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Piecewise Deterministic Processes (PDPs)

Ingredients
� Time-dependent parameters: marked point process
.�j ; �j /j2N[f0g with

– jump times 0 D �0 < �1 < �2 < : : :
– jump sizes �0; �1; �2; : : :

� Static parameters: � .
� Deterministic function: F � .
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Sketch
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Observations
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Example I: Object Tracking
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Example I: Object Tracking (continued)
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Example II: Shot-Noise Cox Process
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Inference

� Sequential Monte Carlo filter for PDPs introduced by
Whiteley, Johansen & Godsill (2011).
� Efficient methods for estimating � still missing (though

Reversible-Jump MCMC works for simple models)
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Motivation

� X � � with support E.
� f W E ! R some (�-integrable) function.
� Want to calculate

�.f / WD
Z
E

f .x/�.dx/�
D
Z
E

f .x/�.x/ dx
�

D EŒf .X/�:
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Motivation, continued

Example
Often, E � R and �.x/ D p.xjy/ for some data y, so that

�.f / D

8̂̂̂̂
<̂
ˆ̂̂:

P.X 2 AjY D y/; if f D 1A for A � E,
EŒXkjY D y�; if f D idk,
varŒX jY D y�; if f D Œid��.f /�2,

:::
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Monte Carlo Methods

� Problem: analytical evaluation of �.f / costly/impossible.
� Idea:

1. construct approximation O� of � .
2. estimate �.f / by

O�.f / D
Z
E

f .x/ O�.dx/:

� Monte Carlo methods: construction of O� based on
(computer-generated) (pseudo-)random numbers.
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Vanilla Monte Carlo
� Sample X1; : : : ; XN iid� � .
� Approximate �.dx/ by the empirical measure:

O�mc.dx/ WD 1

N

NX
iD1

•X i .dx/:
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Vanilla Monte Carlo, continued

� Estimate �.f / D EŒf .X/� by

O�mc.f / D
Z
E

f .x/ O�mc.dx/

D 1

N

NX
iD1

f .X i/:

� Unbiased and consistent.
� Monte Carlo methods are best viewed as simulation

techniques for approximating measures.
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Motivation

Setup
Assume that

�.x/ D .x/

Z

with normalising constant Z D R
E
.x/ dx, but

� we cannot sample from � .
� Z is unknown (i.e. we can evaluate  but not �)

Example (Bayesian inference)
Let �.x/ WD p.xjy/ for some data y, then often,
� we can evaluate .x/ D p.x; y/,
� but Z D p.y/ D R

E
p.x; y/ dx is typically intractable.
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Importance Sampling
Assume that � is another distribution s.t. � � �.
1. Sample X1; : : : ; XN iid� �.
2. Approximate � by the weighted empirical measure:

O� is.dx/ WD
NX
iD1

W i•X i .dx/:
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Constructing the Importance Weights
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Constructing the Importance Weights, continued
Want to set W i / d�

d� .X
i/ D �.X i /

�.X i /
.

Problem: can only evaluate G.X i/ WD d
d� .X

i/ D .X i /

�.X i /
.

Solution: approximate  and Z separately, i.e.
1. approximate .dx/ by

O is;u.dx/ WD 1

N

NX
iD1

G.X i/•X i .dx/

2. approximate Z D R
E
G.x/�.dx/ by

yZ WD O�mc.G/̃

‘vanilla’ Monte Carlo
estimate of �.G/

D 1

N

NX
iD1

G.X i/:
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Constructing the Importance Weights, continued

3. approximate �.dx/ by

O� is.dx/ WD O is;u.dx/= OZ

D
NX
iD1

W i•X i .dx/;

where
W i WD G.X i/PN

jD1G.Xj /
:

Importance sampling yields unbiased (and consistent)
estimates of normalising constants!
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Markov Chain Monte Carlo Methods

Let K be a �-invariant ergodic Markov kernel.
1. simulate a Markov chain with transitions K, i.e. sample

X1 � �. � /; X2 � K. � jX1/; X3 � K. � jX2/; : : :

2. approximate �.dx/ by

O�mcmc.dx/ WD 1

N

RCNX
iDRC1

•X i .dx/:

after a suitable burn-in time R.

19 / 51
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Constructing the Markov Kernel K

Example (Gibbs sampler)
Let E be d -dimensional. The standard Gibbs sampler cycles
through all full conditional distributions (under �), i.e.

