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Joint distribution function

For two random variables X and Y , we define their joint distribution
function by

FXY (x , y) = P(X 6 x ,Y 6 y), −∞ < x , y <∞.

Two important classes:

X and Y are jointly discrete if both X and Y are discrete. It is
convenient to work with their joint probability mass function

pXY (x , y) = P(X = x ,Y = y).

X and Y are jointly continuous if there exists a non-negative
function fXY : R2 → R such that

P(X 6 x ,Y 6 y) = FXY (x , y) =

∫ u=x

u=−∞

∫ v=y

v=−∞
fXY (u, v)dvdu.

We call fXY the joint probability density function of X and Y .
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Recovering marginal distribution

Given a joint probability distribution/mass/density function of (X ,Y ), we
can recover the the corresponding marginal characteristics of X as
follows:

Marginal distribution function

FX (x) = P(X 6 x) = P(X 6 x ,Y <∞) = FXY (x ,∞).

Marginal probability mass function (if (X ,Y ) are jointly discrete)

pX (x) = P(X = x) = P(X = x ,Y ∈ SY ) =
∑
y

pXY (x , y).

Marginal probability density function (if (X ,Y ) are jointly
continuous)

fX (x) =
d

dx
FX (x) =

d

dx
FXY (x ,∞) =

∫ ∞
−∞

fXY (x , y)dy .
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Working with jointly continuous random variables

From definition, the joint distribution and density function of (X ,Y ) are
related via

fXY (x , y) =
d2

dxdy
FXY (x , y).

In univariate case, we compute probabilities involving a continuous
random variable via simple integration:

P(X ∈ A) =

∫
A

f (x)dx .

In bivariate case, probabilities are computed via double integration

P((X ,Y ) ∈ A) =

∫∫
A

fXY (x , y)dxdy .

and the calculation is not necessarily straightforward.
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Example 1

Let (X ,Y ) be a pair of jointly continuous random variables with joint
density function f (x , y) = 1 on (x , y) ∈ [0, 1]2 (and is zero elsewhere).
Find P(X − Y < 1/2).
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Example 2

Let (X ,Y ) be a pair of jointly continuous random variables with joint
density function f (x , y) = e−y on 0 < x < y <∞ (and is zero
elsewhere). Verify that the given f is a well-defined joint density
function. Find the marginal density function of X .
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Expected value involving joint distribution

Let (X ,Y ) be a pair of random variables. For a given function g(·, ·), the
expected value of the random variable g(X ,Y ) is given by

E(g(X ,Y )) =

{∑
x,y g(x , y)pXY (x , y);∫∞
−∞

∫∞
−∞ g(x , y)fXY (x , y)dxdy .

Two important specifications of g(·, ·):

Set g(x , y) = x + y . One could obtain E(X + Y ) = E(X ) + E(Y ).

Set g(x , y) = xy . This leads to computation of the covariance
measure between X and Y defined by

Cov(X ,Y ) = E(XY )− E(X )E(Y )

and correlation measure defined by

corr(X ,Y ) =
Cov(X ,Y )√
var(X ) var(Y )

.
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Conditional distributions

If (X ,Y ) are jointly discrete, the conditional probability mass function of
X given Y = y is

pX |Y (x |y) =
P(X = x ,Y = y)

P(Y = y)
=

pXY (x , y)

pY (y)
.

If (X ,Y ) are jointly continuous, the conditional probability density
function of X given Y = y is

fX |Y (x |y) =
fXY (x , y)

fY (y)

which can be interpreted as follows:

P(x 6 X 6 x + δx |y 6 Y 6 y + δy) =
P(x 6 X 6 x + δx , y 6 Y 6 y + δy)

P(y 6 Y 6 y + δy)

≈ fXY (x , y)δxδy

fY (y)δy
= fX |Y (x |y)δx .
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Conditional probability and expectation

With conditional probability mass/density function, we can work out the
conditional probability and expectation as follows:

Conditional probability:

P(X ∈ A|Y = y) =

{∑
x∈A pX |Y (x |y);∫

A
fX |Y (x |y)dx .

Conditional expectation:

E(X |Y = y) =

{∑
x xpX |Y (x |y);∫∞
−∞ xfX |Y (x |y)dx .
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Example 3

Let the joint density function of X and Y be fXY (x , y) = e−x/y e−y

y
on

0 < x , y <∞ (and zero elsewhere). Find the conditional density fX |Y , and
compute P(X > 1|Y = y) and E(X |Y = y).
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Independent random variables

We say that X and Y are independent random variables if

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(X ∈ B)

for any Borel set A,B ∈ B(R).

