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Foreword

Fundamental Tools week is a preparatory course to refresh your knowledge of mathematics,
and introduce you to the style of questions you are likely to encounter in courses containing
mathematics at Warwick.

It is likely that these notes may seem more formal than other courses you have taken before.
Do not let this concern you too much, as most of the course will involve calculation using the
formal results laid out here, and indeed for the most part, we shall not prove a lot of theorems
here. However, you are expected to know and understand the proofs that are presented here.

You should be aware that the material covered here is considered to be basic mathematical
content which, hopefully, you will have encountered before. Importantly, if you have not covered
a topic before, then these notes should not serve as the means to learn about it – the material
presented here is a brief summary of these topics and is not meant to be exhaustive. Ideally,
you should consult other textbooks which will provide far more detail.

In the first half of the course we will study basic linear algebra, followed by differentation
of multi-dimensional functions and recipies for solving both ordinary and partial differential
equations. In the second half we study basic probability theory.

Structure and Assessment

The course is held over a week, with four lectures on the mathematical content and another
four on the probability component. As such, we will not be able to cover all of the material,
so it is important you have read through these notes beforehand. After each lecture you will
have the chance to attend a two-hour seminar and work through various questions on the main
topics of the course.

There is an examination at the end of the week which broadly assumes the knowledge you
will find here, along with the example sheets completed in seminars. As a general guide, if
you understand most of the material here and have completed all of the questions from the
assignment sheets then you will not have a problem passing the exam.

Partly, this course will also introduce you to the way that examinations are held at Warwick,
and as such there are certain rules and procedures that you must abide by.

These rules must be taken very seriously. Failure to comply with them could result
in you having to resit the exam.

You must:

• bring your university card and writing implements – a pen will suffice;

• enter the room silently.
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You must not:

• bring a bag – no bags are allowed in exam halls;

• use a calculator.

• talk or communicate in any part of the examiniation until scripts are collected and
you have left the examination hall;

• bring, or use at any point, a mobile (or cellular) phone.

You can:

• leave the examiniation early, provided it is after 30 minutes after the start of the exami-
nation and before 15 minutes before the end;

• bring bottled water.

Course webpage

There is a webpage for this course, which you can find at

http://go.warwick.ac.uk/ma901

It will contain a copy of these notes, as well as assignment sheets as they are set through the
week. No solution sheets will be provided for the assignment sheets.

Finally, please note that these notes are new for the course in 2010/2011, and differ substantially
from previous years. As such, they almost certainly contain errors and typos, although we
believe that the mathematical content itself is correct. If you do find errors, then please contact
us so that they may be corrected. You can always find an up-to-date copy of the notes on the
course webpage.
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Chapter 1

Linear Algebra

1.1 Vector Spaces

Fix a point O in space. The vectors whose starting points are located at O can be multiplied
by numbers and added by the parallelogram rule.

Now forget about the three-dimensionality of physical space, replace real numbers by an arbi-
trary field and postulate the simplest properties of addition and multiplication as axioms. This
gives the definition of a vector space.

Definition 1.1.1 (Vector space). A set V is said to be a vector space over a field K if it is
equipped with a binary operation V × V → V usually denoted as addition (v1,v2) 7→ v1 + v2,
and a binary operation K × V → V usually denoted as multiplication (k,v) 7→ k · v, which
satisfy the following axioms:

1. (a) Commutativity: v1 + v2 = v2 + v1;

(b) Associativity: (v1 + v2) + v3 = v1 + (v2 + v3);

(c) Zero element: ∃0V ∈ V such that v + 0V = v ∀v ∈ V ;

(d) Additive inverse: ∀v ∈ V ∃ (−v) ∈ V such that v + (−v) = 0V .

2. Multiplication of vectors by scalars (elements of the field K) satisfies;

(a) 1K · v = v;

(b) α · (β · v) = (αβ) · v where α, β ∈ K,v ∈ V .

3. Addition and multiplication satisfy the distributivity laws, i.e.

(a) α · (v1 + v2) = α · v1 + α · v2 where α ∈ K,v1,v2 ∈ V ;

(b) (α + β) · v = α · v + β · v where α, β ∈ K,v ∈ V .

Remark 1.1.2.

1. Notice that the word field is left undefined. Whilst there is a general definition similar
to the one above, for the purposes of this course we will only consider the fields K = R
and K = C (real and complex numbers).

In general, you can think of a field as being a set of scalars on which you can add, subtract,
multiply and divide elements and have them remain in the same set.
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Also note that fields have their own zero element, 0K, which will usually be different from
the zero element of the vector field. Since it is often clear which we are considering, we
will simply write 0V = 0 and 0K = 0 throughout the rest of this chapter.

2. All other ‘standard’ identities can be derived from these axioms. For example, it is easy
(although tedious) to show that 0 · v = 0 for all v ∈ V .

3. It is standard notation to drop the use of the · symbol unless it is unclear in the setting
of the proof or definition. Throughout the rest of the chapter, it will be omitted.

Definition 1.1.3 (Cartesian product). Given two sets A and B, we define the Cartesian
product as the set

A×B = {(a, b) | a ∈ A, b ∈ B}.

In addition, we denote

An = A× · · · × A︸ ︷︷ ︸
n times

= {(a1, . . . , an) | ak ∈ A}.

Example 1.1.4. Here are some trivial examples of vector spaces.

1. V = {0};

2. V = Kn = {(k1, . . . , kn) | ki ∈ K}.

Example 1.1.5. Let Pn[x] denote the set of polynomials in one variable x of degree ≤ n with
real coefficients. That is,

Pn[x] =

{
n∑
k=0

αkx
k

∣∣∣∣∣αk ∈ R

}
You should check that this does indeed constitute a vector space!

1.2 Basis and Dimension

Now that we have the basic definition of a vector space, it is time to do something useful with
them! In the following definitions, V is a general vector space over a field K.

Definition 1.2.1 (Linear independence). The finite subset of vectors {e1, . . . , en} ⊂ V are
said to be linearly independent if for any α1, . . . αn ∈ K,

n∑
k=1

αkek = 0⇒ αk = 0 for 1 ≤ k ≤ n. (1.1)

Similarly, the subset is said to be linearly dependent if it is not linearly independent.

Example 1.2.2. Let us consider the second vector space of example 1.1.4, with K = R and
n = 3. Then consider the subsets:

• { (1,0,0), (0,1,0), (0,0,1) }: Writing out (1.1) in full,

α1(1, 0, 0) + α2(0, 1, 0) + α3(0, 0, 1) = (0, 0, 0)

and we see immediately that α1 = α2 = α3 = 0. Hence this set is linearly independent.
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• { (1,1,0), (1,0,0), (0,1,0) }: Since it is clear that e1 = e2 + e3, we see that this set must
be linearly dependent.

Definition 1.2.3 (Span). The finite subset of vectors {e1, . . . , en} ⊂ V are said to span V
if for any v ∈ V there exists α1, . . . αn ∈ K such that

v =
n∑
k=1

αkek

Definition 1.2.4 (Basis). The finite subset of vectors {e1, . . . , en} ⊂ V are said to form a
basis of V if they are linearly independent and span V .

Definition 1.2.5 (Standard basis). If V = Kn, then the set

{(1K , 0K , . . . , 0K), (0K , 1K , . . . , 0K), . . . (0K , 0K , . . . 1K)}

is a basis of V and is called the standard basis.

Example 1.2.6. The standard basis defined above can be extended to some other spaces by
a suitable mapping from the vector space to Kn. For example, consider the polynomial vector
space in example 1.1.5. Define a function f : Pn[x]→ Rn+1 by

f(α0 + α1x+ · · ·+ αnx
n) = (α0, . . . , αn).

This defines a bijection between Pn[x] and Rn+1 with an inverse function

f−1(α0, . . . , αn) =
n∑
k=0

αkx
k

Provided that f is also linear (see the next section), a basis for Pn[x] can be defined by

{f−1(1, 0, . . . , 0), f−1(0, 1, . . . , 0), . . . , f−1(0, 0, . . . , 1)} = {1, x, x2, . . . xn}.

In general, a linear bijection between two vector spaces V and W is called an isomorphism
and V and W are said to be isomorphic.

Whilst in this case the basis is somewhat obvious from the definition, this demonstrates a
technique which is useful for determining a basis of more complicated spaces.

Remark 1.2.7. Remember that a basis is not, in general, unique. For example, the vector
space V = R3 admits uncountably many sets which form a basis, since any set of the form

{(a, 0, 0), (0, a, 0), (0, 0, a) | a ∈ R\{0}}

is a basis of V .

Definition 1.2.8 (Dimension). If a basis of V contains n elements where n ∈ N, then the
space is said to be finite dimensional. We denote the dimension of V by dimV and write
dimV = n.

It is not necessarily the case that the basis set contains only finitely many elements. Many
interesting and fundamental vector spaces (often containing functions) are so-called infinite
dimensional. For example, one may consider the space of polynomials of indeterminate order, or
alternatively the space of square-integrable functions. Whilst you should have some familiarity
with these spaces, here we will only consider finite dimensional spaces.

Finally, we conclude with an interesting (and simple) theorem about isomorphisms.
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Theorem 1.2.9. Every n-dimensional vector space V over a field K is isomorphic to Kn.

Proof 1.2.10. Choose a basis {ei}ni=1 ⊂ V . Then for all v ∈ V , there exists a unique choice
of co-efficients {ai}ni=1 ⊂ K such that v =

∑
aiei. So construct a map f : V → Kn such that

v 7→ (a1, a2, . . . , an) ∈ Kn. This is clearly linear and invertible, so V is isomorphic to Kn. �

One key part of the previous proof does need clarification – can you spot (and prove) it?

1.3 Subspaces

Another important property of vector spaces is that, in some cases, we may obtain smaller sets
within them which themselves form vector spaces.

Definition 1.3.1 (Subspace). Let V be a vector space over a field K and W ⊆ V . Then W
is a subspace of V if it is itself a vector space over K defined using the same vector space
operations as V .

In principle then, all one has to do to prove that a particular subset forms a subspace is to
check all of the axioms of a vector space. However this is somewhat of a tedious process, and
indeed we can form a small theorem which does a lot of the work for us.

Theorem 1.3.2. Let V be a vector space and W ⊂ V . Then W is a subspace of V if and only
if the three conditions below hold:

• 0V ∈ W ;

• If u,v ∈ W then u + v ∈ W ;

• If u ∈ W and λ ∈ K then λu ∈ W .

Proof 1.3.3. See example sheet 1. �

Example 1.3.4. We will now consider a few examples of subspaces and show how theorem
1.3.2 can be applied to show various subsets do and do not form subspaces.

(i) Let K = R and V = R3. Consider the subset

W1 = {(x, y, z) | x+ 2y + 3z = 0}.

Checking the conditions of theorem 1.3.2:

• 0V = (0, 0, 0) ∈ W1;

• Let u,v ∈ W . Then we can write u = (u1, 2u2, 3u3) and v = (v1, 2v2, 3v3), and hence
u + v = (u1 + v1, 2(u2 + v2), 3(u3 + v3)) ∈ W1.

• Let u = (u1, 2u2, 3u3) ∈ W and λ ∈ R. Then λu = ((λu1), 2(λu2), 3(λu3)) ∈ W1.

Hence W1 forms a subspace of V .

(ii) Using this theorem sometimes makes it easy to spot when subsets do not form subspaces.
Consider a slight variation of the previous example, with

W2 = {(x, y, z) | x+ 2y + 3z = 1}.

This is clearly not a subspace of R3 since the zero element is not in W2.
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(iii) The theorem does not only limit us to ‘simple’ spaces such as the ones considered above.
For example, let K = R, V = Pn[x] and consider the subset

W3 =

{
n∑
k=0

akx
k | ak ∈ R, a0 + a1 + · · ·+ an = 0

}
;

that is, the set of polynomials such that the co-efficients sum to zero. Checking the
conditions of theorem 1.3.2:

• 0V =
∑n

k=0 0xk ∈ W3.

• Let u =
∑n

k=0 akx
k and v =

∑n
k=0 bkx

k be elements of W3. Then u+v =
∑n

k=0(ak+
bk)x

k, and hence the co-efficients of u+v satisfy
∑n

k=0(ak+bk) =
∑n

k=0 ak+
∑n

k=0 bk =
0 + 0 = 0, hence u + v ∈ W3.

• The third condition is clear.

Hence, W3 is a subspace of V . (Can you find a basis for W3?)

(iv) As a brief foray into the study of infinite dimensional spaces, consider the vector space of
functions

V = {f | f : R→ R}.

Then the subset
W4 = {f : R→ R | f is continuous}

is a subspace of V , since

• the zero function is in W4;

• the sum of two continuous functions is continuous;

• given a scalar λ ∈ K, λf is continuous for any continuous function f .

To conclude this section, we note one of many intuitive properties of subspaces; that the
dimension of a subspace must be less than or equal to that of its enclosing space.

Theorem 1.3.5. Let W be a subspace of a finite dimensional vector space V . Then dimW ≤
dimV .

Proof 1.3.6. Let {wi}ni=1 be a basis of W so that dimW = n. Then, by definition, these
vectors are linearly independent, and also a subset of V . If they form a basis of V then
dimV = n. Otherwise, we can form a basis {vi}mi=1 such that m > n with vi = wi for
1 ≤ i ≤ n, and so dimV > dimW . �

1.4 Linear maps and matrices

Definition 1.4.1 (Linear map). Let U be a n-dimensional vector space and V be a m-
dimensional vector space. T : U → V is called a linear map if it satisfies

T (αu + βv) = αT (u) + βT (v), where u,v ∈ U, α, β ∈ K.

The space of all such linear maps is denoted L(V1, V2).

9



Linear maps are extremely important and form one of the cornerstones of linear algebra. Indeed,
the entire field of linear algebra originates from the investigation of systems of linear equations,
and developing the techniques required to solve such systems. Additionally, the behaviour
of many non-linear phenomena can be examined by considering an appropriate linearisation
– particularly in the study of non-linear differential equations. Such equations are prevalent
throughout applied mathematics, so it is essential that you have a good understanding of the
fundamental properties.

By this stage, you should have also encountered matrices and how they behave under some
elementary operations (e.g. addition, multiplication, inverses). You should also hopefully be
aware that linear maps and matrices share a very close link and can be considered in some
respects the same as each other. However, for completeness we provide the definition below.

Definition 1.4.2 (Matrix representation). Let T : U → V be a linear map. Given a basis
{ei}ni=1 of U and {fi}mi=1 of V , there exists a unique set of coefficients αij ∈ K such that

T (ej) =
m∑
i=1

αijfi, 1 ≤ j ≤ n.

Then the matrix representation of T is given byα11 . . . α1n
...

. . .
...

αm1 . . . αmn


As a shorthand notation we write A = (αij).

Remark 1.4.3. Remember that the choice of basis for both the domain and the range of the
map is essential when finding the matrix representation. For example, the matrix representation
of the identity map id : R3 → R3,x 7→ x under the standard basis is clearly

I3 =

1 0 0
0 1 0
0 0 1

 ,
where the n × n diagonal matrix In is called the identity matrix. However, under the basis
{(1, 1, 0), (0, 1, 0), (0, 0, 1)} in the domain (but not the range), the matrix representation is1 0 0

1 1 0
0 0 1

 6= I3

Perhaps the two most important definitions you need to remember about linear maps and
matrices – asides from their definition – is that of the image and kernel. These sets describe
the subset of the codomain that is covered by a linear map, and what elements of the domain
map to the zero element of the codomain respectively.

Definition 1.4.4 (Kernel and image). Let T : U → V be a linear map. The kernel of T ,
written kerT , is the set of vectors u ∈ U such that T (u) = 0V . The image of T , written ImT
is the set of vectors v ∈ V such that T (u) = v for some u ∈ U . In set notation, these are
written as

kerT = {u ∈ U | T (u) = 0V }, ImT = {T (u) | u ∈ U}.
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Remark 1.4.5. Equivalently given A, a matrix representation of T , we may write

kerA = {u ∈ U | Au = 0V }, ImA = {Au | u ∈ U}.

where Au denotes matrix-vector multiplication. Consequently kerT = kerA and NullT =
NullA.

Theorem 1.4.6. For T as above, ImT is a subspace of V and kerT is a subspace of U .

Proof 1.4.7. See example sheet 1. �

Definition 1.4.8 (Rank and nullity). By the above theorem, we may define the rank of a
linear map T : U → V (or a matrix representation) as the dimension of its image, and the
nullity of the map as the dimension of its kernel. That is,

RankT = dim(ImT ), NullT = dim(kerT ).

Whilst these concepts may not at first seem connected, they are linked through the remarkable
dimension formula.

Theorem 1.4.9 (Dimension formula). Let T : U → V be a linear map. Then dimU =
RankT + NullT .

We shall not prove this result here. However, the dimension formula does give a very useful
method of calculating the rank of the matrix knowing the nullity or vice-versa. Sometimes it
is the case that a linear map is defined in a complex fashion, and calculating the dimension of
one of these spaces is hard whereas the other is trivial or at least moderately straight-forward.
The dimension formula gives us a way to quickly calculate the rank or nullity of one without
knowing the other. It is also an extremely useful tool in the proof of many results throughout
linear algebra.

In practice it is often quicker to calculate the rank and then the nullity of a matrix. We will
demonstrate a method here which works quickly and easily using the matrix representation of
the map; however, we first need some basic definitions.

Definition 1.4.10 (Elementary operations). Let A = (aij) be a m × n matrix with rows
ri and columns cj. Then the elementary row (or column) operations on A are defined by:

1. Swapping a row (or column) of A, denoted by ri ↔ rj.

2. Multiplying a row (or column) of A by a scalar λ ∈ K, denoted by ri → λri.

3. Adding a multiple of a row (or column) of A to another row or column, denoted by
ri → ri + λrj.

The following theorem then allows us to connect elementary row and column operations to
calculating ranks of matrices.

Theorem 1.4.11. Let B be a m × n matrix obtained by use of elementary row and column
operations on a matrix A. Then Rank(B) = Rank(A).

Definition 1.4.12 (Row-echelon form). A matrix is said to be in row-echelon form if

(i) All non-zero rows are above any rows of all zeroes;
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(ii) The leading coefficient (the first non-zero number from the left) of each row is 1 and
always strictly to the right of the leading coefficient of the row above it.

