Sketch of solutions to Sheet 2

September 25, 2018

- Try not to consult these before you have tried the questions thoroughly.
- Very likely the solutions outlined below only represent a tiny subset of all possible ways of solving the problems. You are highly encouraged to explore alternative approaches!

1. X is NOT measurable w.r.t \mathcal{F} because, for example, $X^{-1}(1)=\{1\} \notin \mathcal{F}$. Y is measurable w.r.t \mathcal{F}.
2. The range of X consists of three possible values $1,-1$ or 0 . Check that $X^{-1}(1)=\{H H\}$, $X^{-1}(-1)=\{T T\}$ and $X^{-1}(0)=\{H T, T H\}$. Thus $\sigma(X)$ must at least contain the three events $\{H H\},\{T T\}$ and $\{H T, T H\}$. All we need to do is to add in a few suitable extra elements (unions, compliments, the empty set, etc...) to turn it into a σ-algebra. We then obtain

$$
\sigma(X)=\{\emptyset, \Omega,\{H H\},\{T T\},\{H T, T H\},\{H H, T T\},\{H T, T H, T T\},\{H H, H T, T H\}\}
$$

3. A probability mass function (pmf) $p_{X}(k)$ has to satisfy two conditions: i) $p_{X}(k)>0$ for each k belonging to the support of X; ii) $\sum_{k} p_{X}(k)=1$. Here the first condition is clearly satisfied.
On the second condition, $\sum_{k} p_{X}(k)=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} e^{\lambda}=1$ (recall the Taylor's expansion of the function e^{λ}. Hence $p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$ is a well defined pmf.
$\mathbb{E}(X)=\sum_{k} k p_{X}(k)=e^{-\lambda} \sum_{k=0}^{\infty} \frac{k \lambda^{k}}{k!}=\lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}=\lambda e^{-\lambda} e^{\lambda}=\lambda$, and

$$
\begin{aligned}
\mathbb{E}\left(X^{2}\right)=\sum_{k} k^{2} p_{X}(k) & =e^{-\lambda} \sum_{k=0}^{\infty} \frac{k^{2} \lambda^{k}}{k!} \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{(k(k-1)+k) \lambda^{k}}{k!} \\
& =e^{-\lambda}\left(\lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!}+\lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}\right) \\
& =e^{-\lambda}\left(\lambda^{2} e^{\lambda}+\lambda e^{\lambda}\right) \\
& =\lambda^{2}+\lambda .
\end{aligned}
$$

Thus $\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}=\lambda$.
4.

$$
\begin{aligned}
\mathbb{E}(Y) & =\sum_{k=0}^{\infty} \frac{1}{(1+k)} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =\frac{e^{-\lambda}}{\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{(k+1)!} \\
& =\frac{e^{-\lambda}}{\lambda}\left(\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}-1\right) \\
& =\frac{e^{-\lambda}}{\lambda}\left(e^{\lambda}-1\right) \\
& =\frac{1}{\lambda}\left(1-e^{-\lambda}\right) .
\end{aligned}
$$

5. We have a sequence of "head" and "tail" after flipping the coin n times. What is the number of such sequence with "head" appearing k times? It is given by C_{k}^{n} (think of it as selecting k flips from the total n flips such that we assign "head" to each selected flip). The probability of getting any one of these C_{k}^{n} outcomes is $p^{k}(1-p)^{n-k}$. Hence we have $P(H=k)=C_{k}^{n} p^{k}(1-p)^{n-k}$ for $k=0,1,2 \ldots, n$. This is a binomial distribution with parameters (n, p).
H can be interpreted as a sum of n independent and identically distributed Bernoulli random variables with rate of success p, where each of these Bernoulli random variables has identical mean p and variance $p(1-p)$. By linearity of expectation and variance (where the latter relies on independence), we have $\mathbb{E}(H)=\sum_{k=1}^{n} \mathbb{E}\left(\mathbb{1}_{k}^{H}\right)=\sum_{k=1}^{n} p=n p$ and $\operatorname{var}(H)=$ $\sum_{k=1}^{n} \operatorname{var}\left(\mathbb{1}_{k}^{H}\right)=\sum_{k=1}^{n} p(1-p)=n p(1-p)$.
6. If we need $N=k$, then the light bulb does not fail in the first $k-1$ days which has probability $(1-p)^{k-1}$, and fails on day k which has probability p. Then $\mathbb{P}(N=k)=(1-p)^{k-1} p$ where $k=1,2,3 \ldots$ Here N has a geometric distribution with parameter p.
We first work out $\mathbb{P}(N>k)=1-\mathbb{P}(N \leqslant k)=1-\sum_{i=1}^{k}(1-p)^{i-1} p=(1-p)^{k}$. Then
\mathbb{P} (survives for extra 5 days \mid has survived previous 10 days $)=\mathbb{P}(N>10+5 \mid N>10)$

