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Optimal stopping with regime switching volatility

e Dynamics:
aX; = Xt( Y; dB; + 0] dt),

with u € R; Y is a continuous time MC with finite state space
S={1,2,...,d}.
e Consider the value function

v(x,y) =sup Ex, e “Tg(X;),

where a > 0 and g is measurable.

o Typical examples in American option pricing:
- Put option, g(x) = max{K — x,0}
- Call option, g(x) = max{x — K,0}
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Guo and Zhang (2004), Jobert and Rogers (2006): Perpetual
American put option.

e The optimal strategy is of the form
™ =inf{t >0: X; < b[Y{]}
e The thresholds bli], 1 < i < d, are unknown in principle.

e An algebraic algorithm is given to compute v(x, y), assuming
that the b[i]’'s are given and in a specific order. But there are d!
possible orderings!

e Numerical examples in these papers suggest that the thresholds
may be monotone.
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e The optimal strategy is of the form
™ =inf{t >0: X; < b[Y{]}
e The thresholds b[i], 1 < i < d, are unknown in principle.
e An algebraic algorithm is given to compute v(x, y), assuming
that the b[i]’'s are given and in a specific order. But there are d!

possible orderings!

e Numerical examples in these papers suggest that the thresholds
may be monotone.

Question 1: can we show that the thresholds are monotone?
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Guo and Zhang (2004), Jobert and Rogers (2006): Perpetual
American put option.

e The optimal strategy is of the form
™ =inf{t >0: X; < b[Y{]}
e The thresholds bli], 1 < i < d, are unknown in principle.

e An algebraic algorithm is given to compute v(x, y), assuming
that the b[i]’'s are given and in a specific order. But there are d!
possible orderings!

e Numerical examples in these papers suggest that the thresholds
may be monotone.

Question 1: can we show that the thresholds are monotone?
YES!... To the extent that Y is skip-free.
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Intuitive fact:

The faster X moves (due to larger Y ), the sooner X reaches the high
values of g.

Theorem
Suppose Y is a skip-free MC and g > 0 and measurable. If either
u = 0 or g is non-increasing, then v(x,-) is non-decreasing.

THE UNIVERSITY OF

WARWICK



Motivation
ooe

Intuitive fact:

The faster X moves (due to larger Y ), the sooner X reaches the high
values of g.

Theorem
Suppose Y is a skip-free MC and g > 0 and measurable. If either
w =0 or g is non-increasing, then v(x,-) is non-decreasing.

This in turn yields the unique order

b[1] > b[2] > ... > b[d].

Otherwise, 3 x : b[i] < x < b[i 4+ 1] for some i/, leading to the
contradiction:
v(x,i) > g(x) = v(x,i+1).
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The faster X moves (due to larger Y ), the sooner X reaches the high
values of g.

Theorem
Suppose Y is a skip-free MC and g > 0 and measurable. If either
w =0 or g is non-increasing, then v(x,-) is non-decreasing.

This in turn yields the unique order

b[1] > b[2] > ... > b[d].

Otherwise, 3 x : b[i] < x < b[i 4+ 1] for some i/, leading to the
contradiction:
v(x,i) > g(x) = v(x,i+1).

Question 2: if Y is a diffusion, is y — v(x, y) monotone?
. . o WARWICK
YESL!... under suitable assumptions, but same intuition.
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Parameter uncertainty

e Dynamics:
dXt = O’(Xt) Ytﬂ dBt,
dyy =n(Y7)dBY + = dt.

e Parameter 7 is only known to be in the class A of predictable
processes m = (7t)s>0 such that

0 S a(Yt) S Tt S b(Yt)

0,1, a, b are real-valued continuous functions and a(-) < b(-).
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Parameter uncertainty
e Dynamics:
dXt = O’(Xt) Ytﬂ dBt,
dyy =n(Y7)dBY + = dt.
e Parameter 7 is only known to be in the class A of predictable
processes m = (7t)s>0 such that
O S a(Yt) S Tt S b(Yt)
0,1, a, b are real-valued continuous functions and a(-) < b(-).

o Description of the game:

9(X7)

N——
N,
minimizer maximizer

chooses © chooses W, AMICK
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Question 3: does the game have a value? That is, is it true that

supinf Ey ye *"g(XT) = infsup Ex ,e"“"g(XT)?
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Question 3: does the game have a value? That is, is it true that
supinf Ey ye *"g(XT) = infsup Ex ,e"“"g(XT)?

e We show the existence of a saddle point (7, #), that is,

Exyle™*7g(X)] < Exyle " g(XI)] < Exyle " g(X?)]
N———
value
for all stopping rules 7 and controls .
e [ntuitive guess:

- fr=a(), .
- 7 the optimal stopping rule for the problem sup_E ye™*"g(X7).
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Question 3: does the game have a value? That is, is it true that

supinf Ey ye *"g(XT) = infsup Ex ,e"“"g(XT)?

e We show the existence of a saddle point (7, #), that is,

Exyle ®"g(X[)] < Exyle™*g(XD)] < Exyle *"g(XF)]
—_—
value

for all stopping rules 7 and controls 7.
e [ntuitive guess:
- = a(Yt), .
- 7 the optimal stopping rule for the problem sup_ Ex e~ " g(X7).

