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THE UNIVERSITY OF WARWICK

MSc EXAMINATION: September 27th 2018

FUNDAMENTAL TOOLS

Time Allowed: 3 hours

Candidates should attempt all 4 questions. However more credit will be given for
complete answers than for a number of fragments.

Read carefully the instructions on the answer book and make sure that the numbers
required are entered on each answer book.

1. a) (i) Give the definition of a random variable on a probability space (Ω,F ,P). [3]

(ii) Write down the definition of the distribution function for a random variable.

Why is this well-defined? [2]

b) (i) Suppose X is a continuous random variable; i.e. P(X = x) = 0 for each

x ∈ R. Let F be its distribution function. Show that F ◦X ∼ Unif([0, 1]). [4]

(ii) Suppose X is not a continuous random variable. Show that F ◦X does not

have the Unif([0, 1]) distribution. [4]

(iii) Show that if U ∼ Unif([0, 1]), and F−1(y) := min{x ∈ R : F (x) ≥ y}, then

F−1 ◦ U has distribution function F . [2]

2. a) Write down the definition for F to be a σ-algebra on a given space Ω. [4]

b) Let P be a partition of the space Ω.

(i) In the case that P is countable, describe the smallest σ-algebra on Ω which

contains P , denoted σ(P). Be precise about checking all the defining prop-

erties of σ-algebras in your arguments. [3]

(ii) How does your answer to (c)(i) change if P is not countable? [2]

(iii) If |P| = n ∈ N, what is |σ(P)|? [3]

c) A security password contains three or four characters. Each character can be

one of 26 letters or 10 digits. Any password must contain at least two digits.

How many such passwords are there? [4]

d) Suppose that in the previous question we pick a password consisting only of dig-

its. A hacker tries to guess our password by selecting each character randomly

with uniform probability. In a single try:

1 Question 2 continued overleaf
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Question 2 continued

(i) What are the chances of him guessing the password without any prior

knowledge? [2]

(ii) What is the posterior probability of him guessing the password if he is given

the knowledge that our password consists only of digits? [3]

3. a) Say what it means for F to be a σ-algebra on Ω. [4]

b) Of the following:

(i) F1 := {∅, 1, 2, {1, 2}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}},
(ii) F2 := {{1}, {2}},
(iii) F3 := {∅, {1, 2, 3, 4}},

which, if any, is a σ-algebra on {1, 2, 3, 4}? [3]

4. a) Write down the definition of what it means for two random variables to be

independent. [3]

b) When are two random variables said to be uncorrelated? [3]

c) Let X and Y be random variables (with finite expectation). Of the two state-

ments:

(i) X and Y are independent.

(ii) X and Y are uncorrelated.

which implies the other? Give a counter-example showing the reverse implica-

tion fails to be true in general. [6]

d) Let now X = (X1, X2, . . .) be a sequence of iid, Ber(p), p ∈ (0, 1), random

variables (so P(X1 = 1) = 1 − P(X1 = 0) = p). Let further Y = (Y1, Y2, . . .)

be a sequence of iid Ber(q), q ∈ (0, 1), random variables, independent of the

sequence X.

(i) What (known!) distribution does X1Y1 have? What (known!) distribution

does Sn := X1Y1 + · · ·+XnYn have (n ≥ 1)? Remark: You need not prove

that X1Y1, X2Y2, . . . is a sequence of independent random variables (as it

is), nor do you need to argue that for each i ∈ N, Xi is independent of Yi
(as it is). [5]

(ii) State the weak and strong law of large numbers for the sequence XY :=

(X1Y1, X2Y2, . . .). In particular, give the limit explicitly, and don’t forget

to explain the different modes of convergence. [5]

2 Question 4 continued overleaf
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Question 4 continued

(iii) How do your answers to question (di) change, if instead of Bernoulli random

variables, we have P(X1 = 1) = 1 − P(X1 = −1) = p and P(Y1 = 1) =

1 − P(Y1 = −1) = q, but X and Y remain independent sequences of iid

random variables? Again you can express your answers (albeit indirectly)

in terms of known distributions (more precisely, as affine transformations

of known distributions)! [3]