K.dxi jxi�1/ WD
dY
jD1

�.dxij jxi1Wj�1; xi�1jC1Wd /

Partially-collapsed Gibbs sampler (Van Dyk & Park, 2008):
� often no need to sample from full conditionals.
� instead, sample from conditionals under a marginal of �

20 / 51
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Constructing the Markov Kernel K

Example (Metropolis–Hastings algorithm)
1. sample X? � Q. � jX i�1/ (where Q is not �-invariant)
2. accept X i WD X? with probability

˛.X?jX i/ WD 1 ^ .X
?/Q.X i jX?/

.X i/Q.X?jX i/
;

otherwise, set X i WD X i�1.
Thus, K has the form

K.dxi jxi�1/ WD ˛.xi jxi�1/Q.dxi jxi�1/C r.xi�1/•x.dxi/;

where r.x/ WD 1 � R
E
˛.zjx/Q.dzjx/.
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State-Space Extension Tricks

� Want to target Q�.�/ D Q.�/=Z, for Z > 0.
� What if we cannot evaluate Q.�/? (needed for IS/MCMC).
� Idea:

1. instead, target �.�; x/ D .�; x/=Z, s.t.
i. �.�; x/ admits Q�.�/ as a marginal,
ii. .�; x/ can be evaluated.

2. construct IS/MCMC approximation O� of � D =Z.
3. approximate Q� by �-marginal of O� .

� Many names for this: state-space extension,
auxiliary-variable construction, data augmentation, . . .
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State-Space Extension Tricks, continued

Example (Hidden Markov model)
X0 � �� , and for n 2 N,

Xn � f �. � jXn�1/;
Yn � g�. � jXn/;

where � are some ‘static’ parameters.
Assume we are interested in Q�.�/ WD p.� jy1Wn/.
� Q.�/ D p.�; y1Wn/ and Z D p.y1Wn/ are intractable.
� but we can evaluate

.�; x0Wn; y1Wn/ WD p.�/��.x0/
nY

pD1
f �.xpjxp�1/g�.ypjxp/:
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Piecewise Deterministic Processes
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Motivation
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Target distributions

Setup
Want to target a sequence of related distributions
.��n .x1Wn//n2N which
� are defined on spaces .En/n2N of increasing dimension

[will be relaxed later],
� have unknown normalising constants .Z�n/n2N .

� known [will be relaxed later].

Problem
IS/MCMC require new algorithm for each n 2 N.
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Sequential Monte Carlo Methods
Sequential Monte Carlo (SMC): propagate weighted samples
(‘particles’) .X i

1Wn; W �;i
n /i2f1;:::;N g to construct

O��n .dx1Wn/ WD
NX
iD1

W �;i
n •X i

1Wn
.dx1Wn/:

SMC Algorithm
At time n, given .X i

1Wn�1; W
�;i
n�1/i2f1;:::;N g,

1. sample X i
n � K�

n. � jX i
1Wn�1/

– this approximates ��n�1.dx1Wn�1/K�n .dxnjx1Wn�1),
2. re-weight particle paths .X i

1Wn/i2f1;:::;N g
– to approximate ��n .dx1Wn/,

3. resample: reset weights, after
– “multiplying” particles with large weights,
– “killing off” paths with small weights.
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Sequential Monte Carlo Methods, continued

Particle filters: SMC methods applied to the filtering problem.

Almost all SMC methods, e.g.
� auxiliary particle filters (Pitt & Shepard, 1999),
� block sampling (Doucet, Briers & Sénécal, 2006),
� resample–move algorithms (Gilks & Berzuini, 2001),
� SMC samplers (Del Moral, Doucet & Jasra, 2006),
� discrete state-space particle filters (Fearnhead, 1998),
� : : :

are special cases of this algorithm!
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SMC: Sketch
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Sample Degeneracy

� Also known as sample impoverishment, or path degeneracy.
� Eventually, all particles share a common ancestor.
� Thus, SMC methods rely on an ergodicity (‘forgetting’)

property of .��n /n2N
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Sample Degeneracy, continued

Hidden Markov model, continued
Let ��n .x1Wn/ WD p.x1Wnj�; y1Wn/ then we are often interested in
� filtering distributions: ��n .xn/ D p.xnj�; y1Wn/,
�! approximated by a diverse set of particles.
� smoothing distributions: ��n .xk/ D p.xkj�; y1Wn/,
�! often approximated by a single particle.
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Alleviating the Degeneracy

