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Informal introduction to measurable random variables

In an example of rolling a die with Ω = {1, 2, 3, 4, 5, 6}:

A random variable maps each outcome in Ω to a real number. Eg

X1(ω) = ω, X2(ω) =

{
1, ω ∈ {1, 3, 5};
−1, ω ∈ {2, 4, 6},

are both random variables on Ω.

X1 gives the exact outcome of the roll, and X2 is a binary variable
whose value depends on whether the roll is odd or even.

If we only have information on whether the roll is odd/even
(represented by a σ-algebra F = {∅,Ω, {1, 3, 5}, {2, 4, 6}}), we can
determine the value of X2 but not X1.

We say X2 is measurable w.r.t F , but X1 is NOT measurable w.r.t
F .
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Formal definition of random variables

We wrap the formal definition of a random variable and measurability as
follows:

Definition (Measurable random variables)

A random variable is a function X : Ω→ R. It is said to be measurable
w.r.t F (or we say that X is a random variable w.r.t F) if for every Borel
set B ∈ B(R)

X−1(B) := {ω ∈ Ω : X (ω) ∈ B} ∈ F .

Informally, X is measurable w.r.t F if all possible inverses of X can be
found in F .
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Examples

1 Back to our first example of rolling a die:

The possible sets of inverse of X2 are {1, 3, 5}, {2, 4, 6}, Ω and
∅. They are all in F so X2 is F-measurable.
For X1, note for example that X−1

1 (6) = {6} /∈ F . X1 is hence
not F-measurable.

2 Let Ω = {−1, 0, 1} and F = {∅,Ω, {−1, 1}, {0}}:
X1(ω) := ω is NOT F-measurable. Eg X−1

1 (1) = {1} /∈ F .
X2(ω) := ω2 is F-measurable.
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σ-algebra generated by a random variable

With a given information set (or a σ-algebra), we check if we can
determine the value of a random variable (i.e. if it is F-measurable).

Conversely, given a random variable we want to extract the
information contained therein.

Revisiting the example of rolling a die:

The value of X1 gives the information on the exact outcome.

The value of X2 gives the information on odd/even.

Definition (σ-algebra generated by a r.v)

The σ-algebra generated by a random variable X , denoted by σ(X ), is
the smallest σ-algebra which X is measurable with respect to.
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Example

It is hard (or too tedious) to write down precisely the set of σ(X ) apart
from few simple examples.

Example
In an experiment of flipping a coin twice, let Ω = {HH,HT ,TH,TT}
and consider the random variables

X1(ω) =

{
1, ω ∈ {HH,HT};
−1, ω ∈ {TH,TT},

X2(ω) =


2, ω ∈ {HH};
1, ω ∈ {HT};
−1, ω ∈ {TH};
−2, ω ∈ {TT}.

Here, σ(X1) = {Ω, ∅, {HH,HT}, {TH,TT}} and σ(X2) = 2Ω. In
particular, σ(X1) ⊂ σ(X2) so X2 is “more informative” than X1.
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From probability space to distribution functions

In practice, we seldom bother working with the abstract concept of a
probability space (Ω,F ,P), but rather just focusing on the distributional
properties of a random variable X representing the random phenomenon.

For example, suppose we want to model the number of coin flips required
to get the first head:

Formally, we would write Ω = {1, 2, 3, ...}, F = 2Ω and let P be a
probability measure satisfying P({ω : ω = k}) = (1− p)k−1p for
k = 1, 2, 3...

In practice, we would simply let X be the number of flips required,
and consider P(X = k) = (1− p)k−1p for k = 1, 2, 3...

From now on whenever we write expression like P(X ∈ B), imagine there
is a probability space “in the background”, and P(X ∈ B) actually means
P({ω ∈ Ω : X (ω) ∈ B}).
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Cumulative distribution function

For a random variable X , its cumulative distribution function (CDF) is
defined as

F (x) = P(X 6 x), −∞ < x <∞.

One can check that F has the following properties:

1 F is non-decreasing and right-continuous;

2 limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

Conversely, if a given function F satisfies the above properties, then it is
a CDF of some random variable.
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Classes of random variables

We can talk about CDF of general variables. But for random variables
belonging to two important subclasses, it is more informative to consider
their

probability mass functions for discrete random variables;

probability density functions for continuous random variables.

Warning: there are random variables which are neither discrete nor
continuous!
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Discrete random variables

A random variable X is discrete if it only takes value on a countable set
S = {x1, x2, x3, ...}, which is called the support of X .

A discrete random variable is fully characterised by its probability mass
function (p.m.f).

Definition (Probability mass function)

A probability mass function of a discrete random variable X is defined as

pX (x) = P(X = x), x ∈ S .

Conversely, if a function p(x) satisfies:

1 p(x) > 0 for all x ∈ S, and p(x) = 0 for all x /∈ S;

2
∑

x∈S p(x) = 1.

where S is some countable set. Then p(·) defines a probability mass function
for some discrete random variable with support S.
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Expected value and variance

For a discrete r.v X supported on S , its expected value is defined as

E(X ) =
∑
x∈S

xP(X = x).

More generally, for a given function g(·) we define

E(g(X )) =
∑
x∈S

g(x)P(X = x).

The variance of X is defined as

var(X ) := E((X − E(X ))2) = E(X 2)− (E(X ))2.
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Some useful identities for computing E(X ) and var(X )

Geometric series

∞∑
k=0

xk =
1

1− x
,

∞∑
k=1

kxk−1 =
1

(1− x)2

for |x | < 1.

Binomial series

n∑
k=0

C n
k a

kbn−k = (a + b)n,
n∑

k=1

kC n
k a

k−1bn−k = n(a + b)n−1.