5. a) Define what it means for a random variable X to be discrete, explaining the

terms probability mass function (pmf) of X; support of X; atom of the law of

X. [5]

b) Let Y be the random variable showing a 1 if we see a head and a 0 if we see

a tail, in a single throw of a fair coin. Is Y discrete (why)? If so, what is its

support? [2]

c) Say what it means for the random variables in an infinite sequence, X1, X2, . . .,

of random variables, to be independent. [3]

d) In the following, let p
(k)
n denote the probability of seeing a run of k ∈ N or more

heads (i.e. k or more consecutive heads) in a sequence of n ∈ N independent

tosses of a fair coin. (For example, for n = 4, HHTH has a run of 1, and a

run of 2, heads, but no run of 3 heads; THHH has a run of 3 heads, as does

HHHH; the latter in addition has a run of 4 heads, and so on.)

(i) Why is p
(k)
n = 0 for n < k? [2]

(ii) Determine p
(k)
k (for k ∈ N). [2]

(iii) Show that, for n ≥ k:

p
(k)
n+1 = p(k)

n +
1

2k+1
(1− p(k)

n−k).

[5]

(iv) Conclude that limn→∞ p
(k)
n = 1. [2]

(v) What is the probability of seeing a run of k or more heads in an infinite

sequence of throws (i.e. eventually)? Why? [4]

3 CONTINUED
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6. a) Explain what it means for F to be a σ-algebra on Ω. [4]

b) If A is a subset of the power set of Ω (i.e. a collection of subsets of Ω), define

σΩ(A), the σ-algebra generated by A on Ω. [3]

c) Let X be a random variable defined on some sample space Ω. Consider the

collection BX := {X−1(A) : A ∈ B(R)}, where B(R) is the Borel σ-algebra on

R.

(i) Why is ∅ ∈ BX? Why is Ω ∈ BX? [3]

(ii) If B ∈ BX , is it necessarily the case that Ω\B ∈ BX also? Why/why not? [3]

(iii) Let B1, B2, . . . be a sequence of members of BX . Show that ∪n≥1Bn ∈ BX !

Is BX a σ-algebra on Ω? [5]

Let Y be another random variable, defined on the same sample space Ω, BY :=

{Y −1(A) : A ∈ B(R)}. Suppose (i) BX = BY and (ii) there is a Borel set Z such

that P(X−1(Z)) = P(X ∈ Z) /∈ {0, 1}.

(iv) Can X and Y be independent? [4]

(v) Can X and Y be uncorrelated? [3]

In both parts (civ) and (cv), either provide an example if the answer is to the

affirmative (including specifying the whole probability space-triplet (Ω,F ,P),

and of course X and Y ); or else give an argument as to why the answer is to

the negative.

4 END
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MATHEMATICS DEPARTMENT
MSC EXAMS

Course Title: FUNDAMENTAL TOOLS

Model Solution No: 1

a) A random variable on the probability space (Ω,F ,P) is a mapping X : Ω → R
which is measurable, i.e. {X ∈ B} ∈ F for all Borel sets B. [3]

b) FX(x) = P(X ≤ x); well-defined, since X is measurable and (−∞, x] is a Borel set
(x ∈ R). [2]

c) (i) P(X > x) =
∫∞
x
λe−λydy = e−λx. [1]

(ii) Since P(X ∧ Y > x) = P(X > x, Y > x) = P(X > x)P(Y > x) = e−λxe−µy =
e−(λ+µ)x for all x ∈ (0,∞), it follows that FX∧Y (x) = (1− e−(λ+µ)x)1(0,∞)(x).

[2]

(iii) P(X > x + s | X > x) = P(X > x + s)/P(X > x) = eλxe−λ(x+s) = e−λs =
P(X > s) by (ci). [2]

d) (i) Fix x ∈ (0, 1). Let x∗ := max{y ∈ R : F (y) ≤ x}. This maximum is indeed
attained, since F has no jumps by the continuity of X. Moreover, F (x∗) = x.
Next note that for each ω from the sample space, F (X(ω)) ≤ x⇔ X(ω) ≤ x∗.
It follows that P(F ◦ X ≤ x) = P(X ≤ x∗) = F (x∗) = x. This implies that
F ◦X ∼ Unif([0, 1]). [4]