Further, it is said to be in reduced row-echelon form if

(i) the matrix is in row-echelon form;

(ii) every leading coefficient is 1 and is the only non-zero entry in its column.

Theorem 1.4.13. Any m×n matrix A = (αij) can be transformed into row-echelon or reduced
row-echelon form through use of elementary row and column operations. Furthermore, this
transformation is unique.

Proof 1.4.14. We shall not explicitly prove this theorem, but the following algorithm yields
the unique row-echelon form of a matrix. At any particular stage we will consider a point (i, j)
corresponding to the matrix element αij, called the pivot point. Set (i, j) = (1, 1) and then
proceed in the following fashion:

1. If αkj = 0 for all k ≥ i then move the pivot to (i, j + 1) and repeat this step. If j = n then
stop.

2. If αij = 0 but αkj 6= 0 for some k > j then perform rk ↔ rj.

3. If αij 6= 1 then perform ri → α−1
ij ri.

4. If for any k > i, αkj 6= 0 then apply rk → rk − αkjri.

5. If i = m or j = n then stop. Otherwise, move the pivot to position (i+ 1, j+ 1) and go back
to step 1.

For reduced row-echelon form, replace step 4 by

4. If for any k 6= i, αkj 6= 0 then apply rk → rk − αkjri. �

Example 1.4.15. This algorithm is a little dense without an example. We demonstrate the
algorithm on a simple 4× 5 matrix in the table below.

Matrix Pivot point Step number Operation
0 0 1 2 1
2 4 2 −4 2
3 6 3 −6 3
1 2 3 3 3

 (1, 1) 2 r1 ↔ r2


2 4 2 −4 2
0 0 1 2 1
3 6 3 −6 3
1 2 3 3 3

 (1, 1) 3 r1 → r1/2


1 2 1 −2 1
0 0 1 2 1
3 6 3 −6 3
1 2 3 3 3

 (1, 1) 3
r3 → r3 − 3r1

r4 → r4 − r1
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1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 2 2 5

 (1, 1)→ (2, 2)→ (3, 3) 5, 1


1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 2 2 5

 (2, 3) 4 r4 → r4 − 2r2


1 2 1 −2 1
0 0 1 2 1
0 0 0 0 0
0 0 0 1 0

 (2, 3)→ (3, 4) 5, 2 r3 ↔ r4


1 2 1 −2 1
0 0 1 2 1
0 0 0 1 0
0 0 0 0 0

 (3, 4)→ (4, 5)→ stop 5, 1

The reduced row-echelon form can be found in a very similar fashion with resultant matrix
1 2 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0


So, how does the algorithm help us obtain the rank? We know by theorem 1.4.13 that row
operations do not change the rank of a matrix, but we need one final theorem.

Theorem 1.4.16. The rank of a matrix is equal to the number of non-zero rows of its row-
echelon or reduced row-echelon form.

Hence in the example above, Rank(A) = 3.

Finally, we introduce some special forms of matrices that you should be aware of. Usually when
a matrix has a special form (or can be transformed into a special form through elementary row
and column operations) then calculations can be made significantly easier.

Definition 1.4.17 (Triangular matrix). Let A = (αij) be a n × n matrix. A is said to be
lower triangular if αij = 0 for all i > j. Similarly, A is upper triangular if αij = 0 for all
i < j.

The two matrices below represent upper- and lower-triangular matrices in their general form.

U =


u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n

0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn

 L =


l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

. . .
...

ln1 ln2 ln3 . . . lnn
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1.5 The inverse of a matrix

Matrices are commonly used to represent systems of linear equations. For example,

x1 + 4x2 + x3 = 3

x1 + 2x2 − 2x3 = 6

2x1 + 3x2 + 3x3 = 1

⇐⇒

1 4 1
1 2 −2
2 3 3

x1

x2

x3

 =

3
6
1

 .
If we can find an inverse of the above matrix, we can easily find a solution to the system.

Definition 1.5.1. A n × n matrix A is invertible (or non-singular) if there exists a matrix
B such that AB = BA = In. B is called the inverse of A and is written A−1 = B. If A is not
invertible then it is called singular.

1.5.1 Determinants

There are a number of methods to determine whether a matrix is invertible. One such method
is through the determinant of a matrix.

Definition 1.5.2 (Determinant). Let A = (aij) be a n×n matrix. Then formally, we define
the determinant of A by the summation

det(A) =
∑
φ∈Sn

sgn(φ)a1φ(1)a2φ(2) . . . anφ(n),

where

Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ is a bijection}, sgn(φ) =

{
1, φ is even,

0, φ is odd.

Whilst this is a very formal definintion, you will have almost certainly seen determinants for
the cases n = 2 and n = 3:

n = 2:

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

n = 3:

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= a11a22a33 − a11a23a33 + a12a23a31 + a13a32a32 − a13a22a31

The precise definition of Sn (called the permutation group) and odd/even permutations is
beyond the scope of this course, although you can look them up in nearly every textbook
on basic linear algebra. However, this formal definition can be manipulated to yield some
fascinating results and properties which we outline in the following theorem.

Definition 1.5.3 (Transpose). Let A = (αij) be an m × n matrix. Then the transpose of
A, denoted A>, is an n×m matrix (βij) such that βij = αji.

Theorem 1.5.4 (Properties of the determinant). The determinant of an n× n matrix A
satisfies the following properties:
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(i) det(In) = 1.

(ii) det(A>) = det(A).

(iii) If B is a matrix obtained by swapping two rows of A then det(B) = − det(A).

(iv) If B is a matrix obtained by multiplying a row (or column) of A by λ ∈ K then det(B) =
λ det(A).

(v) If B is a matrix obtained by adding a multiple of a row (or column) of A to another row
(or column) of A then det(B) = det(A).

(vi) If B is an n× n matrix then det(AB) = det(BA).

(vii) If A = (αij) is an n × n upper-triangular or lower-triangular matrix then det(A) =
α11 · α22 · · ·αnn.

Example 1.5.5. There are many ways to calculate the determinant of a matrix, particularly
if the matrix has a special structure such as triangularity. However for a general matrix, there
are common techniques which are easily utilised. We will outline two methods here.

(i) The first is known as Cramer’s rule, and is the most natural method following nearly
directly from the definition of the determinant. We pick a row or column of the matrix,
and then ‘expand’ about this row or column. In general, if Aij is the (n − 1) × (n − 1)
matrix obtained by removing the i-th row and j-th column of A = (aij), then expanding
about the k-th row or column gives

det(A) =
n∑
i=1

(−1)i+kaik det(Aik)

=
n∑
j=1

(−1)k+jakj det(Akj).

You have seen this already when calculating a 3 × 3 determinant as the summation of
three 2× 2 determinants. As a larger example, consider the matrix

A =


1 0 1 2
−1 3 2 3
2 5 1 −3
0 1 1 0


Expanding about the last row, one obtains

det(A) = (−1)6 · 1 ·

∣∣∣∣∣∣
1 1 2
−1 2 3
2 1 −3

∣∣∣∣∣∣+ (−1)7 · 1 ·

∣∣∣∣∣∣
1 0 2
−1 3 3
2 5 −3

∣∣∣∣∣∣ = 30.

You are ill advised to use this method on large matrices, since in general at the n-th stage,
this algorithm will require evaluating n subdeterminants of size (n−1)× (n−1), meaning
that this algorithm has O(n!) complexity! This being said, it is very useful for evaluating
determinants of sparse matrices, since a careful choice of row or column containing many
zeros to expand about may yield a quick answer.

(ii) Theorem 1.5.4 tells us the effect of elementary row operations on the determinant. By
repeatedly applying swapping and subtraction operations it is easy to put the matrix in
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upper-triangular form. For example,∣∣∣∣∣∣∣∣
0 1 1 2
1 2 1 1
2 1 3 1
1 2 4 2

∣∣∣∣∣∣∣∣
r1↔r2−−−→ −

∣∣∣∣∣∣∣∣
1 2 1 1
0 1 1 2
2 1 3 1
1 2 4 2

∣∣∣∣∣∣∣∣
r3→r3−2r2
r4→r4−r1−−−−−−→ −

∣∣∣∣∣∣∣∣
1 2 1 1
0 1 1 2
0 −3 1 −1
0 0 3 1

∣∣∣∣∣∣∣∣
r3→r3+3r2−−−−−−→

−

∣∣∣∣∣∣∣∣
1 2 1 1
0 1 1 2
0 0 4 5
0 0 3 1

∣∣∣∣∣∣∣∣
r4→r4−

3
4
r3

−−−−−−−→ −

∣∣∣∣∣∣∣∣
1 2 1 1
0 1 1 2
0 0 4 5
0 0 0 −11

4

∣∣∣∣∣∣∣∣
and hence the determinant is 11. This is a much faster approach for larger matrices.

As a last word on singularity, here is an extremely useful and important theorem which ties
together all of our knowledge so far.

Theorem 1.5.6. The following statements are equivalent:

(i) A is a singular n× n matrix;

(ii) detA = 0;

(iii) RankA < n;

(iv) There exists v ∈ kerA such that v 6= 0.

1.5.2 Calculating the inverse

We have, in fact, already seen one of the most efficient methods for calculating the inverse of
a matrix. If we begin with an invertible n× n matrix A and compute its reduced row-echelon
form, we obtain the identity matrix In. Curiously, if we start from the identity matrix, and
apply the same operations we used to compute the reduced row-echelon form of A, then we
obtain A−1.

Whilst this might seem a little counter-intuitive, this technique works because any elementary
row operation can be viewed as a matrix multiplication. Each elementary row operation has
an equivalent matrix form so that the resulting product performs the desired operation. For
example to swap rows 2 and 3 of a 3× 3 matrix A we can perform a multiplication by a matrix
U where 1 0 0

0 0 1
0 1 0

1 2 3
4 5 6
7 8 9

 =

1 2 3
7 8 9
4 5 6

 .
Such matrices are called elementary matrices. If a matrix is invertible, then there exist a
sequence of elementary matrices E1, . . . , Ek such that

(E1E2 · · ·Ek)A = In,

and so post-multiplying both sides of this equation by A−1 we find (E1E2 · · ·Ek)In = A−1.
Finally then, we present an example to illustrate this method and demonstrate how to find the
inverse of a 3× 3 matrix.

16



Matrix Operation Identity1 2 3
1 1 0
3 2 1

 r2 → r2 − r1

r3 → r3 − 3r1

1 0 0
0 1 0
0 0 1


1 2 3

0 −1 −3
0 −4 −8

 r2 → −r2

 1 0 0
−1 1 0
−3 0 1


1 2 3

0 1 3
0 −4 −8

 r1 → r1 − 2r2

r3 → r3 + 4r2

 1 0 0
1 −1 0
−3 0 1


1 0 −3

0 1 3
0 0 4

 r3 → 1
4
r3

−1 2 0
1 −1 0
1 −4 1


1 0 −3

0 1 3
0 0 1

 r1 → r1 + 3r3

r2 → r2 − 3r3

−1 2 0
1 −1 0
1
4
−1 1

4


1 0 0

0 1 0
0 0 1

 done

−1
4
−1 3

4
1
4

2 −3
4

1
4
−1 1

4



Therefore we have that 1 2 3
1 1 0
3 2 1

−1

=

−1
4
−1 3

4
1
4

2 −3
4

1
4
−1 1

4

 .

1.6 Eigenvalues and eigenvectors

Calculating the eigenvalues and eigenvectors of a matrix are particularly important in many
areas of applied mathematics. We will make heavy use of them in the following chapter, and
we therefore give their definition, a brief outline of some important results and some examples
of how to calculate them here.

Definition 1.6.1 (Eigenvalues and eigenvectors). Let V be an n-dimensional vector space
and T : V → V a linear transformation of V with a matrix representation A. Then λ ∈ K is
an eigenvalue of A if there exists a non-zero vector v ∈ V such that

T (v) = λv⇔ Av = λv.

The vector v is called the eigenvector corresponding to λ.

Definition 1.6.2 (Characteristic polynomial). For A as defined above, the characteris-
tic polynomial of degree n is defined by

fA(z) = det(A− zIn)
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where In is the identity matrix.

Theorem 1.6.3. λ is an eigenvalue of A if and only if fA(λ) = 0.

Proof 1.6.4. We first prove the forward direction. Let λ be an eigenvalue of A. Then there
exists v ∈ V with v 6= 0 such that Av = λv, and so (A− λIn)v = 0. By definition, this means
that v ∈ ker(A− λIn) and Null(A− λIn) > 0. Applying the dimension formula we see that

Rank(A− λIn) = n− Null(A− λIn) < n,

hence any n vectors belonging to the image of A− λIn are linearly dependent. It follows that
fA(z) = det(A− λIn) = 0.

Suppose that fA(λ) = 0. Then by theorem 1.5.6, the transformation (A − λIn) is singular.
Moreover, by the same theorem, there exists v ∈ ker(A−λIn) with v 6= 0 such that (A−λIn)v =
0. This implies Av = λv, so λ is an eigenvalue of A. �

Definition 1.6.5 (Eigenspace). Let λ be an eigenvalue of A. Then the set

{v | v is an eigenvector of A} ∪ {0} = ker(A− λIn)

is called the eigenspace of λ.

Example 1.6.6. In this example we will calculate the eigenvalues and eigenvectors of real-
valued 2×2 matrices, and demonstrate the three outcomes which are possible. These correspond
to all of the possible roots of a polynomial f(z): we can either obtain two real values, a single
repeated value or a complex conjugate pair.

(i) Consider the matrix

A =

[
−4 2
3 −5

]
.

Theorem 1.5.6 gives us an ideal way to find all of the eigenvalues of A. We first calculate
fA(z) by expanding the determinant;

fA(z) =

∣∣∣∣−4− z 2
3 −5− z

∣∣∣∣ = (4 + z)(5 + z)− 6 = z2 + 9z + 14 = (z + 7)(z + 2).

Hence we see that the eigenvalues of A are λ1 = −2 and λ2 = −7.

To find the eigenvectors of A, we simply use the definition. Since the eigenvector v
correspoding to λ1 will satisfy (A+ 2I2)v = 0, writing v = (v1, v2)> we see that[

−2 2
3 −3

] [
v1

v2

]
=

[
0
0

]
.

This immediately shows that −2v1 + 2v2 = 0, and hence v1 = v2. Also we see that
3v1 − 3v2 = 0, which also shows v1 = v2. We therefore see that the eigenvector for λ1 is

v =

[
v1

v1

]
= v1

[
1
1

]
This highlights an important point: eigenvectors are not generally unique. This is
clear because the eigenspace of an eigenvalue is (for real matrices) at least dimension 1,
and thus is spanned by a single vector. However, the subspace will in general have more
than one element. Usually we omit the constant and write v = (1, 1)>.

For λ2, in a similar fashion we find that 3v1 + 2v2 = 0 and hence v2 = −3
2
v1. So

v = (3,−2)>.
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(ii) Consider the matrix

A =

[
7 −1
4 3

]
⇒ fA(z) = z2 − 10z + 25 = (z − 5)2.

In this example, we only obtain one repeated eigenvalue – in this case, the eigenvalue is
said to have multiplicity of 2. Typically to denote this we write λ1,2 = 5. Following the
usual procedure we obtain one eigenvector, v = (1, 2)>.

Note that in some cases, you may be able to find more than one eigenvector for a repeated
eigenvalue. For example, the identity matrix has a single eigenvalue λ = 1, and any non-
zero vector in R2 is an eigenvector.

(iii) Consider the matrix

A =

[
1 −2
1 3

]
⇒ fA(z) = z2 − 4z + 5.

In this case the characteristic polynomial has no real roots. Instead we find that

λ1,2 = 1
2
(4±

√
−4) = 2± i,

so that the eigenvalues of the matrix are not real. This is perfectly acceptable, and we
can continue as usual to find the eigenvectors (2,−1− i)> and (2,−1 + i)>.

Finally, we finish the section with two small results which allow you to calculate the eigenvalues
of triangular matrices very easily.

Theorem 1.6.7. Suppose that A = (αij) is a n × n upper- or lower-triangular matrix. Then
for all 1 ≤ i ≤ n, αii is an eigenvalue of A.

Corollary 1.6.8. Let A be an n × n matrix. Then det(A) = λ1λ2 · · ·λn, where λi is an
eigenvalue of A.

1.7 Diagonalising a matrix

Definition 1.7.1. An n × n matrix is said to be diagonalisable if there exists a matrix P
such that P−1AP is a diagonal matrix.

We will quickly set up the framework to allow us an easy way to find whether or not a matrix is
diagonalisable, and how to find the matrix P . As we shall see, the diagonalisation of a matrix
is intricately linked to the eigenvector decomposition of the matrix. We start by proving that
the eigenvectors of a linear map form a basis for the domain.

Lemma 1.7.2. Let T : V → V be a linear map with matrix representation A. Then A is
diagonal with respect to some basis of V if and only if V has a basis consisting of eigenvectors
of T .

Proof 1.7.3. Suppose that A = (αij) is diagonal with respect to the basis {ei}ni=1. This implies
that Aei = αiiei, and so ei is an eigenvector of A.

Now suppose that {e1, . . . , en} is a basis of V consisting of eigenvectors. Then, by definition,
T (ei) = λei and so the matrix is diagonal. �
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Theorem 1.7.4. A matrix A has n linearly independent eigenvectors if and only if A is diag-
onalisable.

Example 1.7.5. Consider the matrix from example 1.6.6(i). Then the matrix P is given by

P =

[
1 −2
1 3

]
⇒ P−1AP =

1

5

[
3 2
−1 1

] [
−4 2
3 −5

] [
1 −2
1 3

]
=

[
−2 0
0 −7

]
Notice that the diagonal matrix we obtain contains the eigenvalues along the diagonal.

Whilst the above theorem works well for those matrices which have linearly independent eigen-
vectors, we are so far not able to say anything for those which do not. The matrix of example
1.6.6(ii) only has a single eigenvector for its repeated eigenvalue. It is clear from the contra-
positive of the above theorem that this matrix is not diagonalisable, but how close can we get
to a diagonal matrix?