� Use residual/stratified/systematic resampling
�! avoid multinomial resampling!
� Only resample when necessary.
� Devise better proposal kernels K�

n .
– e.g. avoid K�n . � jxn�1/ WD f � . � jxn�1/ in HMMs
(’bootstrap’ filter),

– better: make use of yn when sampling X in.
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Particle Lineages
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Interpretation as Importance Sampling

� SMC methods are just (standard!) importance sampling on
a suitably extended space.
� Hence, SMC methods yield an unbiased estimate of the

normalising constant Z�n , which is given by

yZ�n.X1Wn;A1Wn�1/ D
nY

pD1

�
1

N

NX
iD1

G�p .X
i
1Wp/˜

ith unnormalised
incremental weight at time n

�
:
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Motivation

What if target distributions . Q�n/n2N are defined on spaces
. zEn/n2N of non-increasing dimension?
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Motivation, continued
Example (Annealing):
� Want to target complicated distribution � on a space E.
� Idea: use SMC methods to target bridging distributions

Q�n.x/ / Qn.x/ WD Œ�.x/��nŒ�1.x/�
1��n;

for n D 1; : : : ; P , where
– we can easily sample from �1,
– 0 D �1 < �2 < � � � < �P�1 < �P D 1.
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SMC Samplers

� Problem: evaluating the weights difficult/impossible.
� Solution: target a sequence of extended distributions
.�n/n2N s.t.
1. �n admits Q�n as a marginal,
2. .�n/n2N are defined on spaces of increasing dimension.

SMC Samplers (Del Moral, Doucet & Jasra, 2006)
Use ‘backward’ Markov kernels Ln�1.xn�1jxn/, so that

�n.x1Wn/ WD Q�n.xn/
nY

pD1
Lp�1.xp�1jxp/:
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Aim

� Now: want to approximate

�P .�; x1WP / D P .�; x1WP /
Z

or its marginal �P .�/.

Example
If �P .�; x1WP / D p.�; x1WP jy1WP / for observations y1WP , then
� P .�; x1WP / D p.�; x1WP ; y1WP /,
� Z D p.y1WP /.
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Ideal MCMC Algorithms

Ideal Metropolis–Hastings Algorithm
Given .�; X1WP /,
1. propose new values .�?; X?

1WP /,
2. accept with some probability.

BUT: difficult to design good proposals for X?
1WP .

� Idea: use SMC approximation O��? as proposal for X?
1WP .

� Problem: proposal density is intractable.
H) cannot evaluate acceptance probability.
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Ideal MCMC Algorithms, continued

Ideal Gibbs sampler:
Given .�; X1WP /, sample from
1. �P .� jx1WP /,
2. �P .x1WP j�/ D ��P .x1WP /,

BUT: cannot sample from ��P .
� Idea: sample from SMC approximation O�� of ��P .
� Problem: O��P ¤ ��P .
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Extended Target Distribution

Particle MCMC Methods
� Andrieu, Doucet & Holenstein (2010).
� exact MCMC methods, i.e.

– Metropolis–Hastings algorithm,
– Gibbs sampler

targeting an extended distribution.
� this distribution includes all random variables generated by

an SMC algorithm, i.e. .X1WP ;A1WP�1/ (and more).
� basis: Pseudo-Marginal approach,

– Andrieu & Roberts (2009),
– permits IS within MCMC,
– and SMC can be interpreted as standard IS
(on a suitably extended space).
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Extended Target Distribution, continued
Parametrisation I:
x�P .�;x1WP ; a1WP�1; b�P /

/ p.�/ w�;b�PP–
weight of
b�P th path

yZ�P .x1WP ; a1WP�1/œ
SMC estimate of

normalising constant

 �P .x1WP ; a1WP�1/œ
SMC algorithm

:

Pa
rti

cle
no

.

Time
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a2
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4
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3
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3
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2

a4
2

a3
2

a2
2

a1
2

a5
1

a4
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a3
1

a2
1

a1
1

b�
5
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Reparametrisation

Using b�n D a
b�

nC1

n for n 2 f1; : : : ; P � 1g,
.x1WP ; a1WP�1; b�P /œ

Parametrisation I

 ! .x��1WP ; a
��
1WP�1; x

�
1WP ; b

�
1WP /Ÿ

Parametrisation II

:
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.