(ii) Since X is not a continuous random variable, there is a real x with P(X =
x) > 0, and F has a jump of this size at x. Let x1 = limy↑x F (y) and
x2 = F (x). Let a = (x1 + x2)/2. Then P(F ◦X ≤ a) = P(X < x) = x1 < a.
Hence F ◦X cannot be Unif([0, 1]). [4]

(iii) P(F−1 ◦ U ≤ x) = P(U ≤ F (x)) = F (x). [2]

e) (i) Since
∫∞

0
x2e−xdx = 2!, it follows that c = 1/2. [1]

(ii) E[X] = 1
2

∫∞
0
x3e−xdx = 3!/2 = 3. [1]

(iii) Since E[X2] = 1
2

∫∞
0
x4e−xdx = 12, it follows that var[X] = E[X2]− E[X]2 =

12− 9 = 3. [1]

(iv) Finally, φX(t) = E[etX ] =
∫∞

0
etxx2e−xdx/2 = 1/(1 − t)3, for t < 1, by a

change of variables. [2]

Breakdown: Seen: (a), (b); Bookwork: (c)(i)+(iii), (e); Unseen: (c)(ii), (d).
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MATHEMATICS DEPARTMENT
MSC EXAMS

Course Title: FUNDAMENTAL TOOLS

Model Solution No: 2

a) F is a σ-algebra on Ω if: (i) Ω ∈ F , (ii) A ∈ F ⇒ Ac ∈ F and (iii) for every
A1, A2, . . . countable sequence of sets in F , ∪∞i=1Ai ∈ F . [4]

b) No. Here is a counter-example. Let Ω := {0, 1, 2}, A := {∅, {0}, {1, 2},Ω} and
B := {∅, {2}, {0, 1},Ω}. Then {1} /∈ A ∪ B and yet {1} = {0, 1} ∩ {1, 2} must
belong to every σ-algebra, which contains A and B. [4]

c) (i) σ(P) = {countable unions of elements of P} =: C. Since P is a countable
set, whose union is Ω, then Ω ∈ C. Closure under complements follows from
the countability of P and the fact that it is a partition. Finally a countable
union of countably many sets from P is a countable union of sets of P which
gives closure under countable unions for C. It follows that C is a σ-algebra,
it contains P and every σ-algebra containing P , must contain C as well, due
to the countable union closure property. [3]

(ii) If P is not countable, then σ(P) = {countable unions of elements of P} ∪
{complements of countable unions of elements of P} =: D. One checks that
in fact σ(P) = D in a similar manner. [2]

(iii) By the first part (ci) the elements of σ(P) are determined uniquely, in a one-
to-one and onto fashion, by specifying whether or not any one given element
of P is their subset. Thus, by the multiplication and bijection rules, it follows
that |σ(P)| = 2n. [3]

d) If the password contains 3 characters in total, then we can have 2 or 3 digits in total.
For each of these cases, we must specify where the digits are placed in the password,
and then which digits and letters we put in their allotted places. Similarly when
there are 4 signs in total to the password. It follows by an application of the sum
and multiplication rules, and the formula for combinations, that the total number
of passwords is:(

3

2

)
· 102 · 261 +

(
3

3

)
· 103 · 260 +

(
4

2

)
· 102 · 262 +

(
4

3

)
· 103 · 261 +

(
4

4

)
· 104 · 260.

This gives 528400 possible passwords. [4]

e) (i) 1/528400. [2]

(ii) There are 103 + 104 = 11000 different passwords containing only digits, all of
which are equally likely. Hence the posterior probability is 1/11000. [3]

Breakdown: Seen: (a); Bookwork: (b); Unseen: (c), (d), (e).
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MATHEMATICS DEPARTMENT
MSC EXAMS

Course Title: FUNDAMENTAL TOOLS

Model Solution No: 3

a) A collection of subsets of Ω is a σ-algebra on Ω, if (i) Ω ∈ F , (ii) A ∈ F ⇒ Ω\A ∈ F
and (iii) (Ai)

∞
i=1 ⊂ F ⇒ ∪∞i=1Ai ∈ F .

b) Let [4] := {1, 2, 3, 4}. F1 is not a σ-algebra on [4], since, in fact, F1 6⊂ 2[4]. F2 has
{1} ∈ F2 and {2} ∈ F2, but {1} ∪ {2} = {1, 2} /∈ F2, so is not a σ-algebra either.
Finally, F3 is, trivially, a σ-algebra on [4].
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MATHEMATICS DEPARTMENT
MSC EXAMS