The final piece of the puzzle is to be able to find vectors which are ‘nearly’ eigenvectors, in the
sense that we can use them to ‘almost’ diagonalise a matrix.

Definition 1.7.6 (Generalised eigenvector). Given a matrix A with eigenvalue λ with mul-
tiplicity k ≥ 1, then a non-zero vector v ∈ V is said to be a generalised eigenvector if

(A− λIn)kv = 0.

It can be proven that if λ is an eigenvalue of multiplicity k, then Null(A − λIn)k = k which
guarantees we can always find a basis consisting of eigenvectors and generalised eigenvectors.

Calculating a generalised eigenvector is relatively straightforward after proving some properties
of the null-space of the powers of a matrix which we will omit here. We construct a sequence
of vectors x1, . . . ,xk such that

(A− λIn)xi = xi−1,

where we define x0 = 0 so that x1 is the regular eigenvector of the system. Each resulting xi
for i > 1 is a generalised eigenvector. Using this method, for a eigenvalue of multiplicity k we
therefore find k− 1 linearly independent generalised eigenvectors which span the eigenspace of
λ. Coupled with the other eigenvectors of the system, this gives us a basis for the entire space.

Example 1.7.7. Let us consider the matrix in example 1.6.6(ii). We found that the character-
istic polynomial had a root λ1,2 = 5 of multiplicity 2 with an associated eigenvector x1 = (1, 2)>.

To find the generalised eigenvector, we solve the equation

(A− 5I2)x2 = x1,

so that
(A− 5I2)2x2 = 02×2

where the zero matrix 0n×m is the n×m matrix of zeroes. Hence we obtain the equations[
2 −1
4 −2

] [
x
y

]
=

[
1
2

]
.

Notice that just like regular eigenvectors, the generalised eigenvector is not uniquely determined
by this equation. We see that 2x − y = 1, and so y = 2x − 1 giving x2 = (x, 2x − 1)>. At
this point we can pick any value of x to give us a solution. Picking x = 0 gives the generalised
eigenvector x2 = (0,−1)>.
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Importantly, generalised eigenvectors allow us to ‘nearly’ diagonalise a matrix. In the example
above, consider the matrix P formed by regular eigenvector x1 and the generalised eigenvector
x2. The obvious choice for P then is

P =

[
1 0
2 −1

]
.

Since x1 and x2 are linearly independent by construction, P is invertible, and so

P−1AP =

[
5 1
0 5

]
The resultant matrix gives us a special form of A which has the (repeated) eigenvalue along
the diagonal and an entry of 1 above the diagonal. This remarkable fact can be generalised to
any n× n matrix, as the next theorem describes.

Theorem 1.7.8. Let A be an n×n matrix with eigenvalues λ1, . . . λn which are not necessarily
distinct. Then there exists an invertible matrix P such that

P−1AP =



λ1 a1 0 · · · 0 0
0 λ2 a2 · · · 0 0
0 0 λ3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λn−1 an−1

0 0 0 · · · 0 λn


where each ai is either 0 or 1. P−1AP is said to be the Jordan canonical form or Jordan
normal form of the matrix A.

Finding the Jordan canonical form of a general n× n matrix is not covered in this course - at
most we will consider a 3× 3 matrix. However the same approach outlined here will work for
larger matrices, at the expense of a greater degree of difficulting in determining the eigenvalues
and eigenvectors.

To conclude this material on eigenvalues and eigenvectors, we state a remarkable theorem
connecting the characteristic polynomial to the matrix from which it is derived.

Theorem 1.7.9 (Cayley-Hamilton). Let A be a n× n matrix with characteristic equation
fA(z). Then fA(A) = 0n×n.

The proof of the Cayley-Hamilton theorem falls beyond the scope of this short course. However,
do not be tempted to use the false proof of

fA(A) = det(A− AIn) = det(0n×n) = 0n×n

since the first equality does not make sense. As an example, if the characteristic equation
for a 2 × 2 matrix A is fA(z) = z2 + 2z + 5, then the Cayley-Hamilton theorem states that
A2 + 2A+ 5I2 = 0.

Example 1.7.10. The Cayley-Hamilton theorem can be applied in a number of interesting
ways. Here, we show two such examples.
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(i) In this first example, we shall find a non-diagonal matrix A such that A2 + 5A+ 6I = 0.

One obvious approach is to assume that the matrix is a 2 × 2 matrix of arbitrary form,
evaluate the left hand side and find a solution to the system of equations. However this
takes quite a lot of time! Instead, we note that, by the Cayley-Hamilton theorem, we
need only find a matrix which has characteristic polynomial

fA(z) = z2 + 5z + 6.

Clearly fA(z) = (z + 3)(z + 2), and so if we can find a matrix with eigenvalues λ1 = −3,
λ2 = −2 then the problem is solved. An obvious choice is the matrix

A =

[
−3 1
0 −2

]
which is upper-triangular and so has the appropriate eigenvalues. To verify, manually
evaluating the expression we see that

A2 + 5A+ 6I =

[
9 −5
0 4

]
+

[
−15 5

0 −10

]
+

[
6 0
0 6

]
= 0n×n.

(ii) We will show that the matrix

A =

 0 1 −1
1 1 0
−1 0 1


satisfies the horrific equality A6 = 4A4 + 4A3 − 7A2 − 4A + 4I3. Whilst this is possible
through direct calculation, working out the sixth power of a 3 × 3 matrix is clearly ex-
tremely time consuming! We will show an alternative method using the Cayley-Hamilton
theorem.

First, we find the characteristic equation. This is somewhat more tricky for 3×3 matrices,
but the methodology is essentially the same.

fA(z) =

−z 1 −1
1 1− z 0
−1 0 1− z

 = −z(1− z)2 − (1− z)− (1− z)

= −z3 + 2z2 + z − 2

If we were to calculate the eigenvalues at this point then the process is a little convoluted.
The standard method is to guess a root of the polynomial and factor it from there.

However in this case we simply apply the Cayley-Hamilton theorem which implies that

−A3 + 2A2 + A− 2I3 = 03×3 ⇒ A3 = 2A2 + A− 2I3.

This immediately implies that

A6 = (2A2 + A− 2I3)2 = 2A2(2A2 + A− 2I3) + A(2A2 + A− 2I3)− 2I3(2A2 + A− 2I3)

= 4A4 + 4A3 − 7A2 − 4A+ 4I3.
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1.8 Dual spaces

Let V be a finite dimensional real vector space with basis {ei}ni=1. The maps fj : V → R
defined by

fj : v =
n∑
i=1

aiei 7→ aj for j = 1, . . . , n

give you the coordinates of any vector e in the basis of ei. This is an example of a linear
functional.

Definition 1.8.1 (Linear functional). A linear functional on a vector space V over K is
a map f : V → K satisfying

f(αx + βy) = αf(x) + βf(y), α, β ∈ K, x,y ∈ V.

Example 1.8.2. Let V = Pn[x], and take x ∈ [0, 1]. Then

1. fj (
∑n

i=0 αix
i) = αj for j = 0, . . . , n;

2. f (
∑n

i=0 αix
i) =

∑n
i=1 αi;

3. f (
∑n

i=0 αix
i) =

∑
αix

i
0 for some x0 ∈ [0, 1];

are all examples of linear functionals over V .

Definition 1.8.3 (Dual space). Denote the set of all linear functionals on V by V ∗. V ∗ is
called the dual space to V .

Whilst we will not study them in detail here, dual spaces are typically used in the study of
infinite dimensional spaces. They are particularly important in measure theory (and hence
probability theory), and also in the general study of functional analysis. They can be quite
tricky to study in infinite dimensional cases. But like a lot of other things, dual spaces are a
lot easier to deal with in a finite dimensional setting.

Dual spaces are useful because we may construct isomorphisms which allow us to transfer results
from one space easily to results about its dual space. Quite often the proof in one may be far
easier, or more succinct, than the corresponding proof in the other. We state a few theorems
here.

Lemma 1.8.4. Let V be a finite-dimensional vector space. Then V ∗ is finite dimensional and
dimV ∗ = dimV .

Proof 1.8.5. This follows from one of the simple examples given above. Take {ei}ni=1 as a
basis of V . Then define ei : V → K defined by

ei(a1e1 + · · ·+ · · · anen) = ai

It is clear that this forms a basis for V ∗. In fact, this is known as the dual basis of {ei}ni=1.
Since there are precisely n elements in the basis and dual basis, we immediately see that
dimV ∗ = dimV . �

This proof leads to a very nice result, and one that is fundamental to the study of dual vector
spaces.

Theorem 1.8.6. If V is a finite dimensional vector space then V is isomorphic to V ∗∗.
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Proof 1.8.7. This follows since every vector v in V can be thought of as a linear functional
on V ∗. Indeed, given v∗ in V ∗, define v(v∗) to be v∗(v). We can rephrase this as follows: there
is a map g : V → V ∗∗ which maps v in V to g(v) in V ∗∗, where g(v) is the linear functional on
V ∗ defined by the formula g(v)(v∗) = v∗(v).

It is clear that g is linear, and so if we can show that ker g = {0} then it follows by theorem
1.5.6 that the image of g is V ∗∗, and hence g is an isomorphism.

Let v be a non-zero vector in V . Then v = a1e1 + · · · + anen and at least one ai is non-zero.
Then ei(v) = ai and so ei is non-zero. Hence (by taking the contrapositive), ker g = {0} and
g is an isomorphism. �

1.9 Inner product (scalar product)

The definition of a vector space gives the description of lines, planes, parallel lines and subspaces.

In order to define the length of a vector and the angles between vectors (in particular to define
orthogonality) we need to introduce an additional structure on the vector space - the inner
product, otherwise known as the scalar product.

Definition 1.9.1 (Inner product). Let V be a finite dimensional vector space. Let h : V ×
V → R be

• bilinear: h(λx1 + y1, µx2 + y2) = λµh(x1, x2) + λh(x1, y2) + µh(y1, x2) + h(y1, y2);

• symmetric: h(x, y) = h(y, x) for x, y ∈ V ;

• positive definite: h(x, x) > 0 ∀x 6= 0 and h(x, x) = 0 if and only if x = 0.

Then h defines an inner product on V , and V is called a Euclidean space. Usually we do
not denote the inner product as a function, but instead by the symbol 〈u, v〉 = h(u, v).

An important property of the inner product is that it allows us to define whether two vector
or orthogonal to one another.

Definition 1.9.2. Suppose that V is a vector space and W = {fi}ni=1 ⊂ V . Then W is said to
be an orthogonal set under an inner product if 〈fi, fj〉 = 0 for i 6= j.

Further, W is an orthonormal set if

〈fi, fj〉 = δi,j

where

δi,j =

{
0, i 6= j

1, i = j

is the Kronecker delta.

Theorem 1.9.3 (Gram-Schmidt). Suppose that V is a vector space and W = {fi}ni=1 ⊂ V
are linearly independent. Then, given an inner product 〈·, ·〉 on V , there exists vectors {gi}ni=1

which are orthonormal and a linear combination of the vectors in W .

Proof 1.9.4. We prove this theorem by an algorithm for constructing gi inductively. Note
that since W contains linearly indepdent vectors, by definition they are all non-zero.
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• Set g1 =
f1

〈f1, f1〉
.

• For 2 ≤ i ≤ n, define xi = fi − 〈fi,gi−1〉gi−1.

• Finally, set gi =
xi

〈xi,xi〉
.

It is easy to show that this process generates a set of vectors with the desired properties. �
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Chapter 2

Differential Equations

Differential equations form a fundamental part of any applied mathematics as they are so adept
at describing real-world phenomena. Therefore it is vital that you have a good understanding
of basic ordinary and partial differential equations.

The goal of this chapter is to equip you with the knowledge and techniques required to solve
various simple ordinary and partial differential equations. Whilst there is a large amount of
material outlining quantitative methods for analysis of differential equations, we will not cover
that here.

Firstly we will introduce a variety of definitions and theorems from the study of multi-variate
calculus. Despite the fact that most of the differential equations you will work with are partial
differential equations (PDEs) we will then continue with an overview of ODEs. The main
reason for this is the fact that an important tool of PDEs is to reduce the problem to one or
more system of ODEs. Finally, we will solve the one-dimensional wave equation.

2.1 Differentiation

The definitions and theorems stated in this chapter are taken from a summary of a second
year course in differentiation by J. Rawnsley. They form the basic knowledge in the theory of
multivariate functions. The main aim of this section is to form the knowledge you will need in
order to find local extrema of functions both with and without constraints.

2.1.1 Norms

Norms are common to a lot of areas of mathematics and have a close relationship with the inner
products we defined in the last chapter. They define the concept of magnitude of a vector.

Definition 2.1.1 (Norm). Let V be a vector space over a field K containing complex num-
bers. A norm is a function f : V → R which, for u,v ∈ V and a ∈ K satisfies

(i) p(av) = |a| p(v);

(ii) p(u + v) ≤ p(u) + p(v);

(iii) p(u) = 0 if and only if u = 0.

We typically write ||u|| = p(u).
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Example 2.1.2. There are many important norms you should be aware of; however three of
the most common norms are defined below.

(i) Of course, the standard example of a norm is the Euclidean norm. Let V = Rn and
x = (x1, . . . , xn) ∈ Rn. Then define

||x|| =

√√√√ n∑
k=1

x2
k.

(ii) In fact, the Euclidean norm is a special case of a more generalised set of norms. Let p ≥ 1,
and define the norm

||x||p =

(
n∑
k=1

|xk|p
)1/p

This is called the `p norm. We can also define the ‘limiting’ norm

||x||∞ = max
1≤k≤n

|xk|

which is called the `∞ norm.

(iii) We can also define norms on function spaces. For a set Ω ⊂ R, let

V (Ω) = {f : Ω→ R | f is integrable}.

Then for any p ≥ 1 we may define the norm

||f ||p =

(∫
Ω

|f(x)|p dx

)1/p

is called the Lp norm, and is the continuous analogue of the discrete version we saw
above.

Definition 2.1.3 (Open ball). Given a norm ||·|| on a vector space V we define an open ball
of radius ε around a point x0 ∈ V as the set

Bε(x0) = {x ∈ V | ||x− x0|| < ε}.

2.1.2 Limit and continuity

Definition 2.1.4 (Limit). Let f : Rn → Rm be a map and x0 ∈ xn. A ∈ Rm is called a limit
of f at x0 if for any ε > 0 there exists δ > 0 such that for any x ∈ Rn, ||x− x0|| < δ one has
||f(x)− A|| < ε. In this case one writes

lim
x→x0

f(x) = A.

Definition 2.1.5 (Continuous). f is called continuous at x0 if limx→x0 f(x) = f(x0). f is
called continuous if it is continuous at every point of its domain of definition.

The typical analogy of a continous function is one which, if you were to draw it, would not
require you to lift your pen off of the paper.
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2.1.3 Differentiability

Definition 2.1.6 (Differentiable). f : Rn → Rm is differentiable at a ∈ Rn if there is a
linear map L : Rn → Rm such that

lim
x→a

||f(x)− f(a)− L(x− a)||
||x− a||

= 0.

L is unique and is called the derivative daf of f at a. Differentiable maps are continuous.

Theorem 2.1.7. The following statements define several important properties of differentiable
functions.

(i) Chain rule: If f : Rn → Rm is differentiable at a and g : Rm → Rp is differentiable at
b = f(a) then the composition f ◦ g is differentiable at a and

da(g ◦ f) = dbg ◦ daf.

(ii) If L is a linear map, then L is differentiable and daL = L.

(iii) Leibniz rule: If f, g : Rn → R (note image is R) are differentiable at a then so is the
product fg and

da(fg) = f(a)dag + g(a)daf.

(iv) Quotient Rule: If f, g : Rn → R are differentiable at a and g(a) 6= 0 then so is the
quotient f/g and

da(f/g) =
g(a)daf − f(a)dag

g(a)2
.

(v) f : Rn → Rm is differentiable at a if and only if all the components fi, i = 1, . . . ,m are
differentiable at a.

2.1.4 Partial derivatives

Definition 2.1.8 (Partial derivative). Suppose that f : Rn → R. Then the i-th partial
derivative of f is defined as

∂f

∂xi
(a1, . . . , an) = lim

t→0

f(a1, . . . , ai−1, ai + t, ai+1, . . . , an)− f(a1, . . . , an)

t
,

where the limit exists.

Lemma 2.1.9. If f : Rn → R is differentiable then all of its partial derivatives exist and

∂f

∂xi
(a1, . . . , an) = daf(ei)

where e1, . . . , en is the standard basis of Rn. In addition, if the partial derivatives of f are
continuous then f is differentiable.
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Definition 2.1.10 (Jacobian). The Jacobian of f : Rn → Rm is the m×n matrix of partial
derivatives

Jaf =


∂f1

∂x1

(a) . . .
∂f1

∂xn
(a)

...
. . .

...
∂fm
∂x1

(a) . . .
∂fm
∂xn

(a)


and is the matrix of daf in the standard basis when f is differentiable at a. The chain rule
translates as matrix multiplication

Ja(g ◦ f) = Jf(a)g Jaf.

In addition, the special case of m = 1 allows the Jacobian to be written as a vector in Rn called
the gradient:

∇f(a) =

(
∂f

∂x1

(a), . . . ,
∂f

∂xn
(a)

)
.

2.1.5 Higher derivatives

Definition 2.1.11 (Higher derivative). If dxf exists for all x ∈ U , we may view the deriva-
tive as a map df : U → L(Rn,Rm) and say f is twice differentiable at a if df is differentiable
at a. Set d2

a = da(df) and d2
a(v,w) = (d2

a(v))(w).

In the special case of functions f : Rn → R, second order derivatives are denoted by

∂2f

∂xi∂xj
= ∂2

xixj
f.

Definition 2.1.12 (Hessian). Let f : Rn → R. Suppose that the partial derivatives of f
have partial derivatives. Then the matrix of second partial derivatives is called the Hessian
matrix Haf = (αij), where

αij =
∂2f

∂xi∂xj
(a).

Theorem 2.1.13. Let f : Rn → R, and suppose that f has second-order partial derivatives
which are continuous. Then

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a).

Corollary 2.1.14. Let f be as in the previous theorem. Then Haf is symmetric.

