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Administration

Contact info:

Tutor: Dominykas Norgilas

Email: D.Norgilas@warwick.ac.uk

URL: http://www.warwick.ac.uk/dnorgilas

Assessment test:

Friday 1:30 - 4:30pm

4 compulsory questions: 1 on linear algebra, 1 on
calculus/differential equations and 2 on probability theory
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Modelling a random experiment

A random experiment can be characterised by the following 3 features:

1 What are the possible outcomes of the experiment?

2 What events can we observe? Or, what information will be revealed
to us at the end of the experiment?

3 How do we assign probabilities to the events that we can observe?
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Modelling a random experiment: an example

Imagine I roll a fair die privately, and tell you if the outcome is odd or
even:

1 The possible outcomes are integers from 1 to 6.

2 The information available to you is whether the roll is odd or even.

3 Probabilities are computed on basis that each outcome is equally
likely, so we have 0.5 chance of obtaining odd/even.

A probability space (Ω,F ,P) is essentially a collection of 3 mathematical
objects representing these 3 features of a random experiment.
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Sample space

A sample space Ω is a set containing all possible outcomes of a random
experiment.

Rolling a die: Ω = {1, 2, 3, 4, 5, 6}.

Flipping two coins: Ω = {HH,HT ,TH,TT}.

Type in “=rand()” on an excel spreadsheet: Ω = [0, 1].

Stock price path from today to time T :
Ω = “a set of non-negative continuous functions on [0,T ]”.

An outcome ω is an element in Ω (i.e. ω ∈ Ω) to be realised at the end
of the experiment, which we may or may not observe.
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Events on a sample space

An event A can be represented by a subset of Ω. After the realisation of
a random experiment, we say “A happens” if ω ∈ A.

Getting an odd roll: A = {1, 3, 5}.

Getting the same outcome in 2 coin flips: A = {HH,TT}.

“rand()” gives a number larger than 0.5: A = (0.5, 1].

Stock price is above 2000 at time T : A = “ST > 2000”.
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σ-algebra

Informally, a σ-algebra F :

represents the information that will be revealed to us after
realisation of the random outcome;

contains all the events that we can verify if they have happened or
not after ω is realised.

Definition (σ-algebra)

For F being a collection of subsets of Ω (i.e. events on Ω), it is a
σ-algebra if it satisfies the below properties:

1 Ω ∈ F ;

2 if A ∈ F , then AC ∈ F ;

3 if Ai ∈ F for i = 1, 2, ..., then
⋃∞

i=1 Ai ∈ F .

MSc Financial Mathematics Fundamental Tools - Probability Theory I 7 / 19



Administration
Probability Space

Independence and conditional probability
Combinatorics

Sample space
σ-algebra
Probability measure

Motivations behind the defining properties of F

The 3 properties of F are in place to ensure internal consistency of
“information”.

I draw a card from a poker deck of 52 cards, and only tell you the suit
but not the number.

If you can verify the event “the card drawn is a spade”, you must
also be able to verify the event “the card drawn is NOT a spade”.

If you can verify the event “the card drawn is a spade” and “the
card drawn is a heart”, you must also be able to verify the event
“the card drawn is either a spade or heart”.

In addition, any sensible information structure should be able to handle
trivial questions like whether “the coin flip gives either a head or tail”.
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Examples

1 Roll a die Ω = {1, 2, 3, 4, 5, 6}.

F1 = {∅,Ω, {1, 2, 3}, {4, 5, 6}}
F2 = 2Ω = the set of all subsets of Ω (power set)

are both σ-algebras. F1 contains information on whether the roll is
strictly less than 4 or not, and F2 contains information on the exact
outcome.

2 Flip a coin twice Ω = {HH,HT ,TH,TT}.

F1 = {∅,Ω, {HH,HT}, {TH,TT}}

is a σ-algebra containing information on the outcome of the first
flip. But

F2 = {∅,Ω, {HH,TT}}
is not a σ-algebra.
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Generated σ-algebra

In an experiment of rolling a die, suppose we are interested in knowing
whether the outcome belongs to a low-range (1-2), mid-range (3-4) or
high-range (5-6). What is the minimal information required?

The events of interested are {1, 2}, {3, 4} and {5, 6}.

The information of the exact outcome of the roll (represented by
the power set 2Ω) is sufficient, but it is an overkill.

What we need is the smallest σ-algebra containing the three events
above.

Definition (σ-algebra generated by a collection of events)

Let C be a collection of subsets (i.e events) of Ω. Then σ(C), the
σ-algebra generated by C, is the smallest σ-algebra on Ω which contains
C. Alternatively, it is the intersection of all σ-algebras containing C.
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Generated σ-algebra: examples

In this example, the required minimal information is given by the
σ-algebra generated by C = {{1, 2}, {3, 4}, {5, 6}}, then

σ(C ) = {∅,Ω, {1, 2}, {3, 4}, {5, 6}, {3, 4, 5, 6}, {1, 2, 5, 6}, {1, 2, 3, 4}}.

If we are interested in the exact outcome of the die, then take
C = {{1}, {2}, {3}, {4}, {5}, {6}}, and σ(C) will be the power set 2Ω.