Course Title: FUNDAMENTAL TOOLS

Model Solution No: 4

a) Random variables X and Y are independent, if P(X ∈ A, Y ∈ B) = P(X ∈
A)P(Y ∈ B) for any Borel subsets A and B of R.

b) Random variables X and Y are uncorrelated, if E[XY ] = E[X]E[Y ] (all the ex-
pectations needing to be well-defined and finite).

c) Independent random variables (of finite mean) are uncorrelated. The converse
implication need not hold. For example, take:

X ∼
(
−2 −1 1 2
1/4 1/4 1/4 1/4

)
i.e. X ∼ Unif({−2,−1, 1, 2}), discrete and uniformly distributed on the set
{−2,−1, 1, 2}. Then:

Y := X2 ∼
(

1 4
1/2 1/2

)
.

Moreover, clearly E[XY ]− E[X]E[Y ] = E[X3]− E[X]E[X2] = 0. To show X and
Y are dependent take B := {4} and A := {2}. Then:

P(X ∈ A, Y ∈ B) = P(X ∈ A) = 1/4 6= 1/8 = (1/4) · (1/2) = P(X ∈ A)P(Y ∈ B).

d) (i) Clearly, with probability 1, X1Y1 ∈ {0, 1}. Moreover, by independence,
P(X1Y1 = 1) = P(X1 = 1, Y1 = 1) = P(X1 = 1)P(Y1 = 1) = pq. Thus
X1Y1 ∼ Ber(pq). Then Sn ∼ Bin(n, pq), since X1Y1, . . . , XnYn are indepen-
dent.

(ii) We remark that XY is, in fact, a sequence of iid random variables with finite
mean. The weak law of large numbers then states that the sample means
Sn/n converge in probability to E[X1Y1] = pq, i.e. for each ε > 0:

P
(∣∣∣∣Sn − npqn

∣∣∣∣ ≥ ε

)
→ 0, as n→∞.

The strong law of large numbers states that the sample means Sn/n converge
to pq with probability 1, i.e.:

P( lim
n→∞

Sn/n = pq) = 1.

(iii) As in (di), we find that P(X1Y1 = 1) = 1−P(X1Y1 = −1) = pq+(1−p)(1−q).
Then (X1Y1 + 1)/2 ∼ Ber(pq + (1− p)(1− q)) and hence:

Sn = 2
1

2
((X1Y1 + 1) + · · ·+ (XnYn + 1))−n ∼ 2Bin(n, pq+(1−p)(1−q))−n,

by an abuse of notation.

Breakdown: Seen: (a); (b); (c) Bookwork: (c); Unseen: (d).
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MATHEMATICS DEPARTMENT
MSC EXAMS

Course Title: FUNDAMENTAL TOOLS

Model Solution No: 5

a) A random variable X is discrete if its law, µX , puts all its mass on a countable
subset of R, i.e. if there is a C ⊂ R, denumerable, and such that µX(C) = P(X ∈
C) = 1. Given a discrete random variable X, D := {x ∈ R : P(X = x) > 0} is its
support. The probability mass function of X is then the mapping pX : D → (0, 1],
with pX(d) = P(X = d) for d ∈ D. Finally, an atom of its law is an element of D.

b) Y is discrete, since it takes on only finitely many values (0 and 1). Its support is
the set {0, 1}.

c) A sequence of random variables X1, X2, . . . is an independency, if any finite sub-
sequence thereof is so. A finite sequence X1, . . . , Xn (n ∈ N) of random variables
is an independency if for all Borel sets A1, . . . , An, P(X1 ∈ A1, . . . , Xn ∈ An) =
P(X1 ∈ A1) · · ·P(Xn ∈ An).

d) Let Yi show a 1 or a 0, according as to whether on the i-th throw a head or a tail
was seen, i ∈ N. Remark the random variables Y1, Y2, . . . are independent.

(i) There cannot have been more heads than there have been actual throws, so

in this instance p
(k)
n is the probability of the impossible event ∅, which is then

zero.

