ξ1)ψ2(ξ1)] + E[ψ1(ξ2)ψ2(ξ2)],

E[ψ1(ξ1)ψ2(ξ2)] ≤ E[ψ1(ξ1)ψ2(ξ1)] + E[ψ1(ξ2)ψ2(ξ2)].
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