Sketch of solutions to Sheet 3

September 27, 2018

- Try not to consult these before you have tried the questions thoroughly.
- Very likely the solutions outlined below only represent a tiny subset of all possible ways of solving the problems. You are highly encouraged to explore alternative approaches!

1. Since X_{1} and X_{2} are exponential random variables which are positive by definition. $Y:=$ X_{1} / X_{2} is a positive random variable as well. For $y>0$, the cumulative distribution function of Y is given by

$$
\begin{aligned}
F_{Y}(y)=\mathbb{P}(Y \leqslant y)=\mathbb{P}\left(X_{1} / X_{2} \leqslant y\right) & =\mathbb{P}\left(X_{1} \leqslant y X_{2}\right) \\
& =\iint_{\left\{\left(x_{1}, x_{2}\right) \in(0, \infty)^{2}: x_{1} \leqslant y x_{2}\right\}} \exp \left(-x_{1}\right) \exp \left(-x_{2}\right) d x_{1} d x_{2} \\
& =\int_{x_{1}=0}^{x_{1}=\infty} \int_{x_{2}=x_{1} / y}^{x_{2}=\infty} \exp \left(-x_{1}\right) \exp \left(-x_{2}\right) d x_{2} d x_{1} \\
& =\int_{x_{1}=0}^{x_{1}=\infty} \exp \left(-(1+1 / y) x_{1}\right) d x_{1} \\
& =1-\frac{1}{y+1} .
\end{aligned}
$$

The density of Y is given by $\frac{d}{d y} F_{Y}(y)=(y+1)^{-2}$ for $y \geqslant 0$ (and the density is 0 on $y<0$). $\mathbb{P}\left(X_{1}<X_{2}\right)=\mathbb{P}(Y<1)=F_{Y}(1)=1 / 2$.
2. (X, Y) is supported on the domain R_{1} where $R_{r}:=\left\{(x, y): x^{2}+y^{2} \leqslant r^{2}\right\}$ (which represents a circle centering at the origin with radius r). Using the property that a density function integrates to 1 , we have $1=\iint_{R_{1}} f(x, y) d x d y=c \iint_{R_{1}} d x d y=c \pi$ which gives $c=1 / \pi$.
We integrate the joint density to obtain the marginal density of X and Y. In particular, for

$$
f_{X}(x)=\int_{y \in \mathbb{R}} f(x, y) d y=c \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d y=\frac{2}{\pi} \sqrt{1-x^{2}}
$$

for $-1 \leqslant x \leqslant 1$, and similarly we have $f_{Y}(y)=\frac{2}{\pi} \sqrt{1-y^{2}}$ for $-1 \leqslant y \leqslant 1$. We see that in general $f(x, y) \neq f_{X}(x) f_{Y}(y)$, thus X and Y are not independent.
D is supported on $[0,1]$. We first work out the cumulative distribution function of D as follow: for $0 \leqslant d \leqslant 1$,
$F_{D}(d)=\mathbb{P}(D \leqslant d)=\mathbb{P}\left(\sqrt{X^{2}+Y^{2}} \leqslant d\right)=\mathbb{P}\left(X^{2}+Y^{2} \leqslant d^{2}\right)=\iint_{R_{d}} f(x, y) d x d y=c \pi d^{2}=d^{2}$.

The density function of D is then given by $f_{D}(d)=F_{D}^{\prime}(d)=2 d$ on $0 \leqslant d \leqslant 1$ (and is zero elsewhere).
3. $\mathbb{P}(N$ is even $)=\mathbb{P}(N \in\{0,2,4, \ldots\})=\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^{2 k}}{(2 k)!}=e^{-\lambda}\left(1+\frac{\lambda^{2}}{2!}+\frac{\lambda^{4}}{4!}+\cdots\right)$.