The following are equivalent conditions for X and Y being independent:

E(f (X )g(Y )) = E(f (X ))E(g(Y )) for all functions f , g .

pXY (x , y) = pX (x)pY (y) or equivalently pX |Y (x |y) = pX (x) in case
(X ,Y ) are jointly discrete.

fXY (x , y) = fX (x)fY (y) or equivalently fX |Y (x |y) = fX (x) in case
(X ,Y ) are jointly continuous.
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Independence and zero correlation

If X and Y are independent, then E(XY ) = E(X )E(Y ). This leads to:

1 Cov(X ,Y ) = 0, which also implies the correlation between X and
Y is zero.

2 var(X + Y ) = var(X ) + var(Y ).

The reverse is not true in general. The most importantly, zero correlation
does not imply independence. See problem sheet.
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We are interested in the following question: Suppose X and Y are two
independent random variables. What is the distribution of X + Y then?

The procedure is easier in the discrete case

Example: Suppose X ∼ Poi(λ1) and Y ∼ Poi(λ2).
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Assume (X ,Y ) are jointly continuous and let Z = X + Y . Then the
CDF of Z is

FZ (z) = P(Z 6 z) = P(X + Y 6 z) =

∫∫
x+y6z

fX (x)fY (y)dxdy

=

∫ y=∞

y=−∞

(∫ x=z−y

x=−∞
fX (x)dx

)
fY (y)dy

=

∫ y=∞

y=−∞
FX (z − y)fY (y)dy .

Differentiation w.r.t z gives the density of Z as

fZ (z) =

∫ y=∞

y=−∞
fX (z − y)fY (y)dy .
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Let X and Y be two independent U[0, 1] random variables. Find the
density function of Z = X + Y .
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Probability generating function

Probability generating function is only defined for a discrete random
variable X taking values in non-negative integers {0, 1, 2, ...}. It is
defined as

GX (s) = E(sX ) =
∞∑
k=0

skpX (k).

View GX as a Taylor’s expansion in s:

GX (s) = pX (0) + pX (1)s + pX (2)s2 + · · ·

We could then deduce pX (n) =
G

(n)
X (0)

n! , i.e. GX uniquely determines
the pmf of X . In other words, if the probability generating functions
of X and Y are equal, then X and Y have the same distribution.

If X and Y are independent,

GX+Y (s) = E(sX sY ) = E(sX )E(sY ) = GX (s)GY (s).

Hence we can study the distribution of X + Y via GX (s)GY (s).
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Moments calculation from probability generating function

Given GX , we can derive the moments of X .

G
(1)
X (s) = E(

d

ds
sX ) = E(XsX−1)

=⇒ E(X ) = G
(1)
X (1)

G
(2)
X (s) = E(

d2

ds2
sX ) = E(X (X − 1)sX−2)

=⇒ E(X (X − 1)) = G
(2)
X (1)

G
(3)
X (s) = E(

d3

ds3
sX ) = E(X (X − 1)(X − 2)sX−3)

=⇒ E(X (X − 1)(X − 2)) = G
(3)
X (1)
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Example

Find the pgf of Poi(λ). If X ∼ Poi(λ1) and Y ∼ Poi(λ2), what is the
distribution of X + Y ?
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Moment generating function (mgf)

Moment generating function (mgf) can be defined for general random variable
via

mX (t) = E(etX ) =

{∑
x e

txpX (x), if X is discrete;∫∞
−∞ etx fX (x)dx , if X is continuous.

Consider the n-th derivative of mX (t):

m
(n)
X (t) =

dn

dtn
E(etX ) = E(

dn

dtn
etX ) = E(X netX )

from which we obtain E(X n) = m
(n)
X (0) on letting t = 0.

A mgf also uniquely determines the underlying distribution:

If X and Y have the same mgf, then they must have the same
distribution.

Suppose X and Y are independent, the mgf of X + Y is

mX+Y (t) = E(etX etY ) = E(etX )E(etY ) = mX (t)mY (t).

Hence we can study the distribution of X + Y via mX (t)mY (t), just like
pgf.
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Example

Find the moment generating function of N(µ, σ2). If X ∼ N(µ1, σ
2
1) and

Y ∼ N(µ2, σ
2
2), what is the distribution of X + Y ?
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