This corollary can actually be quite a time-saver, since we can simply calculate a single second-
order mixed derivative and see if it is continuous. If it is, then we only need to calculate the
upper- or lower-triangular part of the Hessian.

Finally, we conclude this section with a brief application of higher derivatives.

Definition 2.1.15 (Ck class). Let f be as in the previous definition. If U is an open set in
Rn and f : U → Rm a map then f is of class Ck (or f ∈ Ck(U,Rm)) if f has k-fold partial
derivatives at each point of U and the k-th order partial derivatives are continuous.
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Theorem 2.1.16 (Taylor’s theorem). If f is in Ck+1 on U , a ∈ U and Bε(a) ⊂ U then f
has a Taylor expansion for ||h|| < ε:

f(a + h) = f(a) +
∑
i

hi
∂f

∂xi
(a) + · · ·+ 1

k!

∑
i1...ik

hi1 . . . hik
∂kf

∂xi1 . . . ∂xik
(a) +Rk(a,h)

where ||Rk(a,h)|| / ||h||k → 0 as h→ 0. Rk(a,h) is called the remainder function.

2.1.6 Maxima and minima

Having defined the concept of a derivative in multiple dimensions, we now turn our attention
to utilising these techniques to locate minima and maxima of some differentiable functions.

Definition 2.1.17 (Local extrema). A point a is a local maximum (or minimum) of f :
U → R if there exists ε > 0 such that for all x ∈ Bε(a), f(x) ≤ f(a) (or f(x) ≥ f(a)).

Definition 2.1.18 (Critical point). A point a is a critical point of f if daf = 0.

Theorem 2.1.19. Every local maximum or minimum is a critical point.

Remark 2.1.20. It is extremely important to remember that the converse of the previous
theorem is not true. For example, the one-dimensional function f : R→ R with f(x) = x3 has
a critical point at x = 0 which is neither a local maximum or minimum. However, we can use
some properties of the derivative in order to attempt to classify the critical points that we find.

Definition 2.1.21 (Definite matrix). Let A be an n× n matrix with eigenvalues λk. A is:

• Positive definite if λi > 0 for all 1 ≤ i ≤ n;

• Negative definite if λi < 0 for all 1 ≤ i ≤ n;

Theorem 2.1.22. Let f : Rn → R and suppose a ∈ Rn is a critical point of f with Hessian
Haf . Then:

• if Haf is positive definite then a is a local minimum;

• if Haf is negative definite then a is a local maximum;

• if the eigenvalues of Haf are all non-zero then a is a saddle point;

• otherwise, classification is not possible.

Example 2.1.23. We will now study some simple examples demonstrating the approach you
should take when attempting to find local extrema. The approach is quite straightforward. We
first find all critical points of f , and then apply theorem 2.1.22 to determine what the critical
points are.

Whilst in general it will not always be the case that the points can be classified, in this course
we will not consider functions where this is the case.

(i) First consider a map f : R2 → R defined by f(x) = f(x, y) = x2 +y2. This is a nice initial
example, since it defines the surface obtained by rotating the function g(x) = x2 around
the z-axis. It is therefore obvious that there should be a local minimum at (x, y) = (0, 0)
– in fact it is easy to prove that this will be a global minimum.
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We first calculate the derivative. In this case, we do not need to calculate dxf explicitly
since the partial derivatives are continuous and so the gradient will suffice. This gives

∇f(x) = (∂xf(x), ∂yf(x)) = (2x, 2y).

Setting this equal to zero yields only the trivial solution (x, y) = (0, 0). The Hessian of f
for any point x ∈ R2 is given by

Hxf =

[
2 0
0 2

]
yielding a single eigenvalue λ = 2 of multiplicity 2. Since this is positive, (0, 0) is therefore
a local minimum of f .

(ii) Now consider the function f : R2 → R with f(x, y) = 3xy − x3 − y3. Calculating the
partial derivatives, we see that

∇f(x) = (3y − 3x2, 3x− 3y2).

Setting this equal to zero, we see that y = x2 and so x− x4 = x(1− x3) = 0. Hence the
critical points are (x, y) = (0, 0) and (1, 1). Finally, the Hessian is given by

Hxf =

[
−6x 3

3 −6y

]
⇒ H(0,0)f =

[
0 3
3 0

]
, H(1,1)f =

[
−6 3
3 −6

]
.

For the first matrix we therefore obtain eigenvalues λ1,2 = ±3 and hence (0, 0) is a saddle
point. In the second case, we obtain the characteristic equation (6 + z)2 − 9 = 0, giving
solutions 6 + z = ±3⇒ λ1,2 = −6± 3 < 0 and so (1, 1) is a local maximum.

2.1.7 Constrained maxima and minima

Theorem 2.1.24. Let U ⊂ Rn and assume we have two functions f, g : U → R that are C1

(continuous first partial derivatives). Suppose that f has a local maximum (or minimum) f(x0)
at x0 ∈ U when x is subject to the constraint g(x) = 0. If ∇g(x0) 6= 0 then there exists a real
number λ, the Lagrange multiplier, such that

∇f(x0) = λ∇g(x0).

Example 2.1.25. We consider two examples to demonstrate how the previous theorem can
be applied to find constrained maxima and minima.

(i) First, we will find the extrema of the function f : R2 → R with f(x, y) = xy assuming
that (x, y) is restricted to the ellipse 4x2 + y2 = 4.

In this example the constraint is g(x, y) = 4x2 +y2−4 = 0. Setting ∇f(x, y) = λ∇g(x, y),
we obtain

(y, x) = λ(8x, 2y)

which when combined with the original condition give us the equations
y = 8λx,

x = 2λy,

0 = 4x2 + y2 − 4.

Now, for example, we can substitute to obtain

x = 2λy = 2λ(8xλ) = 16xλ2,
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and so x(1− 16λ2) = 0. Hence x = 0 or λ = ±1
4
.

If x = 0 then the constraint gives us that y = ±2. Since y 6= 0, the second equation implies
λ = 0; however if this is true then the first equation gives y = 0 which is a contradiction,
therefore (0,±2) cannot be a critical point.

If λ = ±1
4
, then y = 8xλ = ±2x. Again using the constraint, in either case we see that

8x2 = 4 and so x = ± 1√
2

with corresponding y values of y = ±
√

2. This then yields four
extrema,

(x, y) = (0,±2), ( 1√
2
,±
√

2), (− 1√
2
,±
√

2).

We therefore find that

f(0,±2) = 0, f( 1√
2
,±
√

2) = ±1, f(− 1√
2
,±
√

2) = ∓1.

It is clear then that ( 1√
2
,
√

2) and (− 1√
2
,−
√

2) maximise f under this constraint, whereas

(− 1√
2
,
√

2) and ( 1√
2
,−
√

2) minimise f .

(ii) For a more applied example, let us use Lagrange multipliers to calculate the minimum
distance between the point (x, y) = (0, 1) and the hyperbola x2 − 2y2 = 1.

The square of the distance from the point (0, 1) to any point (x, y) in the Cartesian plane
is given by the function f(x, y) = x2 + (y − 1)2. We minimize this with respect to the
function g(x, y) = x2 − 2y2 under the condition g(x, y) = 1. Proceeding in the standard
fashion then, we solve the equations

{
∇f(x, y) = λ∇g(x, y)
g(x, y) = 1

⇒


2x = 2λx

2y − 2 = −4λy
x2 − 2y2 = 1

From the first equation we see that λ = 1 since by equation 3, x 6= 0. Using this in the
second equation this gives 6y = 2 ⇒ y = 1

3
. Substituting this into the third equation

gives x2 = 11
9

. So f(x, y) = 11
9

+ 4
9

= 15
9

= 5
3
. Hence, the minimum distance between (0, 1)

and the hyperbola is
√

5
3
.

2.2 Ordinary differential equations

The equation
F(t, y(t), y′(t), . . . , y(n)(t)) = 0 (2.1)

where y(k) = dky
dtk

is an ordinary differential equation (ODE) of the n-th order. The
unknown real valued function y depends on a single independent variable and only ordinary
derivatives appear in the differential equation.

Definition 2.2.1. The ordinary differential equation (2.1) is said to be

(i) linear if it can be written in the form

an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a1(t)

dy

dt
+ a0(t)y = f(t)

(ii) homogeneous if it is linear and f(t) = 0;
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(iii) inhomogeneous if it is linear and f(t) 6= 0;

(iv) autonomous if it may be written in the form F(y(t), y′(t), . . . , y(n)(t)) = 0.

As stated at the beginning of the chapter, we will not pause to reflect on the quantitative
aspects of these differential equations, but simply outline a number of methods which can be
used to solve a variety of the most commonly seen equations.

One important point is that the solutions of an ODE will only be unique up to a constant
unless additional conditions are imposed. Usually, this is something in the form

y(t0) = y0, t0, y0 ∈ R

in which case it is known as an initial condition. A differential equation and an initial
condition together form a initial value problem. Usually the independent variable will be
time, t when the initial value is at time t = 0.

Also note that the value of the function at the initial time is sometimes insufficient to uniquely
determine a solution; we may also require knowledge of the value of the gradient(s) of a function
as well for higher order equations.

2.2.1 First order equations

2.2.1.1 Separable equations

Consider the equation

p(y)
dy

dx
= q(x).

Then, integrating both sides of the equation yields∫
p(y) dy =

∫
q(x) dx

and so we get an implicit equation for y. Depending on the equation then, we may be able to
obtain an explicit solution y(x).

Example 2.2.2. Here are two simple examples which use the above technique.

(i) We first consider the equation
dy

dx
= −9x2y2.

Re-arranging this in the form above, we find that∫
dy

y2
= −9

∫
x2 dx⇒ −1

y
= −3x3 + c

where c ∈ R is a constant of integration. Therefore we obtain the solution

y = − 1

3x3 + c

(ii) Let us solve the equation
dy

dx
=

sinx

y cos y
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Rewriting this in the form above, we see that∫
y cos y dy =

∫
sinx dx⇒ y sin y + cos y = − cosx+ c.

In this case, we are unable to invert the implicit equation, and so this is as simple a
solution as we can obtain.

2.2.1.2 Integrating factors

Now consider the linear first order differential equation,

y′ + p(x)y = g(x). (2.2)

We cannot use the above technique since this equation is not separable. However, through the
use of a clever multiplication, we can solve this equation. First, we define the function

µ(x) = exp

(∫
p(x) dx

)
⇒ µ′(x) = p(x)µ(x).

µ(x) is called the integrating factor. Multiplying equation (2.2) by µ(x) yields

d

dx
[y(x)µ(x)] = µ(x)g(x)⇒ y =

1

µ(x)

∫
µ(x)g(x) dx+ c,

Example 2.2.3. Consider the equation

y′ = ex − 2y.

Using the integrating factor

µ(x) = exp

(∫
2 dx

)
= e2x,

we get the family of solutions

y =
1

3
ex + ce−2x, c ∈ R.

2.2.2 Second-order equations

Consider the differential equation given by

A
d2y

dt2
+B

dy

dt
+ Cy = f(t). (2.3)

This is a general second-order linear inhomogeneous differential equation with constant co-
efficients, and is commonly found in many simple physics problems.

First let us tackle the inhomogeneous problem; that is, the case where f(t) = 0. The first step
is to assume that y can be written as y(t) = eλt. Substituting this into (2.3) we see that

Aλ2y(t) +Bλy(t) + Cy(t) = 0. (2.4)

Since y(t) 6= 0 for any t, we may divide this equation by y(t) to get

Aλ2 +Bλ+ C = 0. (2.5)

This quadratic equation in λ is called the auxiliary equation. Depending on the values of
the constants, it is clear that there are three cases that we must consider.
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1. Distinct real roots. If B2 − 4AC > 0, then we obtain two distinct real roots λ1 and λ2 of
(2.5). This indicates that the functions y1(t) = c1e

λ1t and y2(t) = c2e
λ2t are both solutions

to (2.4), where c1 and c2 are real constants.

Indeed, since the equation is linear, (2.4) will have a general solution

y(t) = c1e
λ1t + c2e

λ2t, c1, c2 ∈ R.

This indicates that in order to determine a unique solution we will need additional restrictions
on the equation (such as an initial condition).

2. Repeated real root. If B2− 4AC = 0 then we obtain one real root λ of (2.5). This would
indicate that the only solution is one of the form c1e

λt. Whilst this is indeed a solution, it
is not the only solution since the dimension of the vector space of solutions to the equation
(2.4) should be two. So we need to find another linearly independent function which is also
a solution.

The procedure is actually relatively simple. Let us assume that y2(t) = v(t)y1(t) is a solution
of (2.4), where v(t) is a function that needs to be determied. By substituting y2 into (2.4) it
is easy to prove that v′′(t) = 0. Combined with the fact that y2 must be linearly independent
to y1, we may take v(t) = c2t where c2 is an arbitrary constant. Hence, the general solution
is given by

y(t) = c1e
λt + c2te

λt

3. Distinct complex roots. If B2 − 4AC < 0 then we obtain a pair of complex roots
λ1,2 = a± ib where i =

√
−1 and a, b ∈ R. Now notice that

eλ1,2t = e(a±ib)t = eate±ibt = eat(cos(±bt) + i sin(±bt)) = eat(cos bt± i sin bt).

A little manipulation will yield a solution not involving i:

y(t) = eat [c1 cos bt+ c2 sin bt] , c1, c2 ∈ R.

Now consider the general inhomogeneous case where f(t) 6= 0. This is, in fact, remarkably
straight-forward for certain cases of f(t). Let us assume that the homogeneous problem has
general solution yh(t). If we can ‘guess’ a solution yp(t), called the particular solution, then
by linearity of the differential operator, y(t) = yh(t) + yp(t) is a solution of (2.3).

Of course, the ‘guess’ you make needs to depend on f(t). You can use the following table as a
guide to the functions you might choose.

f(t) yp(t)

atn, n ≥ 0 bnt
n + bn−1t

n−1 + · · ·+ b0

aekt bekt

a cos(kt) or a sin(kt) b1 cos(kt) + b2 sin(kt)
aek1t cos(k2t) or aek1 sin(k2t) ek1t[b1 cos(k2t) + b2 sin(k2t)]

Be aware though that yp must be linearly independent from yh. For example, if yh(t) = et and
f(t) = et then you should try yp(t) = ctet where c ∈ R and re-arrange to obtain c.

Example 2.2.4. To conclude this section on second-order equations, we solve three equations
showing each of the individual cases above.
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(i) Let us solve the inhomogeneous problem

d2y

dt2
+

dy

dt
− 6y = 4e2t (2.6)

We first solve the homogeneous problem y′′h(t)+y′h(t)−6yh(t) = 0. Substituting yh(t) = eλt

gives the auxiliary equation

λ2 + λ− 6 = 0⇒ (λ+ 3)(λ− 2) = 0⇒ λ = −3, 2.

Therefore the general solution is given by yh(t) = Ae−3t +Be2t for some A,B ∈ R.

Now, using our table above, we search for a particular solution. The table would indicate
a choice of something along the lines of yp(t) = Ce2t; however, this would not be linearly
independent with the function yh. Instead then, we choose yp(t) = Cte2t. Substituting
into (2.6) yields

y′p(t) = Ce2t + 2Cte2t,

y′′p(t) = 4Ce2t + 4Cte2t.

Equating coefficients of e2t, we see 4C + C = 4 ⇒ C = 4
5
. So the general solution is

y(t) = Ae−3t +Be2t + 4
5
te2t.

(ii) Consider the homogeneous problem

d2x

dt2
+ 6

dx

dt
+ 9x = 0.

subject to the initial condition that x(0) = 2 and ẋ(1) = 2e−3. This ODE has auxiliary
equation λ2 + 6λ + 9 = 0 so that (λ + 3)2 = 0 and hence λ = −3. In this case then, we
will have a general solution

x(t) = Ae−3t +Bte−3t.

Since x(0) = 2, substituting this into the solution immediately yields A = 2. The solu-
tion has derivative ẋ(t) = −6e−3t + Be−3t − 3Bte−3t. Substituting the second boundary
condition and dividing by e−3 implies that 2 = −6− 2B, and hence B = −4. Hence,

x(t) = 2e−3t − 4te−3t.

(iii) Consider the inhomogeneous problem

d2y

dt2
+ 6

dy

dt
+ 13y = 169t.

Let us first consider the homogeneous problem yh(t). This has auxiliary equation λ2 +
6λ+ 13 = 0, so λ = 1

2
(−6±

√
−16) = −3± 2i. Hence, the general solution is

yh(t) = e−3t[A cos(2t) +B sin(2t)].

Guessing a particular solution yp(t) = Ct+D for C,D ∈ R, we see that

6C + 13(Ct+D) = 169t.

Equating co-efficients of t on both sides, we see that 13C = 169, so C = 13. Similarly,
equating co-efficients of t0, 6C + 13D = 0 so D = −6. Hence the general solution is

y(t) = yh(t) + yp(t) = e−3t[A cos(2t) +B sin(2t)] + 2t− 6.
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2.2.3 Systems of ODEs

A common occurance in many applied fields is the coupling of two or more quantities by
differential equations. Such systems can be quite complex to solve, and in general are in the
form 

x1 = F1(t, x1, . . . , xn),

...

xn = Fn(t, x1, . . . , xn).

Obviously, in general this has a lot of complexity and is difficult to solve. Here then, we will
look at a much simpler case. Suppose that A is an n× n matrix over R. Let use consider the
system of linear ODEs given by

ẋ = Ax (2.7)

If n = 1 so that the system is one-dimensional, this simply boils down to the equation

ẋ = λx⇒ x(t) = ceλt, c ∈ R

In the multi-dimensional case then, it seems like we should be able to take a very similar
approach. The key to this is to extend the exponential function to a function on the space of
matrices.

Definition 2.2.5 (Matrix exponential). Let A be an n×n matrix over C. Then the matrix
exponential e : L(Cn,Cn)→ L(Cn,Cn) is defined by the infinite summation

eA =
∞∑
n=0

An

n!
.

Theorem 2.2.6. The following statements are true:

(i) The matrix exponential is defined for any n× n matrix A.

(ii) If t ∈ R then
d

dt
(eAt) = A · eAt.

(iii) Given matrices P and D such that A = PDP−1, eA = PeDP−1.

(iv) If D = diag{d1, . . . , dn} is a diagonal matrix then eD = diag{ed1 , . . . , edn}.