e The value of the game may be interpreted as the price of an
American-type option in the

- worst-case scenario for the writer (seller), or M UNIVERSITY OF
- best-case scenario, for the holder (buyer). WARWICK
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Monotonicity: diffusion case
e Let (X, Y) have dynamics (weakly unique solution)
t t t
X = Xo+ / o(Xs) YedBs,  Yi= Yot / n(Ye)dBY + / 0(Ys)ds.
0 0 0

with values in R x S, where S C (0, o).
e Consider v(x,y) =sup, Exye *7g(X;),

g is only assumed to be non-negative and measurable.
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Monotonicity: diffusion case

Let (X, Y) have dynamics (weakly unique solution)

X = Xo—i—/OtU(XS) Ys dBs, Y; = Yo+/0tn(Ys)stY+/0t9(Ys)ds.
with values in R x S, where S C (0, o).
Consider v(x, y) = sup, Ex, e *"g(X;),
g is only assumed to be non-negative and measurable.
We apply time-change and coupling techniques to show that
y — v(x,y) is monotone.

Method of proof inspired by (amongst others)
- E. Ekstréom (2004),

- D. Hobson (2010)- THE UNIVERSITY OF
WARWICK



Motivation Optimal stopping: monotonicity in y Game of stopping and control Conclusion
000 0®00 00000
00

Time-change heuristics

o We can rewrite

t
X =X+ / o(Xs)dMs,  where M; = [ YsdBs.
0
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Time-change heuristics

o We can rewrite
t
X =X+ / o(Xs)dMs,  where M; = [ YsdBs.
0

e M defines a time-change I' = (M)~".

e Assuming (M), =00, G=Xol,£=Yol satisfy

t t t
G- x4 /0 o(Gs)dWs, & =y+ /0 n(Es) €5 AW + /0 r(€) €52,
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Time-change heuristics

We can rewrite

t
X =X+ / o(Xs)dMs,  where M; = [ YsdBs.
0

M defines a time-change I = (M)~".

Assuming (M), =00, G=Xol,{=Yol satisfy

t t t
Gi=x+ /0 o(Ge)dWs, €= y+ /0 n(es) €5 WE + /O r(€) €52,

Heuristically, set A=~ and p = A, so that

Evy e °Tg(X,) < Exy e T4 g(Ga.) +— Ex, e " 9(G,)

 Advantage: G does NOT depend on Y. WAWICK
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Time-change

o Assume that there is a unique non-exploding strong solution in
R x & for:

t t t
G =x+ /0 o(Gs)dWs, & =y+ /0 n(&s) &5 1 dWs + /0 m(¢s) €5 2ds.

on some (Q, 7, P) carrying (W, W¢) with natural, augmented
filtration (F7).
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Time-change

o Assume that there is a unique non-exploding strong solution in
R x & for:

t t t
G x+ /0 o(Ge)dWs, €= y+ /0 n(es) €5 AWE + /O m(€) €520,

on some (Q, 7, P) carrying (W, W¢) with natural, augmented
filtration (F7).

e Simple path-comparison: for 0 < y < y/,
0<&<é, t>0 as.

by strong uniqueness.
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Time-change

Assume that there is a unique non-exploding strong solution in
R x & for:

t t t
G x+ /0 o(Ge)dWs, €= y+ /0 n(es) €5 AWE + /O m(€) €520,

on some (Q, 7, P) carrying (W, W¢) with natural, augmented
filtration (F7).

Simple path-comparison: for 0 < y < y/,
0<&<é, t>0 as.
by strong uniqueness.

Define I't = fotggzds, FQ:fO’(fg)*zds sothat I'; >T; and
also define
X=GoA Y=¢oA X =GoA, Y =¢oA.

THE UNIVERSITY OF

with A=T"1, A = (I")~". WARWICK
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Coupling
« We constructed (X, Y) and (X', Y’) on (2, F, P) such that
XN (Xy) ad  (X.V)® (X.Y)
~—— ——

under Py, under Py
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Coupling
Y)and (X, Y') on (€, F, P) such that

b

e We constructed (X

X, 92 (X,Y) and (X, V)2 (XY
under Py, under Py

e |t remains to establish

v(x,y) = sup Ee*7g(G,)
pEM

where M is the class of stopping times p w.r.t. (F;)sso-
Similarly for v(x, y’).

THE UNIVERSITY OF

WARWICK



Optimal stopping: monotonicity in y
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Coupling
« We constructed (X, Y) and (X', Y’) on (2, F, P) such that
XN (Xy) ad  (X.V)® (X.Y)
~—— ——
under Py, under Py

e |t remains to establish

v(x,y) = sup Ee*7g(G,)
pEM

where M is the class of stopping times p w.r.t. (F;)sso-
Similarly for v(x, y’).

e Since I > T}, forallt >0,
Eeiarpg(Gp) < Eeiar;’g(Gp)
and finally taking supremum

THE UNIVERSITY OF

v(x,y) < v(x.y). WARWICK
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"Back to the game"
We show the existence of a saddle point (7, #), that is,
Eoyle®g(XH)] < Eqle " g(XD)] < Evyle g(XD)]
—_— —
value
for all stopping rules 7 and controls .
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"Back to the game"
We show the existence of a saddle point (7, #), that is,

Eoyle™®g(X0)] < Eqle™g(Xf)] < Exyle"g(X7)]
~—_—
value

for all stopping rules 7 and controls 7.