$$
\begin{aligned}
& =\frac{\mathbb{P}(N>15, N>10)}{\mathbb{P}(N>10)} \\
& =\frac{\mathbb{P}(N>15)}{\mathbb{P}(N>10)} \\
& =(1-p)^{15} /(1-p)^{10} \\
& =(1-p)^{5} .
\end{aligned}
$$

Similarly,
\mathbb{P} (survives for extra 5 days \mid has survived previous 100 days $)=\mathbb{P}(N>100+5 \mid N>100)$

$$
\begin{aligned}
& =\frac{\mathbb{P}(N>105)}{\mathbb{P}(N>100)} \\
& =(1-p)^{5},
\end{aligned}
$$

where probability is the same.
7. A probability density function (pdf) $f(x)$ has to satisfy two conditions: i) $f(x) \geqslant 0$ for all x, and ii) $\int_{\mathbb{R}} f(x) d x=1$.
The first condition is clearly satisfied. On the second condition, $\int_{\mathbb{R}} f(x) d x=\int_{0}^{\infty} \lambda e^{-\lambda x} d x=$ $\left.e^{-\lambda x}\right|_{\infty} ^{0}=1$.

$$
\begin{aligned}
& \mathbb{E}(X)=\int_{\mathbb{R}} x f(x) d x=\int_{0}^{\infty} \lambda x e^{-\lambda x} d x=\left.x e^{-\lambda x}\right|_{\infty} ^{0}+\int_{0}^{\infty} e^{-\lambda x} d x=0+\left.\frac{1}{\lambda} e^{-\lambda x}\right|_{\infty} ^{0}=\frac{1}{\lambda}, \text { and } \\
& \mathbb{E}\left(X^{2}\right)=\int_{\mathbb{R}} x^{2} f(x) d x
\end{aligned}=\int_{0}^{\infty} \lambda x^{2} e^{-\lambda x} d x .
$$

Thus $\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}=\frac{1}{\lambda^{2}}$.
8. We find c by using the property of a pdf that $\int_{\mathbb{R}} f(x) d x=1$. Then $1=\int_{0}^{\infty} c(1+x)^{-3} d x=$ $\left.\frac{c}{2}(1+x)^{-2}\right|_{\infty} ^{0}=\frac{c}{2}$ which gives $c=2$.
$\mathbb{E}(X)=\int_{0}^{\infty} 2 x(1+x)^{-3} d x=\left.x(1+x)^{-2}\right|_{\infty} ^{0}+\int_{0}^{\infty}(1+x)^{-2} d x=0+\left.(1+x)^{-1}\right|_{\infty} ^{0}=1$.
The cumulative distribution function of X is given by $F(x)=\mathbb{P}(X \leqslant x)$. Since X only has non-zero density for $x>0, X$ is a positive random variable and thus $F(x)=\mathbb{P}(X \leqslant x)=0$ for $x<0$. Otherwise for $x \geqslant 0, F(x)=\mathbb{P}(X \leqslant x)=\int_{0}^{x} f(u) d u=\int_{0}^{x} 2(1+u)^{-3} d u=$ $\left.(1+u)^{-2}\right|_{x} ^{0}=1-(1+x)^{-2}$. In summary,

$$
F(x)= \begin{cases}0, & x<0 \\ 1-(1+x)^{-2}, & x \geqslant 0\end{cases}
$$

9. Let f be the density function of Y. Then

$$
\int_{0}^{\infty} \mathbb{P}(Y>y) d y=\int_{y=0}^{y=\infty} \int_{u=y}^{u=\infty} f(u) d u d y=\int_{u=0}^{u=\infty} \int_{y=0}^{y=u} f(u) d y d u=\int_{u=0}^{u=\infty} u f(u) d u=\mathbb{E}(Y) .
$$