(v) If A,B are n× n matrices which commute (i.e. AB = BA), then eA+B = eAeB.

Proof 2.2.7.

(i) Suppose M ∈ R is such that |Aij| < M for all i, j ≤ n. Then |A2
ij| < nM2, and hence, in

general, |Akij| < nkMk+1. Since

∞∑
k=0

nkMk+1

k!
= M

∞∑
k=0

(nM)k

k!
= MenM <∞

the largest entry of the matrix eA is finite, and hence eA is well-defined.

(ii) Differentiating, we get

d

dt
(eAt) =

d

dt

∞∑
k=0

(At)k

k!
=
∞∑
k=0

d

dt

[
(At)k

k!

]
=
∞∑
k=0

Ak+1tk

k!
= A

∞∑
k=0

(At)k

k!
= AeAt

as required.
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(iii) First note that for any k ≥ 0, we have that

(PDP−1)k = (PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
k times

= P (DP−1P )(DP−1P ) · · · (DP−1P )︸ ︷︷ ︸
k−1 times

DP−1

= PDk−1DP−1

= PDkP−1,

and so

eA = ePDP
−1

=
n∑
k=0

PDkP−1

k!
= P

(
n∑
k=0

Dk

k!

)
P−1 = PeDP−1.

(iv) For any k ≥ 0 we have that Dk = diag{dk1, . . . , dkn}. Hence,

eD =
∞∑
k=0

diag{dk1, . . . , dkn}
k!

= diag

{
∞∑
k=0

dk1
k!
, . . . ,

∞∑
k=0

dkn
k!

}
= diag{ed1 , . . . , edn}.

(v) The proof of this property is beyond the scope of this course. �

By part (ii) of the above theorem then, we see that the general solution of the linear system of
equation (2.7) is given by

x(t) = eAtc.

where c ∈ Rn is a column vector of length n.

Calculating the matrix exponential can be somewhat of a complex task. However, parts (iii)
and (iv) give us a clue on how we can do this if A is diagonalizable.

Example 2.2.8. Let us consider the case where n = 2 so that we have the system of equations[
ẋ1(t)
ẋ2(t)

]
=

[
a11 a12

a21 a22

] [
x1(t)
x2(t)

]
.

There are three cases to consider.

(i) Suppose that A = (aij) has real, distinct eigenvalues λ1 and λ2. Then by theorem 1.7.4,
the matrix P = [v1 v2] of eigenvectors v1 and v2 diagonalises A. Applying part (iii) of
theorem 2.2.6 then,

eAt = eP (Dt)P−1

= PeDtP−1 = [v1 v2]

[
eλ1t 0
0 eλ2t

]
[v1 v2]−1 = [eλ1tv1 e

λ2tv2][v1 v2]−1

where the third equality follows from part (iv) of theorem 2.2.6. Finally, if we define
(c̃1, c̃2)> = c̃ = P−1c, we see that the solution is given by

x(t) = eAtc = [eλ1tv1 e
λ2tv2]c̃

= c̃1e
λ1tv1 + c̃2e

λ2tv2.

(ii) Suppose that A has complex eigenvalues λ1,2 = a ± ib. This is actually not too different
from case (i), since we are guaranteed that the eigenvectors will be distinct and so A will
be diagonalisable. Indeed, we will obtain a solution

x(t) = Ce(a+ib)t[v1 + iv2] + Ce(a−ib)t[v1 − iv2],
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which, with a little effort, we can show is actually real and can be written in the form

x(t) = eat[(A cos(bt) +B sin(bt))v1 + (B cos(bt)− A sin(bt))v2].

(iii) Suppose that A has a real, repeated eigenvalue λ. Then we must construct the matrix P
from the solitary eigenvector and a generalised eigenvector. The resultant matrix D can
either be diagonal, in which case we can find the solution from part (i), or it is of the form

D = P−1AP =

[
λ 1
0 λ

]
=

(
λ 0
0 λ

)
︸ ︷︷ ︸

D1

+

(
0 1
0 0

)
︸ ︷︷ ︸

D2

.

Notice that D1 and D2 commute, so using property (iv) of theorem 2.2.6 we get

eDt = e(D1+D2)t = eD1teD2t =

[
eλt 0
0 eλt

] [
1 t
0 1

]
since D2

2 = 02×2. From this, we obtain the general solution

x(t) = eAtc = PeDtc̃ = [c̃1e
λt + c̃2te

λt]v1 + c̃1e
λtv2.

Essentially then, one only needs to calculate the eigenvalues and eigenvectors of the system,
and then use one of the above formulae to find the general solution of the system of equations.

In higher dimensions the general approach is the same; we find the Jordan canonical form J of
A, and use some clever techniques to calculate the exponential of J . However, such discussion
is beyond the scope of this course.

39



2.3 Partial differential equations

A partial differential equation of order m is an equation

F
(
x1, x2, . . . , xn,

∂u

∂x1

, . . . ,
∂u

∂xn
,

∂2u

∂x1∂x2

, . . . ,
∂mu

∂xh1
1 · · · ∂xhnn

)
= 0,

where h1 + · · · + hn = m and the unknown function u : Ω → R is a multivariate function on
the domain Ω ⊂ Rn.

Partial differential equations (PDEs) are notoriously difficult to solve. Even simple linear
equations can prove tricky at times to find an explicit solution for. To this end, we will
consider a simple example using a technique that you can use to solve a variety of

One of the most famous partial differential equations in financial mathematics is the Black-
Scholes equation. With a little effort and the use of elementary transformations this equation
can be transformed to the following equation

∂u

∂t
=
∂2u

∂x2
(2.8)

This equation is known as the heat or diffusion equation, and like many other PDEs is
obtained through the analysis of a physical problem. In this case, the physical setting itself is
rather simple. Let us consider a one-dimensional rod of length L. Now consider the function
u : [0, L] × [0,∞) → R which describes the temperature of the rod at given point x in space
and t in time. It can be shown that, under certain simplifications, u will evolve according to
the above partial differential equation.

There is a wide range of literature devoted to the solution of the heat equation with analytical
or numerical methods. Analogous to our discussion of ODEs we will study a method to solve
the heat equation.

In a similar sense to an ordinary differential equation, we must provide additional information
in order to obtain a unique solution. This is true for most types of PDEs, in fact, and so they
are given special names:

• Initial condition: a function f(x) which describes the initial distribution of the tem-
perature at time t = 0;

• Boundary conditions: At each end of the domain Ω = [0, L], we must impose additional
restrictions on u. That is, we must specify u(x, t) for x ∈ ∂Ω = {0, L}.

In this case, the initial condition is given by

u(x, 0) = f(x), 0 ≤ x ≤ L, (2.9)

where f(x) is a given function describing the initial temperature distribution in the bar.

In addition, we will consider two types of boundary conditions.

(i) Assume that the ends of the bar are held at a fixed temperatures. It can be shown that
this problem can be reduced to the following boundary condition,

u(0, t) = 0 = u(L, t) = 0 ∀t > 0. (2.10)

This is known as a homogeneous Dirichlet boundary condition – homogeneous since
we insist that u(x, t) = 0.
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(ii) We could also assume that the flux of heat through the boundary remains constant; i.e.
heat is not allowed to escape through the boundary. This immediately implies that the
gradient of u in the spatial direction must be zero; or, in other words,

∂u

∂x
(t, 0) =

∂u

∂x
(t, L) = 0 ∀t > 0. (2.11)

This is known as a homogenenous Neumann boundary condition.

The problem described by (2.8), (2.9) and one of (2.10) or (2.11) is an initial value problem
in the time variable t. With respect to the space variable x, the problem is a boundary value
problem.

2.3.1 Separation of variables

Regardless of the boundary conditions, we need an approach to get us started in the solution.
One (of many) approaches, and possibly the simplest, is the method of separation of variables.
In this, we assume that the function is separable so that

u(x, t) = X(x)T (t)

for X : Ω→ R and T : [0,∞)→ R. In this case we have that

∂u

∂t
= X(x)

dT

dt
(t),

∂2u

∂x2
=

d2X

dx2
(x)T (t),

and substituting this into (2.8) gives

X ′′(x)

X(x)
=
Ṫ (t)

T (t)
.

Importantly, this implies that
X ′′(x)

X(x)
=
Ṫ (t)

T (t)
= σ.

for some σ ∈ R. (Can you prove this?) Hence, we have reduced our PDE problem to the
decoupled ODEs

X ′′(x) = σX(x), (2.12)

Ṫ (t) = σT (t). (2.13)

We can now use standard ODE theory to progress from here. Let us first consider solutions to
X(x). There are three cases to investigate which depend on the value of σ.

(i) If σ > 0 then define λ2 = σ. Then,

X(x) = A cosh(λx) +B sinh(λx), A,B ∈ R,

where

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2

are the hyperbolic sine and cosine functions.

(ii) If σ = 0 then we obtain the linear solution

X(x) = Ax+B, A,B ∈ R.
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(iii) If σ < 0 then define λ2 = −σ. Then,

X(x) = A cos(λx) +B sin(λx), A,B ∈ R.

For T (t), we again have two possible outcomes depending on the value of σ.

(i) If σ 6= 0 then define λ2 = σ if σ > 0; otherwise, set λ2 = −σ. Then

T (t) = e±λ
2t.

(ii) If σ = 0 then we obtain the constant solution

T (t) = A, A ∈ R.

In order to progress further than this, we need to consider the two types of boundary condi-
tions. First we discuss the slightly simpler Dirichlet boundary conditions, before moving on to
Neumann boundary conditions.

2.3.2 Dirichlet boundary conditions

The idea here is to apply equation (2.10) to the solutions of the ODEs we found for X(x). So,
in turn, we must consider three separate cases.

(i) If σ = 0 then X(x) = Ax + B. Equation (2.10) implies that X(0) = X(L) = 0. We
therefore see that A = B = 0, and so the only solution is the trivial one, u(x, t) = 0 ∀x, t.
Whilst this is a valid solution, it is rather boring (and obvious). So the standard convention
at this point is to consider all other cases and ensure that it is not the only solution.

(ii) If σ > 0 then X(x) = A cosh(λx)+B sinh(λx) for λ2 = σ. Using the fact that cosh(0) = 1
and sinh(0) = 0, we see that X(0) = 0 ⇒ A = 0. Further, X(L) = 0 ⇒ 0 = B sinh(λL).
So either sinh(λL) = 0 in which case λ = 0, or B = 0. In either case, we again obtain the
trivial solution.

(iii) If σ < 0 then X(x) = A cos(λx) + B sin(λx) for λ2 = −σ. Now, X(0) = 0 ⇒ A = 0.
However, X(L) = 0 implies that B sin(λL) = 0. If B = 0 then this implies that X(x) = 0
and hence the only solution is the trivial one. Otherwise,

sin(λL) = 0⇒ λ =
nπ

L
for n ∈ N.

So, we obtain infinitely many solutions of the form

Xn(x) = Bn sin(λnx) where σn = −λ2
n =

n2π2

L2
, n ≥ 0.

These functions and constants actually have special names that you have already seen. Consider
that we can re-write equation (2.12) in the form

LX = σX

where L = d/dx2 is the second order differential operator, and X belongs to the vector space
C∞([0, L]). This bears a remarkable – indeed, identical – resemblence to the definition of
eigenvalues and eigenvectors we found for matrices earlier in these notes. This is further backed

42



up by the fact that, just as when we found eigenvectors for the matrices, the eigenfunctions
here are not unique and are defined up to a constant; in this case, B ∈ R.

In case (iii) above then, we have found the eigenvalues (σn) and their correspoding eigenvec-
tors (Xn). However, since C∞([0, L]) is a space of functions (and as such is infinite dimensional),
we usually refer to the Xn as eigenfunctions.

Armed with all of this knowledge, we see that all non-trivial solutions must be of the form

un(x, t) = Xn(x)Tn(t) = Bne
−λ2

nt sin(λnx), n ≥ 1.

We can, however, go further. Since the heat equation is linear, the principle of superposition
states that we can combine all of these solutions so that

u(x, t) =
∞∑
n=0

Bne
−λ2

nt sin(λnx)

is the general form of our solution. The question now is, given the initial condition (2.9), how
do we determine the constants Bn? To answer this question, we must take a brief excursion
into the realms of functional analysis.

2.3.3 Fourier series

Lemma 2.3.1. Let L > 0. Then the set of functions {cos(λnx)| n ∈ N} ∪ {sin(λnx)| n ∈ N}
is orthogonal in the vector space C∞([−L,L]) under the inner product

〈u, v〉 =

∫ L

−L
u(x)v(x) dx.

Proof 2.3.2. To prove this we use the following common trigonometric formulae:

cos(x) cos(y) = 1
2
[cos(x− y) + cos(x+ y)]

sin(x) sin(y) = 1
2
[cos(x− y)− cos(x+ y)]

cos(x) cos(y) = 1
2
[sin(x+ y) + sin(x− y)]

which can be derived from the standard double angle formulae for sin and cos. This immediately
yields the three results ∫ L

−L
cos(λmx) cos(λnx) dx =

{
0 m 6= n,

L m = n;∫ L

−L
cos(λmx) sin(λnx) dx = 0 for all m,n;∫ L

−L
sin(λmx) sin(λnx) dx =

{
0 m 6= n,

L m = n,

and hence proves the lemma. �

In fact, in certain circumstances, the set above is not only orthogonal but provides a basis.
This is a very important result which has many applications, and forms the theory of Fourier
analysis.
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Theorem 2.3.3 (Fourier series). Let f ∈ L2([−L,L]), where

L2([−L,L]) =

{
g : [−L,L]→ R

∣∣∣∣ ∫ L

−L
|g(x)|2 dx <∞

}
.

Then there exists an, bn ∈ R such that

f(x) =
a0

2
+
∞∑
n=1

[an cos(λnx) + bn sin(λnx)]. (2.14)

In other words, the set of functions in the previous lemma constitute an orthogonal basis in
the space L2([−L,L]). This series expansion is called the Fourier series of f .

The proof of this theorem, whilst reasonably simple, is far beyond the scope of this course (see,
for example, the fourth year course MA433 Fourier Analysis for a rigorous proof).

However, the method of calculating the co-efficients an and bn uses the orthogonality relations
we proved in lemma 2.3.1. Namely, if we multiply equation (2.14) by either sin(λmx) or cos(λmx)
and integrate both sides, we obtain

bn =
1

L

∫ L

−L
f(x) sin(λnx) dx, an =

1

L

∫ L

−L
f(x) cos(λnx) dx

Example 2.3.4. Let us calculate the Fourier expansions of some common functions.

(i) Of course, any function of the form cos(λkx) or sin(λkx) has a trivial expansion. In the
former case, we choose an = δnk; in the latter, bn = δnk.

(ii) Consider f(x) = x. Then,

a0 =
1

L

∫ L

−L
x dx = 0,

an =
1

L

∫ L

−L
x cos(λnx) dx =

1

Lλn

([
x cos(λnx)

]L
−L
−
∫ L

−L
sin(λnx) dx

)
= 0,

and

bn =
1

L

∫ L

−L
x sin(λnx) dx = − 1

Lλn

([
x cos(λnx)

]L
−L
−
∫ L

−L
cos(λnx) dx

)

= − 1

Lλn

(
2L cos(λnL)−

[
1

λn
sin(λnx)

]L
−L

)

= − 1

Lλn

(
2L(−1)n +

2

λn
sin(nπ)

)
= 2

(−1)n+1

λn
.

Hence,

x =
∞∑
n=1

2
(−1)n+1

λn
sin(λnx).
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2.3.4 Dirichlet boundary conditions (continued)

Recall that we obtained a general solution

u(x, t) =
∞∑
n=0

bne
−λ2

nt sin(λnx)

to the heat equation with homogeneous Dirichlet boundary conditions. Substituting t = 0 and
using the initial condition from equation (2.9) we obtain

u(x, 0) = f(x) =
∞∑
n=1

bn sin(λnx)

This is extremely close to the expansion in terms of sines and cosines that we saw in equation
(2.14). However, whilst the previous section nearly gives us the tools we need to determine bn,
we wish to find Fourier representations of functions in the domain [0, L], not [−L,L]. Thankfully
we can use some simple rules to get us out of trouble.

Definition 2.3.5 (Even and odd functions). Let f : R → R. Then f is an even function
if f(x) = f(−x) and an odd function if f(x) = −f(−x).

These functions obey have some very useful properties. Indeed, the terms ‘even’ and ‘odd‘
result from the properties we obtain when multiplying even and odd functions, which bear a
striking resemblance to those we obtain when multiplying even and odd natural numbers.

Lemma 2.3.6. Suppose f, g : R→ R. Then

• If f is odd and g is odd then fg is even.

• If f is even and g is odd then fg is odd.

• If f is even and g is even then fg is even.

Lemma 2.3.7. Let L > 0 and f : [−L,L]→ R be an integrable function. Then

• f is even ⇒
∫ L

−L
f(x) dx = 2

∫ L

0

f(x) dx.

• f is odd ⇒
∫ L

−L
f(x) dx = 0.

Proof 2.3.8 (of Lemma 2.3.6 and 2.3.7). See example sheet 4. �

Corollary 2.3.9. Suppose that f ∈ L2([0, L]). Then f has a Fourier series representation of
the form

f(x) =
∞∑
n=1

bn sin(λnx) =
a0

2
+
∞∑
n=1

an cos(λnx)

where

an =
2

L

∫ L

0

f(x) cos(λnx) dx, bn =
2

L

∫ L

0

f(x) sin(λnx) dx.

This corollary is quite nice; it says that for functions which lie on the domain [0, L], we can
choose a representation consisting entirely of cosines (called a cosine series) or a sines (called
a sine series). The proof is also quite straight-forward by our previous lemmas.
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Proof 2.3.10. Let us define the functions feven, fodd : [−L,L]→ R by

feven(x) =

{
f(x), x ≥ 0,

f(−x), x < 0,
fodd(x) =

{
f(x), x ≥ 0,

−f(−x), x < 0.

These are called the even and odd extensions of f respectively. It is immediately clear from
the definition that feven is even and fodd is odd.