Assume
e g is continuous, non-negative and bounded (for convenience).
e (X%, YT)is a strong solution of

dX; = o(X;) YidBs,  dYy=n(Y:)dB! +#(Yy)dt.
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"Back to the game"
We show the existence of a saddle point (7, #), that is,
Ecyle"g(Xf)] < EcqlegX0)] < Exle7g(X7)]
—_— —
value
for all stopping rules 7 and controls .

Assume
e g is continuous, non-negative and bounded (for convenience).
e (X%, YT)is a strong solution of

dX; = o(X;) YidBs,  dYy=n(Y:)dB! +#(Yy)dt.

Recall. Intuitive guess:
- iy =a(V),

- # the optimal stopping rule for ¥(x, y) = sup, Ey , e~ 7 g(X7):

F=Y"=inf{t >0: (X[, Y]) ¢ C}
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"Back to the game"
We show the existence of a saddle point (7, #), that is,

Exyle g(X])] < Exyle*"g(XI)] < Exyle * g(X7)]

By optimality of 7
for all stopping rules = and controls 7.
Assume

e g is continuous, non-negative and bounded (for convenience).
e (X%, Y™)is a strong solution of

dX; = o(X;) YidBs,  dYi=n(Y:)dB) + #(Y;)dt.

Recall. Intuitive guess:
- iy =a(V),

- # the optimal stopping rule for ¥(x, y) = sup, Ex e~ 7 g(X7):

F=2Y"=inf{t >0: (X, Y]) ¢ C}
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"Back to the game"
We show the existence of a saddle point (7, #), that is,

Eqyle*g(XN)] < Eqle ™ gXD)] < Eqle " g(X7)]

Concentrate on this
for all stopping rules 7 and controls 7.

Assume
e g is continuous, non-negative and bounded (for convenience).
e (X*,Y™)is a strong solution of

dX; = o(X;) YidBs,  dY;=n(Y;)dBY +#(Y;)dt.

Recall. Intuitive guess:
- fr=a("),

- # the optimal stopping rule for ¥(x, y) = sup, Ex e~ 7 g(X7):

F=Y" =inf{t >0: (X[, Y]) ¢ C}

THE UNIVERSITY OF
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where C = {(x,y) e Rx S : V(x,y) > g(x)} is fixed. WARWI
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Bellman’s principle

Define .
u(x,y) =inf Ex e~ " g(X7).
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Bellman’s principle

Define .
u(x,y) =infEx ye " g(X7).

Bellman’s principle:

e~ *Ny(Xz,,, YF.,) is a submartingale for arbitrary = and a
martingale for the optimal.

Conclusion
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Bellman’s principle

Define .
u(x,y) =infEx ye " g(X7).

Bellman’s principle:

e~ *Ny(Xz,,, YF.,) is a submartingale for arbitrary = and a
martingale for the optimal.

Candidate value function is

w(x,y) = Evy e*g(X]).
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Optimality of 7 = a
Recall that = € A satisfies 0 < a(Y;) < 7 < b(Yy).
« Note that w(x, y) = sup, Ex e *"g(X") and so
- w(x,-) is non-decreasing.
- (L*w — aw)(x,y) = 0 for (x, y) € C where

Conclusion

LA W(x,y) = SWaa6, )P0V + 2wy (6 V(P + i 6, )3 (9).

2
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Optimality of 7 = a
Recall that = € A satisfies 0 < a(Y;) < 7 < b(Yy).

« Note that w(x, y) = sup, Ex e *"g(X") and so
- w(x,-) is non-decreasing.
- (L*w — aw)(x, y) = 0 for (x, y) € C where

L™w(x,y) = %Wxx()« y)o*(x)y* + %Wyy(X:}’)n(}’)z +wy (X, y)(y)-
e Since m; > 7; and w, > 0 we have
(Lfw —aw) > (L*w—aw) =0 inC.
¢ Using a localization argument, the process
Ne(m) := e~ T NW(XT,p, Yin)

stopped at g = first exit from the open ball of radius R, is a
submartingale.

e Dominated convergence (g is bounded) yields, as R — oo,

w(x,y) < Ex, e " g(XT). WARWICK



Conclusion

Conclusion

. Value function v(x, y) of the optimal stopping problem
associated to 7 is monotone in y.

. By time-change we transfer

dependance of X on y — dependance of I on y

. By coupling we compare the time-changes I pathwise.

. Bellman’s principle establishes the existence of a saddle point.
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Conclusion

. Value function v(x, y) of the optimal stopping problem
associated to 7 is monotone in y.

. By time-change we transfer

dependance of X on y — dependance of I on y

. By coupling we compare the time-changes I pathwise.

. Bellman’s principle establishes the existence of a saddle point.

THANK YOU!
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