
Sketch of solutions to Sheet 1

September 24, 2018

• Try not to consult these before you have tried the questions thoroughly.

• Very likely the solutions outlined below only represent a tiny subset of all possible ways of
solving the problems. You are highly encouraged to explore alternative approaches!

1. A σ-algebra F is a collection of subsets of Ω satisfying: (i) Ω ∈ F , (ii) A ∈ F ⇒ AC ∈ F
and (iii) Ai ∈ F for i = 1, 2, 3, ...⇒ ∪∞i=1Ai ∈ F .

The stated F is not a σ-algebra on Ω since a number of the aforementioned properties fail
to hold. For example:

• Ω and ΩC = ∅ are not in F ;

• {1} ∈ F but {1}C = {2, 3} /∈ F ;

• {1} ∈ F and {2} ∈ F but {1} ∪ {2} = {1, 2} /∈ F .

2. The required σ-algebra F must contain B1, B2 and B3. By the basic properties of a σ-
algebra, it also has to contain ∅ and Ω. All we need to do is to add the suitable complements
and unions of Bi’s. The answer is:

F = {∅,Ω, B1, B2, B3, B1 ∪B2, B1 ∪B3, B2 ∪B3}.

3. Here Ω = {HH,HT, TH, TT}. We would like to be able to confirm the occurrence of the
event “the tosses give the same outcome”, which is represented by the subset {HH,TT}.
Thus we would like to find the smallest σ-algebra containing the event {HH,TT}. By
adding the suitable elements to fulfil the necessary constraints of a σ-algebra, the answer can
be written down as F = {Ω, ∅, {HH,TT}, {HT, TH}}.

4. Let H denote head and T denote tail. This experiment can be modelled by a probability
space (Ω,F ,P) where:

Ω = {HH,HT, TH, TT}, F = 2Ω, P(A) =
|A|
|Ω|

.

The events of interested can be written as:

EH = {HH,HT, TH}, ET = {HT, TH, TT}, EH ∩ ET = {HT, TH}.
Then, P(EH) = 3

4 , P(ET ) = 3
4 and P(EH ∩ ET ) = 2

4 = 1
2 . We see that P(EH ∩ ET ) 6=

P(EH)P(ET ) which implies EH and ET are not independent.

5. (i) Clearly A and AC are disjoint, and A ∪ AC = Ω. Hence 1 = P(Ω) = P(A ∪ AC) =
P(A) +P(AC), or P(AC) = 1−P(A). (ii) Define G := F2\F1 := F2 ∩FC

1 such that F1 and G
are disjoint. If F1 ⊆ F2, we also have F1∪G = F2. Then P(F2) = P(F1∪G) = P(F1) +P(G),
from which we get P(G) = P(F2) − P(F1). The result follows by noticing that P(G) > 0.
(Remark: probability of any event is always lying between 0 and 1 because P maps to [0, 1]
by definition.)
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6. P(the dice show different numbers) = 36−6
36 = 5/6, since there are 6 ways of getting the same

numbers among the 6× 6 possibilities.

P(at least one die shows six AND the dice show different numbers)

= P(One die shows six and another one is not a six)

=
36− 25− 1

36
= 5/18

(there are 5 × 5 cases where none of the dice gives six so there are 36 − 25 = 11 ways of
having “at least one die gives six”. Among these 11 cases, remove the case where both dice
are six).

The required conditional probability is then 5
18/

5
6 = 1/3.

7. Let C (resp. B) be the event that the randomly selected Jaguar car is manufactured in
Coventry (resp. Birmingham). Let F be the event that the car is faulty. From the given
information, we have P(C) = 0.7, P(B) = 1− 0.7 = 0.3, P(F |C) = 0.2, P(F |B) = 0.1.

(a) P(F ∩ C) = P(F |C)P(C) = 0.2× 0.7 = 0.14.

(b) P(F ) = P(F ∩ (C ∪ B)) = P(F ∩ C) + P(F ∩ B) = P(F |C)P(C) + P(F |B)P(B) =
0.2× 0.7 + 0.1× 0.3 = 0.17.

(c) P(C|F ) = P(F∩C)
P(F ) = 0.14/0.17 = 0.8235.

(Remark: a tree diagram might be a helpful way to summarise the given information in this
type of question.)

8. Refer to slide 14 on the day 1 handout for an example (of course, you should go through the
calculations to check the pairwise-independence and joint-dependence properties!)

9. We are choosing 5 cards from a deck of 52 cards where the ordering is not important. Thus
there are C52

5 different hands.

Firstly notice that there are C13
4 different combinations of 4 spades. The remaining card is

chosen from 39 non-spade cards, which has 39 (or C39
1 ) possibilities. Hence the total number

of hands with exactly 4 spades is C13
4 × 39.

10. Argument similar to the previous question. There are C52
5 different hands, and C13

3 × C13
2

hands with 3 spades and 2 hearts. Required probability is
C13

3 ×C
13
2

C52
5

.

11. For clarity of exposition, let’s assume n = 7 and r = 9. An example of allocation can be
represented as below:

[◦ ◦ | ◦ | ◦ ◦| | ◦ | ◦ ◦ ◦ | ]

In this case, we have 2 balls in box 1, 1 ball in box 2, 2 balls in box 3, 0 ball in box 4, 1 ball in
box 5, 3 balls in box 6 and 0 ball in box 7. A typical outcome can thus be represented by an
ordering of 6 ‘|’ and 9 ‘◦’ in a line, and there are C9+6

6 = C15
6 distinguishable arrangements.

More generally when we have n boxes and r balls, the answer is Cn+r−1
n−1 .

12. Again for clarity of exposition, let’s assume r = 4 and b = 3 (such that r > b − 1 is
satisfied). Imagine we have all the red balls lying on a row as shown below. The underscore
“ ” represents the space around to each red ball.

R R R R

Now we are trying to complete the ordering by adding the blue balls into the queue. If we
do not want any blue balls lying next to each other, then in each spot marked by a “ ”, there
can at most be one blue ball. The operation now becomes selecting 3 spots from the 5 spots
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available, and put a blue ball in each of the 3 selected spots. How many possible selections
can be made? It is simply C5

3 .

Apply this logic to the arbitrary number of r and b, we will see that the number of orderings
is given by Cr+1

b .

13. Consider the deck as a collection of two types of card only: 13 indistinguishable hearts
and 39 indistinguishable non-hearts. Using the result from the previous question, there
are C39+1

13 = C40
13 cases where no two hearts are next to each other. Since there are C52

13

distinguishable orderings in the well-shuffled deck (remember we consider the hearts are

indistinguishable, so as the non-hearts), the required probability is
C40

13

C52
13

.
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