Recall that

$$
e^{\lambda}=1+\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\cdots
$$

and

$$
e^{-\lambda}=1-\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}-\frac{\lambda^{3}}{3!}+\cdots
$$

Hence

$$
\frac{1}{2}\left(e^{\lambda}+e^{-\lambda}\right)=1+\frac{\lambda^{2}}{2!}+\frac{\lambda^{4}}{4!}+\cdots
$$

and thus $\mathbb{P}(N$ is even $)=\frac{e^{-\lambda}}{2}\left(e^{\lambda}+e^{-\lambda}\right)$.
On the other hand, $\mathbb{P}(N=n, N$ is even $)=\frac{e^{-\lambda} \lambda^{n}}{n!}$ if n is even, or otherwise is 0 when n is odd. Therefore

$$
\begin{aligned}
& \mathbb{P}(N=n \mid N \text { is even })=\frac{\mathbb{P}(N=n, N \text { is even })}{\mathbb{P}(N \text { is even })} \\
& = \begin{cases}\frac{2 \lambda^{n}}{\left(e^{\lambda}+e^{-\lambda}\right) n!}, & n=0,2,4, \ldots \\
0, & n=1,3,5, \ldots\end{cases} \\
& \begin{aligned}
\mathbb{E}(N \mid N \text { is even }) & =\sum_{n=0}^{\infty} n \mathbb{P}(N=n \mid N \text { is even }) \\
& =\frac{2}{e^{\lambda}+e^{-\lambda}} \sum_{n=0}^{\infty}(2 n) \frac{\lambda^{2 n}}{(2 n)!} \\
& =\frac{2 \lambda}{e^{\lambda}+e^{-\lambda}} \sum_{n=1}^{\infty} \frac{\lambda^{2 n-1}}{(2 n-1)!} \\
& =\frac{2 \lambda}{e^{\lambda}+e^{-\lambda}}\left(\frac{\lambda}{1!}+\frac{\lambda^{3}}{3!}+\frac{\lambda^{5}}{5!}+\cdots\right) \\
& =\frac{\lambda}{e^{\lambda}+e^{-\lambda}}\left(e^{\lambda}-e^{-\lambda}\right) \\
& =\lambda \tanh (\lambda) .
\end{aligned}
\end{aligned}
$$

4. $1=\sum_{k=0}^{\infty} \mathbb{P}(Z=k)=\frac{\theta}{C_{\theta}} \sum_{k=0}^{\infty} \frac{\lambda^{2 k}}{(2 k)!}+\frac{1}{C_{\theta}} \sum_{k=1}^{\infty} \frac{\lambda^{2 k-1}}{(2 k-1)!}=\frac{\theta}{2 C_{\theta}}\left(e^{\lambda}+e^{-\lambda}\right)+\frac{1}{2 C_{\theta}}\left(e^{\lambda}-e^{-\lambda}\right)$, which gives $C_{\theta}=\frac{1}{2}\left((\theta+1) e^{\lambda}+(\theta-1) e^{-\lambda}\right)$. Check that $C_{\theta} \rightarrow \infty$ and $\frac{\theta}{C_{\theta}} \rightarrow \frac{2}{e^{\lambda}+e^{-\lambda}}$ as $\theta \rightarrow \infty$. Hence we have

$$
\mathbb{P}_{\theta}(Z=z) \rightarrow \begin{cases}\frac{2}{e^{\lambda}+e^{-\lambda}} \frac{\lambda^{z}}{z!}, & z=0,2,4, \cdots ; \\ 0, & z=1,3,5, \cdots\end{cases}
$$

as $\theta \rightarrow \infty$. This expression is equivalent to the one computed in question 3 .
5. (a) The two events " $X=0$ " and " $Y \neq 0$ " are mutually exclusive and cannot happen at the same time, thus $\mathbb{P}(X=0, Y \neq 0)=0$. On the other hand, $\mathbb{P}(X=0)=1 / 3$, $\mathbb{P}(Y \neq 0)=\mathbb{P}(X=1)+\mathbb{P}(X=-1)=2 / 3$. In particular, $\mathbb{P}(X=0) \mathbb{P}(Y \neq 0)=2 / 9 \neq$ $0=\mathbb{P}(X=0, Y \neq 0)$. Thus X and Y are not independent.
(b) The joint probability mass function $p_{X Y}(x, y)$ and marginal probability mass function $p_{X}(x)$ and $p_{Y}(y)$ can be represented below:
X and Y are not independent since one can check that $p_{X Y}(x, y) \neq p_{X}(x) p_{Y}(y)$ (for example, $p_{X Y}(-1,1)=1 / 3$ but $p_{X}(-1) p_{Y}(1)=(1 / 3)(2 / 3)=2 / 9 \neq p_{X Y}(-1,1)$.)

	x			$p_{Y}(y)$	
		-1	0	1	
y	1	$1 / 3$	0	$1 / 3$	$2 / 3$
	0	0	$1 / 3$	0	$1 / 3$
$p_{X}(x)$		$1 / 3$	$1 / 3$	$1 / 3$	