By theorem 2.3.3, both fodd and feven have a Fourier expansion. First, consider the expansion
of fodd. Since cos is even and fodd is odd it follows that their product is odd by lemma 2.3.6,
and hence

an =
2

L

∫ L

−L
f(x) cos(λnx) dx = 0

by lemma 2.3.7. Also, the product of sin and fodd is odd and by lemma 2.3.7 the desired
equation for bn is found.

By the same argument, the even extension of f has the desired an and bn. �

At last, we have proved that the heat equation (2.8) on the domain Ω = [0, L] coupled with
the boundary conditions (2.10) and initial condition (2.9) has a unique solution

u(x, t) =
∞∑
n=1

bne
−λ2

nt sin(λnx)

where

λn =
nπ

L
, bn =

2

L

∫ L

0

f(x) sin(λnx) dx.

Example 2.3.11. We will consider two specific examples of initial conditions.

1. Consider the domain with L = 1 and initial condition f(x) = sin(kπx) for k ≥ 1. Then,
by the orthogonality relationship of lemma 2.3.1, we see that bn = δkn, so that the solution
is

u(x, t) = e−k
2π2t sin(kπx).

2. Now with L = 1 consider f(x) = x(1− x). Then,

bn = 2

∫ 1

0

x(1− x) sin(nπx) dx = − 2

nπ

[
x(1− x) sin(nπx)

]1

0

+
2

nπ

∫ 1

0

(1− 2x) cos(nπx) dx

=
2

nπ

([
(1− 2x)

sin(nπx)

nπ

]1

0

+
2

nπ

∫ 1

0

sin(nπx) dx

)

=
4

n3π3

[
cos(nπx)

]1

0

=
4

n3π3
[cos(nπ)− 1] =

4

n3π3
[(−1)n − 1].

Hence we obtain the solution

u(x, t) =
4

π3

∞∑
n=1

(−1)n − 1

n3
e−n

2π2t sin(nπx).
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2.3.5 Neumann boundary conditions

Now that we have found the groundwork in the previous sections to solve homogeneous Dirich-
let boundary conditions, dealing with the Neumann boundary condition in equation (2.11) is
much easier. Recall from section 2.3.1 that we have three cases to consider when finding the
eigenfunctions and eigenvalues of equation (2.12).

First note that if u(x, t) = X(x)T (t) then ∂xu(x, t) = X ′(x)T (t), and so if X ′(0)T (t) =
X ′(L)T (t) = 0 for every t then X ′(0) = X ′(L) = 0.

(i) If σ = 0 then X(x) = Ax + B. Since X ′(x) = A the boundary conditions imply A = 0.
The other boundary condition X ′(L) = 0 places no restriction on B, and therefore we
have an eigenfunction X(x) = 1 with eigenvalue σ = 0.

(ii) If σ > 0 then X(x) = A cosh(λx)+B sinh(λx) with λ2 = σ, so that X ′(x) = Aλ sinh(λx)+
Bλ cosh(λx). Just as in the Dirichlet case, this implies the only solution is the trivial one.

(iii) If σ < 0 then X(x) = A cos(λx) +B sin(λx) and X ′(x) = −Aλ sinx+Bλ cosx. Applying
the boundary conditions we see that B = 0 and also that Aλ sin(λL) = 0. If A = 0 or
λ = 0 then we obtain the trivial solution. Otherwise,

sin(λL) = 0⇒ λ = λn =
nπ

L
.

So we obtain the eigenfunction Xn(x) = cos(λnx) with associated eigenvalues σn = −λ2
n.

From all of these cases then, we see that the solution must be of the form

u(x, t) =
a0

2
+
∞∑
n=1

ane
−λ2

nt cos(λnx),

where by corollary 2.3.9

an =
2

L

∫ L

0

f(x) cos(λnx) dx

and f(x) is the initial condition defined in equation (2.9).

Example 2.3.12. Consider the intial condition f(x) = x(1 − x) where L = 1. Then we see
that

a0 =
2

1

∫ 1

0

x(1− x) dx = 2

[
x2

2
− x3

3

]
=

1

3
,

and

an = 2

∫ 1

0

x(1− x) cos(nπx) dx

= 2

([
1

nπ
x(1− x) sin(nπx)

]1

0

− 1

nπ

∫ 1

0

(1− 2x) sin(nπx) dx

)

=
2

nπ

([
1

nπ
(1− 2x) cos(nπx)

]1

0

+
2

nπ

∫ 1

0

cos(nπx) dx

)
= − 2

n2π2
[cos(nπ) + 1]

=

−
4

n2π2
, n even,

0, n odd.
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So, finally,

u(x, t) =
1

6
− 1

π2

∞∑
n=1

1

n2
e−4n2π2t cos(2nπx).

Notice that since ∣∣∣∣∣
∞∑
n=1

e−4n2π2t cos(2nπx)

∣∣∣∣∣ ≤ e−4π2t

∞∑
n=1

1

n2

t→∞−−−→ 0,

this solution has the interesting property that

lim
t→∞

u(x, t) =
1

6
.
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Chapter 3

Probability theory

3.1 Introduction

In this chapter we summarise the basic notions of probability theory. If you are not familiar
with the material here, work hard at the relevant exercises and ask lots of questions. Don’t
be afraid of “exposing” your lack of understanding! Becoming comfortable with the lingo and
discussing problems is an important part of learning.

3.1.1 Some books worth looking at

There are many excellent books about probability theory. You can find them in the library
under class mark QA.273 (that’s on the second floor). The following are good for getting to
grips with the subject.

• Ross, A First Course in Probability ;

• Pitman, Probability ;

• Grimmett and Stirzaker, Probability and Random Processes ;

• Chung, A Course in Probability Theory ;

• Durrett, The essentials of probability theory ;

• Feller, An Introduction to Probability Theory and Its Applications, Volume I;

• Klenke, Probability theory, A comprehensive course.

3.2 Probability space

We begin with basic terms. The sample space Ω is the set of all possible outcomes of some
hypothetical experiment. Informally, an event A is a subset of Ω. Then ∅ is the impossible
event, which never happens, and Ω is the certain event, which always happens.

Example 3.2.1. The outcome of throwing a die is the number on its top when it comes to
rest, so a suitable sample space is Ω = {1, 2, 3, 4, 5, 6}. The event that “the die shows an even
number” is {2, 4, 6} ⊂ Ω.
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Example 3.2.2. If we roll two dice, then Ω = {1, 2, 3, 4, 5, 6}2 = {(i, j) : 1 ≤ i, j ≤ 6} is a
suitable sample space and the event “the sum is 8” is {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.

In many cases, we cannot observe every event. For example, if two dice are rolled (Ω =
{1, 2, 3, 4, 5, 6}2) but the second is hidden from us, we can only observe the events {i} ×
{1, 2, . . . , 6}, i = 1, 2, . . . , 6. Moreover, there are deep mathematical reasons why a proba-
bility cannot always be ascribed “consistently” to every subset of Ω (e.g. there does not exist
a translationally invariant measure m on 2R that has m(I) > 0 for bounded non-degenerate
intervals I). Subsets of the sample space that can be observed (resp. for which a probability
measure can be (or is) introduced) are called events. The collection of events is denoted by F
(“curly F”). It is assumed that F is a σ-algebra, i.e. a collection of subsets of Ω that satisfy,

1. Ω ∈ F ,

2. if A ∈ F then Ac = Ω\A ∈ F ,

3. if Ai ∈ F , i ≥ 1, is a countable sequence, then ∪iAi ∈ F .

Recall that ∅ is the empty set, Ac is the complement of A in Ω and countable means finite or
in bijection with the natural numbers N := {1, 2, 3, . . .}.

Since ∩iAi = (∪iAci)c, it follows that a σ-field is closed under countable intersections. It contains
the empty set. The above are our first set of axioms. They are quite natural, for example (2) is
that “if we can say when an event does occur, it is also possible to say that it doesn’t occur”.

Example 3.2.3. Let Ω = {ξ1, ξ2, ξ3, ξ4} consist of 4 outcomes. The classes

F1 = {∅, {ξ1, ξ2}, {ξ3, ξ4}, {ξ1, ξ2, ξ3, ξ4}},
F2 = 2Ω = the set of all subsets of Ω,

define a σ-field on Ω, whereas the class

F = {∅, {ξ1}, {ξ2}, {ξ1, ξ2, ξ3, ξ4}}

is not a σ-field.

Note that the intersection of any family of σ-algebras on Ω is a σ-algebra on Ω in turn. This
allows to introduce (here for a set Ω, 2Ω = set of all subsets of Ω):

Definition 3.2.4 (Generated σ-algebra). Let A ⊂ 2Ω. The σ-algebra generated by A on
Ω, denoted σΩ(A) (or σ(A) for short, if there can be no confusion), is defined to be the smallest
(with respect to inclusion) σ-algebra on Ω containing A, i.e.:

σ(A) = ∩{F ∈ 22Ω

: A ⊂ F ,F is a σ-algebra on Ω}.

Note that (i) notation-wise, for a non-empty set C, ∩C =
⋂
c∈C c and (ii) 2Ω is always a σ-algebra

on Ω.

Example 3.2.5 (Borel σ-algebra). Let Ω = R be the real line. Then the Borel σ-algebra B
on Ω is the smallest σ-algebra containing every open interval (a, b), a < b. Most subsets of R
that you will encounter are Borel (see exercises), however you are warned that not all are.

Definition 3.2.6 (Probability measure). Recall A and B are disjoint if A ∩ B = ∅. A
probability measure P is a way of assigning numbers to measurable events. It is a mapping,
defined on F , and assumed to satisfy the properties:
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1. for any event A ∈ F , 0 ≤ P(A) ≤ 1;

2. P(Ω) = 1;

3. for a countable sequence of pairwise disjoint events Ai ∈ F , P (∪Ai) =
∑

i P(Ai).

These assumptions are motivated by the frequentist interpretation of probability, which says
that if we repeat an experiment a large number of times then the fraction of times the event A
occurs will be close to P(A). Some simple consequences of the definition are,

• P(Ac) = 1− P(A);

• P(∅) = 0;

• if A ⊂ B then P(A) ≤ P(B);

• P(A ∪B) = P(A) + P(B)− P(A ∩B);

• P(∪iAi) ≤
∑

i P(Ai).

Definition 3.2.7 (Probability space). A probability space is a triple (Ω,F ,P) where F
is a set of events, and P : F → [0, 1] is a probability measure.

Formally, then, we model a random experiment via a probability space.

Example 3.2.8 (Discrete probability spaces). Let Ω be a countable set and F = 2Ω =
set of all subset of Ω. Let

P(A) =
∑
ω∈A

p(ω) where p(ω) ≥ 0 and
∑
ω∈Ω

p(ω) = 1.

A little thought reveals that this is the most general probability measure on this space.

A large part of classical probability theory deals with finite sample spaces where each outcome
has equal probability. Then, for any A ⊂ Ω, P(A) = |A|/|Ω|, where |A| is the number of
elements in the set A. This is typically assumed when drawing cards, rolling dice etc.

Example 3.2.9. Roll two dice and let A be “the sum is 8” = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.
Then P(A) = 5/36 since it contains 5 of the 36 equally possible outcomes.

Example 3.2.10 ((0, 1), Borel, Lebesgue – the big three). Let Ω = R be the real line,
B be the Borel sets and λ = Lebesgue measure (the measure that assigns lengths to intervals,
λ([a, b]) = b−a for all a < b). To get a probability space let Ω = (0, 1),F = {A∩(0, 1) | A ∈ B}
and P(B) = λ(B) for B ∈ F . This is a canonical space on which we can build the absolutely
continuous random variables introduced below.

Example 3.2.11 (Product spaces). If (Ωi,Fi, Pi), i = 1, . . . , n are probability spaces, we
can let Ω = Ω1 × · · · × Ωn = {(ω1, . . . , ωn) : ωi ∈ Ωi, 1 ≤ i ≤ n}; F = F1 × · · · × Fn = the
smallest σ-algebra containing the collection of sets {A1× · · · ×An : Ai ∈ Fi, 1 ≤ i ≤ n}; finally
P = P1× · · · × Pn = the measure on F that has,

P(A1 × · · · × An) = P1(A1) · P2(A2) · · ·Pn(An).

Concrete examples of product spaces are;

(i) Roll n = 2 dice. Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, F = all subsets of Ω, P(A) =
|A|/36.
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(ii) Unit cube. If Ωi = (0, 1), Fi = Borel sets, and Pi = Lebesgue measure, then the product
space defined above is the unit cube Ω = (0, 1)n, F = the Borel subsets of Ω, and P
is n-dimensional Lebesgue measure restricted to F (i.e. P((a1, b1) × . . . × (an, bn)) =
(a1 − b1)× . . .× (an − bn) for ai < bi).

3.3 Combinatorics

In the finite (discrete) probability space with equally likely outcomes, P(A) is the fraction of
outcomes that lie in A. Thus, to compute probabilities we have to be able to count the number
of outcomes. To do this, the following results are useful and fall under the umbrella of the
branch of mathematics known as combinatorics. The featured list is, however, not exhaustive
and you will become familiar with some extra concepts through the exercise sheets.

3.3.1 Three basic principles

We begin with the multiplication rule. This is fundamental to most counting methods.
Suppose that m experiments are performed one after another, and that, no matter what the
outcomes of experiments 1, . . . , k − 1 are, experiment k has nk possible outcomes. Then the
total number of outcomes is n1 · n2 · · ·nm.

In set-theoretic terms, the multiplication rule expresses the fact that the number of elements
in a cartesian product of n sets A1, . . . , An is the product of the number of elements in each of
these respective sets. Symbolically:

|A1 × · · · × An| = |A1| · · · |An|.
Here |A| denotes, as always, the number of elements in a given set A.

The second is the rule of sum. Suppose n groups are given, the i-th group containing mi

individuals (i = 1, . . . , n). Then the total number of all individuals in all the groups is m1 +
· · ·+mn. In set-theoretic terms, this is saying that the number of elements in a disjoint union
is the sum of the number of elements in each of the respective sets (constituting said union).
Symbolically:

|A1 ∪ · · · ∪ An| = |A1|+ · · ·+ |An|,
where A1, . . . , An are pairwise disjoint sets.

Finally there is the bijection rule, which simply says that given two sets between which there
is a one-to-one and onto correspondence (i.e. a bijection), then these two sets contain the same
number of elements:

∃f : A→ B, bijection ⇒ |A| = |B|.

These rules are often used tacitly when counting the number of objects, or ways in which
something may transpire, and it is important to be aware of them, and how they are applied.

3.3.2 Variations and combinations

The first consequence of the multiplication rule is that if we have n people then the number of
ways we can pick k of them to stand in line in order (an ordered k-tuple) is

Pn,k = n · (n− 1) · · · (n− k + 1) =
n!

(n− k)!
.
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These are known as variations without repetition. Here n! := n · (n − 1) · · · 2 · 1, and is
called n factorial. In the special case when k = n, we speak of permutations.

Next, if we have n people then the number of ways we can pick a subgroup of k individuals
from them is

Cn,k =
n · (n− 1) · · · (n− k + 1)

k!
=

n!

k!(n− k)!
=

(
n

k

)
,

These are known as combinations. Here 0! = 1, so
(
n
0

)
=
(
n
n

)
= 1. We read

(
n
k

)
as “n choose

k”.

The binomial theorem says,

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k,

and so the
(
n
k

)
are also referred to as the binomial coefficients.

This can be generalised to multinomial coefficients. The number of ways we can divide n
objects into m piles of sizes n1, . . . , nm is,

n!

n1!n2! · · ·nm!
.

3.3.3 Stirling numbers of the second kind and partitions

A partition of a set A is a collection of non-empty pairwise disjoint sets, whose union is A. The
number of different partitions of a set of n elements into k disjoint non-empty sets is denoted
S(n, k). These are the so-called Stirling numbers of the second kind. Clearly S(n, 0) = 0 and
S(n, n) = S(n, 1) = 1 for every natural n ∈ N. Additionally we define S(n, 0) = 0 for every
n ∈ N, and S(0, 0) = 1. Then for every pair of natural numbers k ≤ n (see exercises):

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

In a similar problem, we consider the number of ways in which a natural number n can be
written as the sum of k natural numbers m1 ≤ m2 ≤ · · · ≤ mk in nondecreasing order. This
number is denoted by pk(n). Clearly pk(n) = 0 for k > n. Additionally we define p0(0) = 1
and p0(n) = 0 for n > 0. Then for every pair of natural numbers n, k:

pk(n) = pk−1(n− 1) + pk(n− k).

3.3.4 Urn problems

Suppose we have an urn with M red balls and N black balls and we draw out n balls without
replacement. Then the probability we get r red balls and hence n− r black balls is(

M
r

)(
N
n−r

)(
M+N
n

) ,

where we have used the convention that
(
m
j

)
= 0 if j < 0 or j > m. The last answer generalizes

in a straightforward way to situations with more than two colors.
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3.3.5 Repeated experiments

The problems in this section concern situations akin to drawing with replacement from an urn
with K balls numbered from 1 up to K. That is, we pick a ball, note its number and then return
it to the urn. Since all K outcomes are possible on each trial the total number of outcomes is
Kk. Two important special cases are:

The birthday problem. If we draw k balls with replacement, then the probability all the
numbers are different is,

PK,k
Kk

=
K

K
· (K − 1)

K
· · · (K − k + 1)

K
.

Flipping coins. This corresponds to K = 2, where heads = 1 and tails = 2. The probability
of exactly j heads in k trials is (

k

j

)
2−k.

The first factor gives the number of ways of picking j tosses on which heads occurs; the second,
the probability of each of the 2k outcomes.

3.4 Independence and conditional probability

3.4.1 Independence

Definition 3.4.1 (Independence). Two events A and B are independent intuitively if the
occurrence of A has no effect on the probability of occurrence of B. Formally we can write this
as

P(A ∩B) = P(A)P(B).

A finite or infinite sequence of events A1, . . . , An, . . . is said to be (a sequence of) pairwise
independent (events) if

P(Ai ∩ Aj) = P(Ai)P(Aj) whenever i 6= j,

and said to be (a sequence of) independent (events) if for any i1 < i2 < · · · < ik,

P(Ai1 ∩ · · · ∩ Aik) = P(Ai1) · · ·P(Aik).

Pairwise independent events are not necessarily independent!