Time
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Extended Target Distribution
Parametrisation II:
x�P .�;x��1WP ; a��1WP�1; x�1WP ; b�1WP /

D �P .�; x�1WP /™
’actual’
target

p.b�1WP /˜
marginal
of b�1WP

 �P .x
��
1WP ; a

��
1WP�1kx�1WP ; b�1WP / 

‘conditional’ SMC algorithm

:
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PMMH Algorithm
A Metropolis–Hastings Algorithm Targeting x�P

� Notation: b WD b�P and � WD .�;x1WP ; a1WP�1; b/.
� Proposal kernel:

Q.�?j�/ WD T .�?j�/ �?

P .x?1WP ; a
?
1WP�1/w

�?;b?

P ;

� Acceptance probability (using Parametrisation I):

˛.�?j�/ WD 1 ^ x�P .�
?/Q.�j�?/

x�P .�/Q.�?j�/

D 1 ^ p.�
?/

p.�/

yZ�?

P .x
?
1WP ; a

?
1WP�1/

yZ�P .x1WP ; a1WP�1/
T .� j�?/
T .�?j�/:

� Special case of the GIMH algorithm
(Andrieu & Roberts, 2009)
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PMMH Algorithm, continued

� efficiency crucially depends on SMC estimate of Z�P
� usually, varŒ yZ�P .X1WP ;A1WP�1/� grows linearly in P .
� need to increase N at least linearly with P .
�! otherwise: low acceptance rate.
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Alternative “justification” of PMMH/GIMH

� only want to approximateZ
�P .�; x1WP /dx1WP D �P .�/ / P .�/:

� p.�/Z�P D P .�/, so that

E
�
p.�/ yZ�P .X1WP ;A1WP�1/

� D P .�/:
� View as MH algorithm with approximation

P .�
?/T .� j�?/

P .�/T .�?j�/
� p.�?/

p.�/

yZ�?

P .x
?
1WP ; a

?
1WP�1/

yZ�P .x1WP ; a1WP�1/
T .� j�?/
T .�?j�/:
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Particle Gibbs Sampler
A Gibbs sampler targeting x�P

Recall that
x�P .�;x��1WP ; a��1WP�1; x�1WP ; b�1WP /

D �P .�; x�1WP /™
‘actual’
target

p.b�1WP /˜
distribution of
indices of x�1WP

 �P .x
��
1WP ; a

��
1WP�1kx�1WP ; b�1WP / 

‘conditional’ SMC algorithm

:

Pa
rti

cle
no

.

Time

b�
5

b�
4

b�
3

b�
2b�

1
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Particle Gibbs Sweep
Sample from:
1. �P .� jx�1WP / [e.g. via a Metropolis–Hastings step],
2.  �P .x��1WP ; a��1WP�1kx�1WP ; b�1WP / [via ‘conditional’ SMC],
3. x�P .b�P j�;x1WP ; a1WP�1/ [via Parametrisation I].
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Particle Gibbs with Backward Sampling
Whiteley (2010)

Sample from:
1. �P .� jx�1WP / [e.g. via a Metropolis–Hastings step],
2.  �P .x��1WP ; a��1WP�1kx�1WP ; b�1WP / [via ‘conditional’ SMC],
3. x�P .b�n j�;x1Wn; a1Wn�1; x�nC1WP ; b�nC1WP / for n D P; : : : ; 1.
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Particle Gibbs with Ancestor Sampling
Lindsten, Jordan & Schön (2012)

1. sample from �P .� jx�1WP /,
2. for n D 1; : : : ; P , sample from

i.  �P .x
�b�n
n ; a

�b�n
n�1kx1Wn�1; a1Wn�2; x�nWP ; b�nWP /,

ii. x�P .b�n j�;x1Wn; a1Wn�1; x�nC1WP ; b�nC1WP /.
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SMC2

Chopin, Jacob & Papaspiliopoulos, (2013)

� Particle MCMC methods can only target a single
distribution �P .�; x1WP /.
� How to approximate .�n.�; x1Wn//n2N (e.g. if observations

arrive sequentially in time)?
� Idea: instead of MCMC, use SMC to target (a marginal of)

the extended distribution x�n.x1Wn; a1Wn�1; b�n/.
� Can be interpreted as nested SMC algorithms – SMC
within SMC, i.e. each particle has its own SMC algorithm.
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