(c) From the joint pmf, we can work out $\mathbb{E}(X Y)=\sum_{x, y} x y \mathbb{P}(X=x, Y=y)=(1)(-1)(1 / 3)+$ $(0)(0)(1 / 3)+(1)(1)(1 / 3)=0$. From the marginal pmf's of X and Y it is also easy to check $\mathbb{E}(X)=0$ and $\mathbb{E}(Y)=2 / 3$. Hence $\mathbb{E}(X Y)=0=\mathbb{E}(X) \mathbb{E}(Y)$. Here the covariance/correlation between X and Y is zero, although they are not independent.
6. For $X \sim \operatorname{Bin}(n, p)$, its pgf is

$$
G_{X}(t)=\mathbb{E}\left(t^{X}\right)=\sum_{k=0}^{n} t^{k} C_{k}^{n} p^{k}(1-p)^{n-k}=\sum_{k=0}^{n} C_{k}^{n}(p t)^{k}(1-p)^{n-k}=(p t+1-p)^{n}
$$

For $Y \sim \operatorname{Bin}(m, p)$ which is independent of X, the pgf of $X+Y$ is given by $G_{X}(t) G_{Y}(t)=$ $(p t+1-p)^{n}(p t+1-p)^{m}=(p t+1-p)^{n+m}$, which is identical to the pgf of $\operatorname{Bin}(n+m, p)$. Hence $X+Y \sim \operatorname{Bin}(n+m, p)$ by the unique correspondence between distribution and pgf.
7. With a given pgf $g_{X}(\cdot), \mathbb{P}(X=k)=\frac{g_{X}^{(k)}(0)}{k!}$. In the case of $g_{X}(t)=e^{\theta(t-1)}$ we have $g_{X}^{(k)}(t)=$ $\theta^{k} e^{\theta(t-1)}$. Hence $\mathbb{P}(X=k)=\frac{\theta^{k} e^{-\theta}}{k!}($ for $k=0,1,2, \ldots)$, i.e. X has a $\operatorname{Poisson}(\theta)$ distribution.
8. For $X \sim \exp (\lambda)$, its mgf is given by $m_{X}(t)=\mathbb{E}\left(e^{t X}\right)=\int_{0}^{\infty} e^{t u} \lambda e^{-\lambda u} d u=\lambda \int_{0}^{\infty} e^{-(\lambda-t) u} d u=$ $\frac{\lambda}{\lambda-t}$. (Need $\lambda>t$ for the mgf to be well-defined, otherwise the indefinite integral diverges.)
We can obtain $m_{X}^{\prime}(t)=\frac{\lambda}{(\lambda-t)^{2}}$ and $m_{X}^{\prime \prime}(t)=\frac{2 \lambda}{(\lambda-t)^{3}}$. Hence $\mathbb{E}(X)=m_{X}^{\prime}(0)=1 / \lambda$ and $\mathbb{E}\left(X^{2}\right)=m_{X}^{\prime \prime}(0)=2 / \lambda^{2}$. Then $\operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}=1 / \lambda^{2}$.
9. We first obtain the density function f by differentiating the CDF:

$$
f(x)=\frac{d}{d x}\left(1-(1+\lambda x) e^{-\lambda x}\right)=\lambda^{2} x e^{-\lambda x}
$$

for $x>0$. Then the mgf is computed via

$$
\begin{aligned}
m(t)=\mathbb{E}\left(e^{t X}\right) & =\int_{0}^{\infty} e^{t x} \lambda^{2} x e^{-\lambda x} d x \\
& =\lambda^{2} \int_{0}^{\infty} x e^{-(\lambda-t) x} d x \\
& =\left.\frac{\lambda^{2}}{\lambda-t} x e^{-(\lambda-t) x}\right|_{\infty} ^{0}+\frac{\lambda^{2}}{\lambda-t} \int_{0}^{\infty} e^{-(\lambda-t) x} d x \\
& =0+\left.\frac{\lambda^{2}}{(\lambda-t)^{2}} e^{-(\lambda-t) x}\right|_{\infty} ^{0} \\
& =\left(\frac{\lambda}{\lambda-t}\right)^{2}
\end{aligned}
$$

$\mathbb{E}(X)$ can be computed via $m^{\prime}(0)$. Here $m^{\prime}(t)=2 \lambda^{2}(\lambda-t)^{-3}$ and hence $\mathbb{E}(X)=m^{\prime}(0)=2 / \lambda$.