As you will see in the exercises, the definition of independence can play tricks on you.

Example 3.4.2. Pick a card from a deck of 52 and let A = “the card is an ace”, B = “the
card is a spade.” P(A) = 1/13, P(B) = 1/4, P(A ∩ B) = 1/52. A and B are independent. If,
however, A = “the first card is an ace” and B = “the second card is an ace” then A and B are
not independent.

Example 3.4.3. For any event A, A ∩ A = A, so A is independent of itself, if and only if
P(A) = 0 or 1.
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The concept of repeated independent trials crops up a lot. You should understand how the
following distributions arise.

Binomial distribution — Bin(n, p). Suppose that n trials (experiments) occur, and the
outcome of each trial is ‘success’ with probability p or ‘failure’ with probability 1 − p. The
probability of k successes is (

n

k

)
pk(1− p)n−k (k = 0, . . . , n).

The special case when n = 1 is that of a Bernoulli random variable — notation: Ber(p).

Multinomial distribution — mult(n; p1, . . . , pk). If instead of just success and failure there
are k possible outcomes with probabilities pi, 1 ≤ i ≤ k, then the probability of getting exactly
ni outcomes of type i in n = n1 + . . .+ nk independent trials is,

n!

n1! · · ·nk!
pn1

1 · · · p
nk
k .

Geometric distribution — geom(p). Suppose again that independent trials, each with suc-
cess probability p are performed. The probability that the first success occurs on the k-th trial
is

(1− p)k−1p for k = 1, 2, . . . .

3.4.2 Conditional probability

Definition 3.4.4 (Conditional probability). Suppose that A ∈ F has positive probability
of occurring. The conditional probability of B ∈ F occurring given that A has occurred is

P(B|A) =
P(B ∩ A)

P(A)
. (3.1)

With A fixed, let FA = F ∩ 2A. Then PA : FA → [0, 1] defined by PA(B) = P(B|A) is a
probability measure on FA.

Multiplying each side of (3.1) by P(A) gives the multiplication rule

P(A ∩B) = P(A)P(B|A). (3.2)

Note that the probability of A and B happening P(A ∩B) = P(A)P(B|A) = P(B)P(A|B).

3.4.3 Two stage experiments

Let the events B1, . . . , Bn, . . . constitute a finite or countably infinite partition of Ω; that is,
a sequence of pairwise disjoint non-empty sets with union Ω. Then for an event A, assuming
P(Bi) > 0 for each i:

P(A) =
∑
i

P(A ∩Bi) =
∑
i

P(Bi)P(A|Bi).

This formula is sometimes called the law of total probability.
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3.4.4 Bayes’ formula

Bayes’ formula allows to compute P(B1|A) when P(Bi) > 0 and P(A|Bi) are given (where
B1, B2,. . . ,Bn, . . . continue to enjoy the property of being a partition of Ω; A being any event
with P(A) > 0) and proceeds in the following three steps:

P(B1|A) =
P(B1 ∩ A)

P(A)
definition of conditional probability,

P(Bi ∩ A) = P(Bi) P(A|Bi) multiplication rule,

P(A) =
∑
i

P(Bi ∩ A) law of total probability.

Combining the three steps gives the formula:

P(B1|A) =
P(B1) P(A|B1)∑
i P(Bi) P(A|Bi)

To show an application of Bayes’ formula, let us consider a simple example.

Example 3.4.5. The alpha fetal protein test is meant to detect spina bifida in unborn babies,
a condition that affects 1 out of 1000 children who are born. Let B be the event that the baby
has spina bifida and Bc be the event that it does not. The literature on the test indicates that
5% of the time a healthy baby will cause a positive reaction. We will assume that the test is
positive 100% of the time when spina bifida is present. Your doctor has just told you that your
alpha fetal protein test was positive. What is the probability that your baby has spina bifida?

Let A = ‘a positive reaction’. We want to calculate P(B|A). By the definition of conditional
probability (3.1),

P(B|A) =
P(B ∩ A)

P(A)
.

To evaluate the numerator we use the multiplication rule (3.2),

P(B ∩ A) = P(B)P(A|B) = 0.001 · 1 = 0.001.

Similarly,
P(Bc ∩ A) = P(Bc)P(A|Bc) = 0.999 · 0.05 ≈ 0.05.

Now P(A) = P(B ∩ A) + P(Bc ∩ A) so,

P(B|A) =
P(B ∩ A)

P(A)
≈ 0.001

0.001 + 0.050
=

1

51
.

Thus the probability of spina bifida given the positive reaction is only about 2%. This situation
comes about because it is much easier to have a positive reaction by having a healthy baby and
then having a positive reaction, which has probability 0.05, than by having a baby with spina
bifida, which has probability 0.001.

We would like to point out that while the conditional probability of spina bifida given a positive
reaction is only 2%, this does not mean that the test is worthless. To introduce some termi-
nology from Bayesian statistics, the prior probability (i.e. before the test) of spina bifida is
0.1%, whereas the posterior probability (i.e. after the test results are known) is about 2%.
That is, the probability is now 20 times larger. The positive reaction is thus a warning that
more accurate (and more expensive) tests should be done to see if the baby has spina bifida.
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3.5 Real-valued random elements (a.k.a. random vari-

ables)

Definition 3.5.1 (Random variable). A real valued function X : Ω → R is said to be a
random variable (abbrev. RV) on the probability space (Ω,F ,P) if for every Borel set B ∈ B
we have

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F .
In other words, X is a random variable on (Ω,F ,P) if it is F -measurable. It is sufficient to
check that, for all real t, X−1((−∞, t]) ∈ F . Random variables are typically denoted by upper
case letters.

Example 3.5.2. If F is discrete, i.e. F is the set of all subsets of Ω, then any function,

X : Ω→ R,

is a random variable.

Example 3.5.3. The indicator function of a set A ∈ F ,

1A(ω) =

{
1, ω ∈ A,
0, ω ∈ Ω\A,

is always a random variable.

3.5.1 Law and distribution function

Any random variable X induces a probability measure µX on R, called its law, defined by

µX(B) = P (X ∈ B)

for Borel sets B. Note that P (X ∈ B) is short-hand for

P ({ω ∈ Ω : X(ω) ∈ B}) .

Similarly, P (X > 0) really means

P ({ω : X(ω) > 0})

and so forth. We write X ∼ µ, indicating X has the law µ.

If two random variables X and Y have the same law we say they are equal in law (or in
distribution). Note that this need not entail X(ω) = Y (ω) for every ω, or even that X and Y
be defined on the same probability space!

X is called discrete if its law µX only puts mass on a countable subset of R, that is, there is
a countable set {x1, x2, . . .} such that

µX({x1, x2, . . .}) =
∑
i

P(X = xi) = 1.

If in addition µX({xi}) > 0 for each i, we call xi the atoms of µX and the mapping

(xi 7→ pX(xi) := P(X = xi) = µX({xi}))

is called the probability mass function (pmf) of X (this function completely characterises
the law). The domain of pX , denoted SX , is then called the support of X.
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Example 3.5.4. Suppose that Ω = {1, 2, 3, 4, 5, 6}, F = 2Ω and P is uniform so that P(A) =
|A|/6; i.e. we have a probability space corresponding to throwing a die. Then X(ω) = ω is a
random variable (exercise) which is discrete, and

µX(B) = |{1 ≤ i ≤ 6 : i ∈ B}| /6,

so µX({1, 2, 3, 4, 5, 6}) = 1, and pX(i) = 1/6 for 1 ≤ i ≤ 6.

The law of a random variable X is specified uniquely by its distribution function F = FX ,

F (x) = P(X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}) ,

sometimes called the cumulative distribution function (CDF).

Any distribution function F has the following properties:

(i) F is non-decreasing;

(ii) limx→∞ F (x) = 1;

(iii) limx→−∞ F (x) = 0;

(iv) F is right continuous: limy↓x F (y) = F (x);

(v) If F (x−) = limy↑x F (y) then, F (x−) = P(X < x);

(vi) P(X = x) = F (x)− F (x−).

Conversely if a function F satisfies properties (i-iv), then it is the distribution function of some
random variable; i.e. there is a unique probability measure µF on (R,B) that has µF ((a, b]) =
F (b)− F (a).

It is common practice, e.g. in statistics, to introduce random variables by specifying their
distribution only, and not to define the underlying probability space. For example, one might
say “suppose X is a real valued random variable with cdf F”, and then refer to the probability
of some event involving X, say P(X > 0), without ever having defined P or the sample space.
In this situation, it is understood that there exists a probability space (Ω,F ,P) containing a
random variable with the given distribution – we just don’t bother to specify it.

Example 3.5.5 (Poisson distribution). Suppose that X is a random variable taking values
in the non-negative integers, with mass function

P(X = k) = exp(−λ)
λk

k!
, k = 0, 1, 2, 3, . . .

for some parameter λ > 0. Then, X is called a Pois(λ) random variable.

For a discrete random variable, the distribution function only increases by jump discontinuities,
and is constant between those jumps. The jumps occur at the discrete values taken by the
random variable. It is helpful to sketch distribution functions of some common discrete random
variables – you will see they can be somewhat messy and it is easier to work directly with the
mass function.

X is called absolutely continuous if there exists a non-negative function f on R such that

F (x) =

∫ x

−∞
f(x) dx, x ∈ R.
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The function f is called the probability density function (pdf) ofX, and by the Fundamental
Theorem of Calculus, f(x) = F ′(x) for Lebesgue-almost every x ∈ R (indeed every x ∈ R, if
f is continuous). Since F (x) → 1 as x → ∞, we must have that

∫∞
−∞ f(x) dx = 1. For small

dx > 0 we have

P(X ∈ (x, x+ dx)) =

∫ x+dx

x

f(x) dx ≈ f(x) dx.

Sometimes dx is thought of both as an infinitesimal interval and number and the above is
written

P(X ∈ dx) = f(x) dx.

This can be useful for intuition, but be careful – P(X = x) = 0 for any x!

Example 3.5.6 (Unif([0, 1])-random variable). Suppose that Ω = (0, 1), F is the Borel
σ-algebra of (0, 1) and P is the Lebesgue measure. Then the variable X : Ω → (0, 1) defined
by X(ω) = ω for ω ∈ (0, 1) has the uniform distribution. The distribution function of X is
F (x) = P(X ≤ x) = P((0, x)) = x; the density is f(x) = 1 (for 0 < x < 1).

In general a random variable having the density 1[a,b]/(b−a) is the uniform distribution on the
interval [a, b] (for a < b) — notation: Unif([a, b]).

Example 3.5.7 (Exponential distribution — Exp(λ)). The random variable with den-
sity f(x) = λ exp(−λx), x > 0 is called the exponential distribution of rate λ > 0.

Most of the random variables you encounter will either be discrete or absolutely continuous,
but it is important to realise that there exist random variables which are neither absolutely
continuous nor discrete.

3.5.2 Functions of random variables

Suppose X is a random variable on (Ω,F ,P) and r : R→ R is some function. Define Y (ω) =
r(X(ω)) = (r ◦X)(ω). We can ask, when is Y a random variable in turn? In general, r being
measurable (i.e. r−1(B) = {x ∈ R : r(x) ∈ B} ∈ B for any Borel B ∈ B) is sufficient to
guarantee that Y is also a random variable.

Now suppose that X is absolutely continuous, r : R → R is a differentiable bijection with a
strictly positive derivative. This means that r has a differentiable inverse, say s : R→ R. What
is the distribution of Y ? Well,

FY (y) = P(Y ≤ y) = P(r(X) ≤ y) = P(X ≤ s(y)) = FX(s(y))

=

∫ s(y)

−∞
fX(u)du =

∫ y

−∞
fX(s(z))s′(z)dz.

Thus Y is absolutely continuous and has density

fY (y) = F ′Y (y) = fX(s(y))s′(y).

More generally:

Theorem 3.5.8 (Density transformation formula). Let X : Ω→ R be an absolutely con-
tinuous random variable, with pdf fX . Let A be an open subset (resp. open interval) of R, X
taking values in A, g : A → R differentiable with g′ > 0 positive everywhere. Then g is an
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increasing bijection onto its open (resp. what is then an open interval) image g(A), Y = g ◦X
is absolutely continuous, and has pdf given by:

fY = 1g(A)
fX ◦ g−1

g′ ◦ g−1

(note that (g−1)′ = 1/g′ ◦ g−1).

Two more useful facts are,

1. If X is a continuous random variable, i.e. P(X = x) = 0 for all real x, with distribution
function F , then F (X) = F ◦X is uniform on (0, 1). Conversely, if X is not continuous,
then F ◦X does not have the uniform distribution on (0, 1).

2. If U is uniform on (0, 1) and F−1(y) = min{x : F (x) ≥ y} then F−1(U) has distribution
function F . So, provided F−1 can be calculated, it is very easy to simulate X on a
computer – simulate uniform U ∼ Unif([0, 1]).
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3.5.3 Joint distributions of several random variables

Suppose that a probability space (Ω,F ,P) has n > 0 random variables X1, . . . , Xn defined on
it. Then, for Borel B ∈ B(Rn),

X−1(B) = {ω ∈ Ω : (X1(ω), . . . , Xn(ω)) ∈ B} ∈ F .

X = (X1, . . . , Xn) is called a random vector. For it, we can define the joint law µX1,...,Xn by

µX1,...,Xn(B) = P(X−1(B)) = P((X1, . . . , Xn) ∈ B).

The joint distribution function is given by:

FX(x) = P(X1 ≤ x1, . . . , Xn ≤ xn), x = (x1, . . . , xn) ∈ Rn.

Example 3.5.9. Suppose that X and Y are two random variables defined on (Ω,F ,P). The
probability that (X, Y ) lies in the rectangle (a1, a2)× (b1, b2) is given by

P(a1 < X ≤ b1, a2 < Y ≤ b2) = F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a2, a2),

which is the two dimensional analogue of P(a < X ≤ b) = F (b)− F (a).

If the Xi are all discrete, then X is discrete and the joint distribution is given by the joint
probability mass function, P(X1 = x1, . . . , Xn = xn), where xi ranges (at most) over the
values taken by Xi.

The definition for the Xi to be jointly absolutely continuous is that there exists a non-negative
function fX : Rn → R such that

FX(x) =

∫ x1

−∞
· · ·
∫ xn

−∞
fX(u1, . . . , un) du1 · · · dun.

This implies that

P(X ∈ A) =

∫
A

fX(u1, . . . , un) du1 · · · dun (3.3)

for any Borel set A ∈ B(Rn). The function fX is, not surprisingly, called the joint density.

Note that the Xi being individually absolutely continuous (i.e. having a density) does NOT
imply that they are jointly absolutely continuous (see exercises).

Example 3.5.10. Let

f(x, y) =

{
e−y, 0 < x < y <∞,
0, otherwise.

To check that f is a density function, we observe that,∫ ∞
0

∫ y

0

e−y dx dy =

∫ ∞
0

ye−y dy,

and integrating by parts with g(y) = y, h′(y) = e−y (so g′(y) = 1, h(y) = −e−y),∫ ∞
0

ye−y dy =
[
− ye−y

]∞
0

+

∫ ∞
0

e−y dy = 0 +
[
− e−y

]∞
0

= 1.

To illustrate the use of (3.3) we will now compute P(X ≤ 1), which can be written as P((X, Y ) ∈
A) where A = {(x, y) : x ≤ 1}. The formula in (3.3) tells us that we find P((X, Y ) ∈ A)
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by integrating the joint density over A. However, the joint density is only positive on B =
{(x, y) | 0 < x < y <∞} so we only need to integrate over A∩B = {(x, y) : 0 < x ≤ 1, x < y},
and doing this we find

P(X ≤ 1) =

∫ 1

0

∫ ∞
x

e−y dx dy.

To evaluate the double integral we begin by observing that,∫ ∞
x

e−y dy =
[
− e−y

]∞
x

= 0− (−e−x) = e−x,

so P(X < 1) =

∫ 1

0

e−x dx =
[
− e−x

]1

0
= 1− e−1.

3.6 Marginal distributions, independence, conditional dis-

tributions

Suppose we are given the joint distribution of several random variables, X1, . . . , Xn say. The
distribution of a single variable, X1 say, induced by the joint distribution is called the marginal
distribution. It is recovered by “integrating out” all of the other variables.

For example, suppose X and Y are two discrete variables, or are jointly absolutely continuous.
Then, to recover the distribution of X from the joint distribution of X and Y , we use

P(X = x) =
∑
y∈Sy

P(X = x, Y = y),

in the discrete case (where the summation ranges over the countable set of values taken by Y ),
or

fX(x) =

∫
R
f(x, y) dy, x ∈ R

in the absolutely continuous case. The density fX is called the marginal density.

Example 3.6.1. Let

f(x, y) =

{
e−y, 0 < x < y <∞,
0, otherwise.

In this case,

fX(x) =

∫ ∞
x

e−y dy =
[
− e−y

]∞
x

= e−x, x > 0,

since we only have f(x, y) > 0 when y > x > 0. Similarly,

fY (y) =

∫ y

0

e−y dx = ye−y, y > 0.

Here and in similar instances below, the formula for the absolutely continuous case is obtained
from the discrete case by writing density functions in place of the corresponding probabilities
and replacing the sum by an integral.

Two random variables X and Y are said to be independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)
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for any Borel A,B ∈ B. In the discrete case it is equivalent to

P(X = x, Y = y) = P(X = x)P(Y = y), ∀x, y.

In the absolutely continuous case this is equivalent to

f(x, y) = fX(x)fY (y) ∀x, y.

To be completely precise, we should say in the above for Lebesgue almost every (x, y), rather
than all (x, y), since a density function can always be changed on a set of Lebesgue measure zero.
At the cost of rigour, and to the benefit of simplicity, we shall tend to omit these qualifications
in the sequel.

A finite sequence X1, . . . , Xn of random variables is said to be (a sequence of) independent
(random variables) if:

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An),

for all Borel sets A1, . . . , An, i.e. if µ(X1,...,Xn) = µX1 × · · · × µXn .

Similarly, an infinite sequence of random variables X1, X2, . . . is said to be (a sequence of)
independent (random variables), if any finite subsequence is so.