Taylor’s expansion of ex

∞∑
k=0

xk

k!
= ex .
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Some popular discrete random variables

Bernoulli Ber(p)

A binary outcome of success (1) or failure (0) where the probability
of success is p.

Binomial Bin(n, p)

Sum of n independent and identically distributed (i.i.d) Ber(p) r.v’s.

Poisson Poi(λ)

Limiting case of Bin(n, p) on setting p = λ/n and then let n→∞.

Geometric Geo(p)

Number of trails required to get the first success in a series of i.i.d
Ber(p) experiments.
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Some popular discrete random variables: a summary

Distribution Support Pmf P(X = k) E(X ) var(X )
Ber(p) {0, 1} p1(k=1) + (1− p)1(k=0) p p(1− p)
Bin(n, p) {0,1,...,n} C n

k p
k(1− p)n−k np np(1− p)

Poi(λ) {0, 1, 2, ...} e−λλk

k! λ λ
Geo(p) {1, 2, 3, ...} (1− p)k−1p 1/p (1− p)/p2

Exercises: For each distribution shown above, verify its E(X ) and var(X )
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Continuous r.v’s and probability density functions

Definition (Continuous r.v and probability density function)

X is a continuous random variable if there exists a non-negative function f
such that

P(X 6 x) = F (x) =

∫ x

−∞
f (u)du

for any x. f is called the probability density function (p.d.f) of X .
Conversely, if a given function f satisfies:

1 f (x) > 0 for all x;

2
∫∞
−∞ f (x)dx = 1.

Then f is the probability density function for some continuous random variable.

Remarks:

f (x) = F ′(x). Thus the pdf is uniquely determined by the CDF of X .

The set {x : f (x) > 0} is called the support of X . This is the range
which X can take values on.
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Probability density function

Probabilities can be computed by integration: for any set A,

P(X ∈ A) =

∫
A

f (u)du.

Now let’s fix x and consider A = [x , x + δx ]. Then

P(x 6 X 6 x + δx) =

∫ x+δx

x

f (u)du ≈ f (x)δx

for small δx . Hence f (x) can be interpreted as the probability of X lying
in [x , x + δx ] normalised by δx .

The second observation is that on setting δx = 0, we have
P(X = x) = 0. Thus a continuous random variable has zero probability
of taking a particular value.
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Expected value and variance of a continuous r.v

For discrete random variables, we work out expected value by summing
over the countable possible outcomes. In the continuous case, the
analogue is to use integration.

For a continuous r.v X , its expected value is defined as

E(X ) =

∫ ∞
−∞

xf (x).

More generally, for a given function g(·) we define

E(g(X )) =

∫ ∞
−∞

g(x)f (x)dx .

The variance of X again is defined as

var(X ) := E((X − E(X ))2) = E(X 2)− (E(X ))2.
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Remarks on expectation and variance

We have seen how to define E(X ) (and more generally E(g(X )))
when X is either discrete or continuous.

For more general random variables, it is still possible to define
E(g(X )) using notions from measure theory (which we won’t
discuss here).

Some fundamental properties of expectation and variance:

E(aX + bY ) = aE(X ) + bE(Y ) for any two random variables X ,Y
and constants a, b.

var(aX + b) = a2 var(X ) for any two constants a and b.

var(X + Y ) = var(X ) + var(Y ) for any two independent random
variables X and Y .
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Popular examples of continuous r.v’s

Distribution Support Pdf E(X ) var(X )
Uniform U[0, 1] [0, 1] 1 1/2 1/12

Exponential Exp(λ) [0,∞) λe−λx 1/λ 1/λ2

Normal N(µ, σ2) R 1√
2πσ

e−
(x−µ)2

2σ2 µ σ2

Exercises: For each distribution shown above, verify its E(X ) and var(X )
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Transformation of random variables

Suppose X is a random variable with known distribution. Let g(·) be a
function and define a new random variable via Y = g(X ). How to find
the distribution function of Y ?

We start with the first principle: the cumulative distribution function of
Y is defined as FY (y) = P(Y 6 y). Then

FY (y) = P(Y 6 y) = P(g(X ) 6 y).

If g has an inverse, then we can write

FY (y) = P(X 6 g−1(y)) = FX (g−1(y))

where FX is the cdf of X .

If g does not have an inverse (eg g(x) = x2), then special care has
to be taken to work out P(g(X ) 6 y).
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Example

Let X ∼ U[0, 1]. Find the distribution and density function of Y =
√
X .

Sketch of answer: For X ∼ U[0, 1],

FX (x) =


0, x < 0;

x , 0 6 x 6 1;

1, x > 1.

Thus for y > 0, FY (y) = P(
√
X 6 y) = P(X 6 y2) = FX (y2), i.e

FY (y) =


0, y < 0;

y2, 0 6 y 6 1;

1, y > 1.

Differentiating FY gives the density function fY (y) = 2y for y ∈ [0, 1]
(and 0 elsewhere).
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Applications of transformation of random variables

Log-normal random variable:

Defined via Y = exp(X ) where X ∼ N(µ, σ). It could serve as a
simple model of stock price (see problem sheet as well).

Simulation of random variables:

Given F a CDF of a random variable X . Define the right-continuous
inverse as F−1(y) = min{x : F (x) > y}. Then for U ∼ U[0, 1], the
random variable F−1(U) has the same distribution as X .

Consequence: If we want to simulate X on a computer and if F−1

has an easy expression, we just need to simulate a U from U[0, 1]
(which is very easy) and then F−1(U) is our sample of X .
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