Except in few simple examples, it is hard to write down explicitly a
generated σ-algebra. An important example of such is a Borel σ-algebra .
Take Ω = R, it is defined as

B(R) = σ(“collections of all open intervals in R”).

Conceptually it is similar to a power set generated by an uncountable Ω.
Almost every subset of R that we can write down belongs to B(R).
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Probability measure

Definition (Probability measure)

A probability measure P defined on a σ-algebra F is a mapping
F → [0, 1] satisfying:

1 P(Ω) = 1;

2 For a sequence of Ai ∈ F where Ai ∩ Aj = ∅ for any i 6= j , then
P(∪iAi ) =

∑
i P(Ai ).

From the definition, it is not hard to derive the following properties which
you are likely to be familiar with already (see problem sheet):

P(AC ) = 1− P(A);

If A ⊆ B, then P(A) 6 P(B);

For any A and B, P(A ∪ B) = P(A) + P(B)− P(A ∩ B);

If Bi ’s are disjoint and ∪iBi = Ω, P(A) =
∑

i P(A ∩ Bi ).

MSc Financial Mathematics Fundamental Tools - Probability Theory I 12 / 19



Administration
Probability Space

Independence and conditional probability
Combinatorics

Sample space
σ-algebra
Probability measure

Probability measure: examples

Typically, we assume the outcome can be directly observed at the end of
the experiment and thus F is chosen to be the largest possible σ-algebra
(i.e power set or Borel σ-algebra), and we define P on it. Precise
definition of P depends on the application:

For a countable sample space Ω where each outcome is equally

likely, define P on F = 2Ω via P(A) = |A|
|Ω| for any A ∈ F .

To model the number of coin flip required to obtain the first head
(Ω = {1, 2, 3, ...}), define P on F = 2Ω where P satisfies
P({ω : ω = k}) = (1− p)k−1p. Here p ∈ (0, 1) represents the
chance of getting a head in a single flip.

To represent a uniform random number draw from Ω = [0, 1], define
P on F = B([0, 1]) where P satisfies P([a, b]) = b − a for
0 6 a < b 6 1. Such P defined is called a Lebesgue measure (on
[0, 1]).
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Independence

Definition (Independence)

1 Two events A and B are said to be independent if
P(A ∩ B) = P(A)P(B).

2 A sequence of events (Ai )i=1,2,3... is said to be pairwise independent
if Ai and Aj are independent for any i 6= j .

3 A sequence of events A1,A2, ...,An is said to be independent if
P(∩ni=1Ai ) =

∏n
i=1 P(Ai ).

Warning: pairwise independent events are not necessarily jointly
independent!

Exercise: Two dice are rolled. Let A be the event “the sum is 7”, B be
the event “the first die gives 3” and C be the event “the second die gives
4”. Are the three events pairwise independent? Are they (jointly)
independent?
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Conditional probability

Definition (Conditional probability)

Suppose B has positive probability of occurring, the conditional
probability of A given that B has occurred is defined as

P(A|B) =
P(A ∩ B)

P(B)
.

In case of A and B being independent, we have P(A|B) = P(A). Here
the knowledge of occurrence of B does not change the assessment on
likelihood of A.

Be familiar with some basic calculations involving conditional
probabilities. See problem sheet.
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Principle of counting

In case where the number of outcome is finite, and each outcome has
equal probability of occurrence, we determine probability via P(A) = |A|

|Ω| .

The problem reduces to finding the size of the set A and Ω by counting.

Multiplication rule:
If there are m experiments performed, and the number of outcome of the
k-th experiment is always nk regardless of the outcomes of all other
experiment, then the total number of outcomes is n1 × n2 × · · · × nm.
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k-permutations of n

We have n distinct objects. k of them are selected and placed along a
line. What is Pn

k , the total number of distinguishable orderings?

Imagine each selection is an independent experiment. There are n choices
in filling the first spot, n− 1 choices in filling the second spot,...,n− k + 1
choices in filling the k-th spot. The number of orderings is thus

Pn
k = n × (n − 1)× · · · (n − k + 1) =

n!

(n − k)!
.

In the special case of k = n, the above becomes n!. It is the number of
permutations by shuffling n objects in a line.
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k-combinations of n

We have n distinct objects and k of them are selected. What is C n
k , the

total number of possible groupings?

Consider a two-stage experiment:

1 We select k objects from the n objects.

2 We then place the k selected objects along a line with shuffling.

This two-stage experiment is equivalent to the one in previous slide which
has Pn

k possible outcomes. Meanwhile:

The number of outcomes in the first stage is C n
k .

The number of outcomes in the second stage is k!.

By multiplication rule, Pn
k = C n

k k!, thus

C n
k =

Pn
k

k!
=

n!

(n − k)!k!
.
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Combinatorics: quick examples

We need to form a team of 2 boys and 3 girls from a class with 13
boys and 17 girls. How many combinations are there?

Draw n balls without replacement from an urn with M red balls and
N black balls. What is the chance of getting r red balls (and in turn
n − r black balls)?

You and the other 2 friends of yours are in a randomly shuffled
queue of n people. How many orderings are there such that three of
you are standing next to each other?

See problem sheet as well for more exercises on this topic.
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