(ii) p
(k)
k is the probability of the event that in k consecutive throws of the coin,

all were heads, i.e. p
(k)
k = P(Y1 = 1, . . . , Yk = 1) = P(Y1 = 1) · · ·P(Yn = 1) =

2−1 · · · 2−1︸ ︷︷ ︸
k−times

= 2−k (owing to independence).

(iii) Note that:
P(En+1) = P(En) + P(En+1\En),

where En is the event of seeing a run of k or more heads in the first n tosses
and En+1 is the event of seeing a run of k or more heads in the first n + 1

tosses. Clearly P(En) = p
(k)
n . On the other hand En+1\En corresponds to the

event that a head was seen last, k − 1 heads before that, a tail before that,
and then no run of k or more heads in the first n − k tosses. Then, again
owing to independence, P(En+1\En) = (1− p(k)

n−k)/2
k+1.

(iv) Remark p
(k)
n is clearly nondecreasing in n. Then take limits as n → ∞ in

the relation of (diii) to obtain (letting p := limn→∞ p
(k)
n+1 = limn→∞ p

(k)
n =

limn→∞ p
(k)
n−k) p = p+ (1− p)/2k, i.e. p = 1.
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(v) Let A be the event of seeing a run of k heads or more, eventually. Then, for
each n, Ac is included in the event Acn that a run of k or more heads is not
seen in the first n tosses, whence by monotonicity of probability measures
1−P(A) = P(Ac) ≤ P(Acn) = 1− p(k)

n . Letting n tend to infinity, we conclude
P(A) ≥ 1, so P(A) = 1.

Breakdown: Seen: (a), (c); Bookwork: (b); Unseen: (d).
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Model Solution No: 6

a) F is a σ-algebra on Ω, if (o) F ⊂ 2Ω; (i) Ω ∈ F ; (ii) A ∈ F ⇒ Ω\A ∈ F ; and (iii)
(Ai)i≥1 ⊂ F ⇒ ∪i≥1Ai ∈ F .

b) σΩ(A) := ∩F⊃A, F a σ-algebra on ΩF . Remark 2Ω is always a σ-algebra on Ω, contain-
ing A.

c) Remark B(R) is a σ-algebra on Ω, hence has R for a member and is closed under
complements (wrt R) and denumerable unions.

(i) ∅ = X−1(∅) and ∅ ∈ B(R). Ω = X−1(R) and R ∈ B(R).

(ii) Yes. If B ∈ BX , then there is an A ∈ B(R) such that B = X−1(A). Conse-
quently R\A ∈ B(R) and since Ω\B = X−1(R\A), so Ω\B ∈ BX .

(iii) For each i ∈ N, there is Ai Borel such that Bi = X−1(Ai). Then ∪i≥1Ai is
Borel in turn, and hence ∪i≥1Bi = ∪i≥1X

−1(Ai) = X−1(∪i≥1Ai) ∈ BX . It
follows from the above that BX is a σ-algebra on Ω (clearly BX ⊂ 2Ω).

(iv) No. Suppose X and Y were independent. Then, since X−1(Z) ∈ BX = BY ,
there is a W , Borel subset of R, with X−1(Z) = Y −1(W ). By independence,
it follows that

P(X−1(Z) ∩ Y −1(W )) = P(X−1(Z))P(Y −1(W )).

But X−1(Z) ∩ Y −1(W ) = X−1(Z) ∩ X−1(Z) = X−1(Z), so P(X−1(Z) ∩
Y −1(W )) = P(X−1(Z)), whilst, since X−1(Z) = Y −1(W ), P(Y −1(W )) =
P(X−1(Z)). We obtain from the displayed formula that:

P(X−1(Z)) = (P(X−1(Z)))2,

whence P(X−1(Z)) ∈ {0, 1}, a contradiction.

(v) Yes. Let Ω = {−2,−1, 1, 2}, F = 2Ω, P be the discrete uniform probability
measure on Ω, X = idΩ, Y (−2) = −1, Y (−1) = 2, Y (1) = −2 and Y (2) = 1.
Then BX = F = BY , whilst E[XY ] = E[X] = E[Y ] = 0, so X and Y are
uncorrelated. Also, e.g. Z := {2}, satisfies P(X ∈ Z) = 1/4 /∈ {0, 1}.

Breakdown: Seen: (a), (b); Bookwork: (ci), (cii), (ciii); Unseen: (civ), (cv).


