Fundamental Tools Sheet 2: Random variables and probability distributions

1. Let $\Omega=\{1,2, \ldots, 6\}, \mathcal{F}=\{\Omega, \emptyset,\{1,2,3\},\{4,5,6\}\}$. Define the random variables $X(\omega)=\sqrt{\omega}$ and $Y(\omega)=1_{(\omega \in\{1,2,3\})}$. Are X and Y measurable w.r.t \mathcal{F} ? Explain briefly if any of them is not.
2. Suppose that $\Omega=\{H, T\}^{2}$ represents the outcome of tossing two coins. Define a random variable by

$$
X(\omega)= \begin{cases}1, & \text { if both tosses are heads } \\ -1, & \text { if both are tails } \\ 0, & \text { otherwise }\end{cases}
$$

Write down $\sigma(X)$, the smallest σ-algebra which X is measurable with respect to.
3. Let $p_{X}(k)=\exp (-\lambda) \lambda^{k} / k$!, for $k=0,1,2, \ldots$ Verify that p_{X} defines a probability mass function of some random variable X. Compute the mean and variance of X.
4. Let $X \sim \operatorname{Poi}(\lambda)$ and define $Y=\frac{1}{1+X}$. Find the expected value of Y.
5. You flip a (biased) coin n times. The coin has probability $p \in(0,1)$ of landing heads, and each flip is independent. Let H denote the total number of heads. Write down the mass function for H, i.e. $\mathbb{P}(H=k)$ for $k=0,1,2, \ldots, n$. What is the name of this distribution? Compute the mean and variance of H. (Hint: use the fact that $H=\mathbb{1}_{1}^{H}+\ldots+\mathbb{1}_{n}^{H}$, where $\mathbb{1}_{i}^{H}$ is the indicator for the $i^{\text {th }}$ toss being a head, and then linearity of expectation).
6. Memoryless property. A light bulb in use has a probability $p \in(0,1)$ of burning out each day, independent of all the other days. Let N be the random variable defined such that the light bulb burns out on the N-th day since it has been in use. What distribution can you use to model N ? If you are told that a working light bulb has already been in use for 10 days, what is the probability that it will survive for another 5 days? Does this probability change if you are told instead that the light bulb has already been in use for 100 days?
7. Find the mean and variance of $X \sim \operatorname{Exp}(\lambda)$ which has a probability density function $f(x)=$ $\lambda e^{-\lambda x}$ on $x>0$ (and zero elsewhere).
8. For which value of c does the following function define a probability density function?

$$
f(x)= \begin{cases}c(1+x)^{-3}, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expectation of the random variable with density f and write down the cumulative distribution function.
9. Suppose Y is a non-negative continuous random variable. Show that $\mathbb{E}[Y]=\int_{0}^{\infty} \mathbb{P}(Y>y) \mathrm{d} y$.
10. The random variable $Y=e^{X}$ is said to have a lognormal distribution if $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. Find the probability density function of Y. Show also that the expectation of Y is $e^{\left(\mu+\sigma^{2} / 2\right)}$.
11. The lifetime of a light bulb is an $\operatorname{Exp}(\lambda)$ random variable. The policy is to replace the light bulb upon its failure or upon its cumulative working time has reached a fixed constant C, whichever occurs first. Let T denotes the replacement time of the lightbulb. Find and sketch the CDF of T. Is T a continuous random variable? Is T a discrete random variable?