Independence is a very important notion in probability theory allowing for much greater gen-
erality than what we have considered above. For example, one can speak of two (finite or
infinite) sequences X1, X2, . . . , Xn, . . . and Y1, Y2, . . . , Ym, . . . of random variables being indepen-
dent (if P(X1 ∈ A1, . . . , Xn ∈ An, Y1 ∈ B1, . . . , Yn ∈ Bn) = P(X1 ∈ A1, . . . , Xn ∈ An)P(Y1 ∈
B1, . . . , Yn ∈ Bn) for any choice of Borel sets A1, . . . , An, B1, . . . , Bn, n ≥ 1) and so on and so
forth.

3.6.1 Conditional distributions

For discrete variables X and Y , the conditional distribution of X given Y = y ∈ R is
defined, for x ∈ R by

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=

P(X = x, Y = y)∑
u P(X = u, Y = y)

,

which is defined whenever P(Y = y) > 0. When X and Y are jointly absolutely continuous,
the conditional distribution of X given Y = y is defined via the conditional density;

fX|Y (x|y) =
f(x, y)

fY (y)
=

f(x, y)∫
f(u, y) du

,

provided fY (y) is positive.

If X and Y are independent, we have

P(X = x|Y = y) = P(X = x)

and
fX|Y (x|y) = fX(x)

in the discrete and absolutely continuous cases respectively.
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3.7 Sums of independent random variables

Suppose that X and Y are independent and absolutely continuous, with densities fX and fY
respectively. Then the sum X + Y is a random variable too. What is its distribution? The
cumulative distribution function of the sum is obtained as follows.

FX+Y (a) =

∫∫
x+y≤a

fX(x)fY (y) dx dy

=

∫ ∞
−∞

∫ a−y

∞
fX(x) dxfY (y) dy

=

∫ ∞
−∞

FX(a− y)fY (y) dy,

where FX is the distribution of X. Now differentiate this expression in a (through the integral!)
to recover the density1

fX+Y (a) = F ′X+Y (a) =

∫ ∞
−∞

∂

∂a
FX(a− y)fY (y) dy.

That is,

fX+Y (a) =

∫ ∞
−∞

fX(a− y)fY (y) dy.

This is called the convolution of fX and fY and is written fX ∗ fY (a). The analogue for
discrete variables is

P(X + Y = z) =
∑
y

P(X = z − y)P(Y = y). (3.4)

Example 3.7.1. If X ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent then X + Y ∼ Bin(n+
m, p).

The easiest way to see this is to note that if X is the number of successes in the first n trials
and Y is the number of successes in the next m trials, then X + Y is the number of successes
in n+m trials.

To get the conclusion by computation we use (3.4), note that P(X = j) = 0 when j < 0,P(Y =
k − j) = 0 when j > k, and plug in the definition of the binomial distribution to get

P(X + Y = k) =
k∑
j=0

P(X = j)P(Y = k − j),

=
k∑
j=0

(
n

j

)
pj(1− p)n−j

(
m

k − j

)
pk−j(1− p)m−(k−j),

= pk(1− p)n+m−k
k∑
j=0

(
n

j

)(
m

k − j

)
,

= pk(1− p)n+m−k
(
n+m

k

)
.

1In order to maintain some level of rigor, note that differentiation under the integral sign is less than a
completely benign operation, needing explicit, non-trivial justification. In this case we can actually avoid it by
effecting in FX+Y (a) =

∫∫
x+y≤a fX(x)fY (y) dxdy the change of variables x = x′ − y′ and y = y′. This allows

to conclude directly that X + Y is absolutely continuous with the density given below.
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3.8 Expected value and moment generating functions

Definition 3.8.1 (Expected value). The expected value of X is defined to be

E[X] =
∑
x∈S

xP(X = x),

for a discrete variable with support S, and

E[X] =

∫
xf(x) dx,

for an absolutely continuous variable with density f , whenever these are well-defined, e.g. if∑
x∈S |x|P(X = x) <∞ and

∫
|x|f(x)dx <∞, respectively.

Remarks:

(i) If X is, say, discrete, with support S, then we need in the above, in fact, only demand
min{

∑
x∈S,x>0 xP(X = x),

∑
x∈S,x<0(−x)P(X = x)} <∞ (using the convention

∑
∅ = 0),

in which case E[X] =
∑

x∈S,x>0 xP(X = x) −
∑

x∈S,x<0(−x)P(X = x) ∈ [−∞,+∞]
(ultimately, all we want to avoid is having to make sense of “∞−∞”). Similarly for the
absolutely continuous case.

(ii) More generally, E[X] =
∫
XdP =

∫
xdµX(x), . . .

Expectation has the following frequentist interpretation. If X1, X2, . . . , are independent vari-
ables with the same distribution as X, then (X1+· · ·+Xn)/n converges to E[X] with probability
one (“almost surely”).

Example 3.8.2 (Bernoulli distribution). Suppose X is 1 with probability p and 0 with
probability 1− p. Then

E[X] = p · 1 + (1− p) · 0 = p.

Some important properties of expected values are:

(i) E[aX + b] = aE[X] + b for a, b ∈ R;

(ii) If X ≥ Y then E[X] ≥ E[Y ];

(iii) If X1, . . . , Xn are independent, then:

E[X1 · · ·Xn] = E[X1] · · ·E[Xn],

but the equality may hold for random variables that are not independent.

Random variables X and Y that have E[XY ] = E[X]E[Y ] (these expectations needing to be
well-defined and finite) are said to be uncorrelated. Independent variables are uncorrelated
but the converse need not hold.

Theorem 3.8.3. If X = (X1, . . . , Xd) is jointly absolutely continuous (resp. discrete) Rd-
valued with joint pdf (resp. pmf) fX (resp. pX and support S), then for any r : Rd → R (Borel
measurable):

E[r ◦X] =

∫
r(x)fX(x)dx (resp. =

∑
x∈S

r(x)pX(x)),

whenever these are well-defined.
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Definition 3.8.4 (Variance). The variance of X is defined as (provided E[|X|] is finite):

var[X] = E{(X − EX)2} = E[X2]− (E[X])2.

The variance satisfies (for a, b ∈ R)

var[aX + b] = a2 var[X],

and if X1, . . . , Xn are pairwise uncorrelated then

var[X1 + · · ·+Xn] = var[X1] + · · ·+ var[Xn].

Example 3.8.5. Suppose X has density f(x) = rxr−1 when 0 < x < 1, and 0 otherwise. Here,
r > 0 (when r = 1, X is uniform on (0, 1)). So, for k > −r

E[Xk] =

∫ 1

0

xkrxr−1 dx =

[
rxk+r

k + r

]1

0

=
r

k + r
.

Example 3.8.6. Suppose that X has an exponential density with parameter λ. Then,

E[etX ] =

∫ ∞
0

etxλe−λx dx = λ

∫ ∞
0

e−(λ−t)x dx =
λ

λ− t
,

for t < λ. E[etX ] =∞ for t ≥ λ.

Definition 3.8.7 (Moments; moment generating function). E[Xk] is called the k-th mo-
ment of X; φX(t) = E[etX ], defined for all t ∈ R for which this expectation is finite, is called
the moment generating function and can be used to compute the moments of X.

Suppose φX is defined on some open interval (−t0, t0), t0 > 0 (i.e. the domain of φX contains
a neighborhood of zero), and let φ(n) denote the n-th derivative of φ. Then,

φ(n)(0) = E[Xn].

As an application of the last formula we can compute the moments of the exponential distri-
bution. To begin, we note that from Example 3.8.6, φX(t) = λ/(λ− t), so,

φ′X(t) =
λ

(λ− t)2
, E[X] = φ′X(0) =

1

λ
,

φ′′X(t) =
2λ

(λ− t)3
, E[X2] = φ′′X(0) =

2

λ2
,

φ′′′X(t) =
3 · 2λ

(λ− t)4
, E[X3] = φ′′′X(0) =

3!

λ3
.

From the first three we guess that in general,

φ
(n)
X (t) =

n!λ

(λ− t)n+1
, E[Xn] = φ

(n)
X (0) =

n!

λn
,

which one could prove rigorously by induction.

The moment generating function is defined for any random variable but if X is a nonnega-
tive integer-valued random variable, it is often more convenient to look at its probability
generating function defined by

γX(z) = E[zX ] =
∞∑
k=0

zk P(X = k),
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for all z ∈ R for which this sum converges absolutely. Here we use the convention that z0 = 1
even when z = 0. Note that if we set z = et in the generating function we get the moment
generating function,

γX(et) = E[etX ] = φX(t).

Example 3.8.8 (Poisson distribution). If P(X = k) = e−λλk/k! for k = 0, 1, 2, . . . then the
generating function is given by

γX(z) =
∞∑
k=0

e−λ
λk

k!
zk = e−λ

∞∑
k=0

(λz)k

k!
= e−λeλz = eλ(z−1).

Setting z = et we get the moment generating function φX(t) = eλ(et−1).

One of the reasons for the interest in the generating function is that it can also be used to
compute moments. Let X be non-negative integer-valued random variable, let γX(z) = E[zX ]

be its generating function, and let γ
(n)
X be the n-th derivative of γX . Then,

γ
(n)
X (1) = E[X(X − 1) · · · (X − n+ 1)],

provided γX is defined on some open ball containing 1. The quantity on the right-hand is
sometimes called the n-th factorial moment.

Example 3.8.9. In the case of the Poisson distribution, γ(z) = eλ(z−1) so

γ′(z) = λeλ(z−1) ⇒ γ′(1) = λ.

Continuing to differentiate, we see that

γ′′(z) = λ2eλ(z−1) ⇒ γ′′(1) = λ2.

It should be clear from the first two formulae that, in general,

γ(n)(z) = λneλ(z−1) ⇒ γ(n)(1) = λn,

and so E[X(X − 1) · · · (X − n+ 1)] = λn.

Moment generating function are important because they characterise distributions.

Theorem 3.8.10. Suppose X and Y have moment generating functions, φX(t) and φY (t)
which are defined (so finite) and equal for t ∈ (−t0, t0) for some t0 > 0. Then X and Y are
equal in distribution.

3.8.1 A first look at conditional expectation

Definition 3.8.11 (Conditional mean). The conditional mean of Y given X = x is just
the mean of the conditional distribution,

E[Y |X = x] =
∑
y

y P(Y = y|X = x),

E[Y |X = x] =

∫
yfY |X(y|x) dy.

provided P(X = x) > 0 or fX(x) > 0 are positive in the discrete and absolutely continuous
cases, respectively. In the absolutely continuous case this definition is not completely unam-
biguous, but we do not go into such detail here. As an aside, however, note that fX is only
determined up to a set of Lebesgue measure zero.
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If h(x) = E[Y |X = x] then h(X) is a random variable usually denoted by E[Y |X]. It tells us
the conditional mean of Y for the value of X we have observed. This quantity has the following
properties:

(i) E[E[Y |X]] = E[Y ];

(ii) E[Y + Z|X] = E[Y |X] + E[Z|X];

(iii) E[h(X)Y |X] = h(X)E[Y |X].

You will become very intimate with conditional expectations when studying the martingale
approach to pricing derivatives!
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3.9 Limit theorems for sums of independent random vari-

ables

Suppose X1, X2, . . . are independent and identically distributed random variables (lingo: we
abbreviate this to iid). As mentioned above, the sample mean, Sn = 1

n

∑n
k=1Xk “should”

converge to the common expectation E[Xi] of the Xi. In what sense is this true?

3.9.1 Weak law of large numbers

The first result is known as the weak law of large numbers.

Theorem 3.9.1 (Weak law of large numbers). Suppose X1, X2, . . . are iid random vari-
ables which have finite expectation E[Xi] = µ, and let

Sn =
X1 + · · ·+Xn

n
.

Then Sn → µ in probability as n→∞. That is, for any ε > 0,

P(|Sn − µ| > ε)→ 0, as n→∞.

Proof 3.9.2. We can prove this easily when the variance

σ2 = var[Xi] = E[(Xi − µ)2]

of the Xi is finite. The proof begins with Markov’s inequality; for any non-negative random
variable X with finite expectation,

P(X ≥ c) = E[1{X≥c}] ≤
1

c
E[X],

where the indicator 1{X≥c} is equal to 1 if X ≥ c and zero otherwise. Apply this inequality to
the random variable X = (Y − µ)2, where Y is any random variable with finite variance to get

P(|Y − µ| ≥ c) = P((Y − µ)2 ≥ c2) ≤ 1

c2
E[(Y − µ)2] =

1

c2
var[Y ].

This new inequality is called Chebyshev’s inequality. We will apply this with Y = Sn.
Using linearity of the expectation operator, E[Sn] = µ, and as the Xi are all independent,

var[Sn] =
1

n2
(var[X1] + . . .+ var[Xn]) =

σ2

n
,

(recall that var[aY ] = a2 var[Y ] for constant a). Thus, Chebyshev’s inequality gives

P(|Sn − µ| ≥ ε) ≤ 1

nε2
σ2.

Of course, the right hand side converges to zero as n→∞ which concludes the proof. �
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3.9.2 Strong law of large numbers

The weak law gives convergence in probability of the sample mean. A stronger form of conver-
gence for the sample mean is almost sure convergence.

Theorem 3.9.3 (Strong law of large numbers). SupposeX1, X2, . . . are iid with finite mean
µ = E[Xi]. Then, almost surely (with probability 1), the sample mean Sn converges to µ,

P(Sn → µ as n→∞) = 1.

In fact Etemadi shows it is sufficient in the above to have pairwise independence of the random
variables X1, X2, . . ., which is a weaker assumption than demanding their independence.

3.9.3 The central limit theorem

A most beautiful result in probability theory describes the situation when we ‘zoom’ in on the
fluctuations of the sample mean around µ. Incredibly, we find they are normally distributed!
This result is known as the central limit theorem and is stated as follows.

Theorem 3.9.4 (Central limit theorem). Suppose X1, X2, . . . are independent and identi-
cally distributed with E[Xi] = µ and var(Xi) = σ2 ∈ (0,∞). Then, the random variable

X1 + . . .+Xn − nµ
σ
√
n

=
Sn − µ
σ/
√
n

converges in distribution to the standard normal as n→∞. That is, as n→∞,

P
(
Sn − µ
σ/
√
n
≤ x

)
→ P(Z ≤ x),

where Z has density

fZ(z) =
1√
2π

exp(−z2/2).

A typical application of the central limit theorem is to approximate either the binomial or
Poisson distribution by a normal distribution (see exercises).
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`p norm, 27
σ-algebra, 49

absolutely continuous random variable, 57
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non-uniqueness, 7
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Cramer’s rule, 15
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cumulative distribution function, 57

determinant, 14
calculating, 15
Cramer’s rule, 15
from eigenvalue decomposition, 19
properties of, 14

diagonalising a matrix, 20
differentiable function, 28

Ck function, 29
chain rule, 28
Hessian, 29
Jacobian, 29
Leibniz rule, 28
partial derivative, 28
quotient rule, 28

dimension, 7
dimension formula, 11
nullity, 11
rank, 11

discrete random variable, 56
distribution function, 57
dual space, 23

eigenfunctions, 42
eigenvalues and eigenvectors, 17

calculating, 18
characteristic polynomial, 17
eigenspace, 18
generalised eigenvector, 20
multiplicity, 19
of triangular matrices, 19

elementary matrix, 16
elementary operations, 11
Euclidean space, 24
event, 48, 49
expected value, 63
exponential distribution, 58

factorial, 52
field, 5
Fourier series, 43

generalised eigenvector, 20
calculating, 20

geometric distribution, 54

heat equation, 39
Hessian matrix, 29
hyperbolic trigonometric functions, 41

identity matrix, 10
image, 10
independent, 53
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inner product, 24
inverse of a matrix, 14

calculating, 16
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Jacobian matrix, 29
joint density, 59
joint law, 59
joint mass function, 59
Jordan canonical form, 21

kernel, 10

Lagrange multiplier, 31
example, 31

law, 56
Lebesgue measure, 50
Leibniz rule, 28
limit, 27
linear functional, 23
linear map, 9

image, 10
kernel, 10
matrix representation, 10
nullity, 11
rank, 11

local minimum/maximum, 30
calculating, 30
saddle point, 30

lower-triangular matrix, 13

marginal density, 60
marginal distribution, 60
Markov’s inequality, 67
matrix, 10

determinant, 14
diagonalisable, 19
eigenvalues, 17
eigenvectors, 17
elementary operations, 11
exponential, 37
Hessian, 29
image, 10
inverse, 14
Jacobian, 29
Jordan canonical form, 21
kernel, 10
nullity, 11
rank, 11
reduced row-echelon form, 11
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transpose, 14

moment, 64
generating function, 64

multinomial coefficients, 52
multinomial distribution, 54
multiplication rule, 51

negative definite matrix, 30
norm, 26

Euclidean norm, 27
nullity, 11

open ball, 27
ordinary differential equation, 32

initial condition, 33
initial value problem, 33
particular solution, 35

ordinary differential equation:auxiliary equa-
tion, 34

orthogonal vectors, 24
orthonormal vectors, 24

partial derivative, 28
partial differential equation

eigenfunctions, 42
partial differential equation, 39

boundary condition, 40
Dirichlet boundary condition, 40
Fourier series, 43
initial condition, 40
Neumann boundary condition, 40
principle of superposition, 42

partition, 52, 54
permutations, 52
Poisson distribution, 57
positive definite matrix, 30
probability density function, 58
probability generating function, 65
probability measure

law, 56
probability space, 50

quotient rule, 28

random variable
discrete, 56
independent, 61

random variable, 56
absolutely continuous, 57
probability generating function, 65
uniform, 58
variance, 64

rank, 11
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calculating, 12
reduced row-echelon form, 11

calculating, 12
row-echelon form, 11

calculating, 12
rule of sum, 51

saddle point, 30
sample space, 48
singular matrix, 14
strong law of large numbers, 67
subspace, 8
support, 56

transpose, 14
triangular matrix, 13

uniform distribution, 58
uniform random variable, 58
upper-triangular matrix, 13

variance, 64
variations without repetition, 52
vector space, 5

basis, 7
dimension, 7
dual space, 23
Euclidean space, 24
linear independence, 6
of polynomials, 6
spanning vectors, 7
subspace, 8

weak law of large numbers, 66

zero matrix, 20
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