(Indeed, the relationship $\mathbb{E}(Y)=\int_{0}^{\infty} \mathbb{P}(Y>y) d y$ holds for any positive random variable Y, not just those with absolutely continuous density. The proof of this general result is more subtle since Y may not have a density function.)
10. Denote the cumulative distribution function of Y by $F_{Y}(x)$ which we try to work out as follows:
$F_{Y}(x)=\mathbb{P}(Y \leqslant x)=\mathbb{P}\left(e^{X} \leqslant x\right)=\mathbb{P}(X \leqslant \ln x)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \leqslant \frac{\ln x-\mu}{\sigma}\right)=\mathbb{P}\left(Z \leqslant \frac{\ln x-\mu}{\sigma}\right)$,
where Z is a standard normal random variable. Hence $F_{Y}(x)=\Phi\left(\frac{\ln x-\mu}{\sigma}\right)$, where Φ is the cumulative distribution of a standard normal distribution. The density of Y is then obtained by differentiation
$f_{Y}(x)=\frac{d}{d x} F_{Y}(x)=\frac{d}{d x} \Phi\left(\frac{\ln x-\mu}{\sigma}\right)=\frac{1}{\sigma x} \Phi^{\prime}\left(\frac{\ln x-\mu}{\sigma}\right)=\frac{1}{\sigma x \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}\right)$.
for $x>0$, and the density is zero elsewhere.
(Recall that $\Phi^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ which is the density function of a standard normal random variable.)

The mean of Y can be computed as

$$
\begin{aligned}
\mathbb{E}(Y) & =\int_{0}^{\infty} x f_{Y}(x) d x \\
& =\int_{0}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)^{2}\right) d x \\
& \left.=\int_{-\infty}^{\infty} \frac{\exp (\mu+\sigma u)}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) d u \quad \text { (By change of variable } u=\frac{\ln x-\mu}{\sigma}\right) \\
& =e^{\mu+\sigma^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(u-\sigma)^{2}\right) d u \\
& =e^{\mu+\sigma^{2} / 2}
\end{aligned}
$$

Notice that we have performed a completing square trick from the third to the forth line. In the last line we have used the fact that the density of a standard normal variable integrates to 1 , i.e. $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u=1$.
11. From the question setup, $T=\min (X, C)$ where $X \sim \operatorname{Exp}(\lambda)$. Now we would like to find the CDF of T. Clearly T is non-negative. For $t \geqslant 0$.

$$
\begin{aligned}
F_{T}(t) & =\mathbb{P}(T \leqslant t) \\
& =\mathbb{P}(\min (X, C) \leqslant t) \\
& =\mathbb{P}(X \leqslant t \text { or } C \leqslant t) \\
& =\mathbb{P}(X \leqslant t)+\mathbb{P}(C \leqslant t)-\mathbb{P}(X \leqslant t \text { and } C \leqslant t)
\end{aligned}
$$

Notice that in the above expression C and t are just some non-random numbers. If $t \geqslant C$, then the event " $t \geqslant C$ " always happens with probability one. Otherwise if $t<C$, then " $t \geqslant C$ " will be an impossible event. This gives:

$$
F_{T}(t)= \begin{cases}\mathbb{P}(X \leqslant t)+0-0, & t<C \\ \mathbb{P}(X \leqslant t)+1-\mathbb{P}(X \leqslant t), & t \geqslant C\end{cases}
$$

Since X follows $\operatorname{Exp}(\lambda), \mathbb{P}(X \leqslant t)=\int_{0}^{t} \lambda e^{-\lambda u} d u=1-e^{-\lambda t}$. Substitution into the above gives

$$
F_{T}(t)= \begin{cases}1-e^{-\lambda t}, & t<C \\ 1, & t \geqslant C\end{cases}
$$

A sketch of CDF is given below. There is a discontinuity in the function at $t=C$.

T is not a continuous random variable. It is because $\mathbb{P}(T=C)=\mathbb{P}(T \leqslant C)-\mathbb{P}(T<C)=$ $1-\left(1-e^{-\lambda C}\right)=e^{-\lambda C}>0$. But a continuous random variable always has zero probability of assuming any particular value, i.e $\mathbb{P}(T=x)=0$ must hold for any x if T was continuous. So T cannot be continuous.
T is also not discrete because the possible range of T is $[0, C]$, which is not a countable set.

