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Optimal stopping with regime switching volatility

• Dynamics:
dXt = Xt ( Yt dBt + µdt),

with µ ∈ R; Y is a continuous time MC with finite state space
S = {1,2, . . . ,d}.

• Consider the value function

v(x , y) = sup
τ

Ex,y e−ατg(Xτ ),

where α > 0 and g is measurable.
• Typical examples in American option pricing:

- Put option, g(x) = max{K − x ,0}
- Call option, g(x) = max{x − K ,0}
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Guo and Zhang (2004), Jobert and Rogers (2006): Perpetual
American put option.
• The optimal strategy is of the form

τ∗ = inf{t ≥ 0 : Xt ≤ b[Yt ]}

• The thresholds b[i], 1 ≤ i ≤ d , are unknown in principle.

• An algebraic algorithm is given to compute v(x , y), assuming
that the b[i]’s are given and in a specific order. But there are d !
possible orderings!

• Numerical examples in these papers suggest that the thresholds
may be monotone.

Question 1: can we show that the thresholds are monotone?

YES!... To the extent that Y is skip-free.
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Intuitive fact:

The faster X moves (due to larger Y ), the sooner X reaches the high
values of g.

Theorem
Suppose Y is a skip-free MC and g ≥ 0 and measurable. If either
µ = 0 or g is non-increasing, then v(x , ·) is non-decreasing.

This in turn yields the unique order

b[1] ≥ b[2] ≥ . . . ≥ b[d ].

Otherwise, ∃ x : b[i] < x ≤ b[i + 1] for some i , leading to the
contradiction:

v(x , i) > g(x) = v(x , i + 1).

Question 2: if Y is a diffusion, is y 7→ v(x , y) monotone?

YES!... under suitable assumptions, but same intuition.
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Parameter uncertainty

• Dynamics:
dXt = σ(Xt ) Yπ

t dBt ,

dYπ
t = η(Yπ

t )dBY
t + πt dt .

• Parameter π is only known to be in the class A of predictable
processes π = (πt )t≥0 such that

0 ≤ a(Yt ) ≤ πt ≤ b(Yt ).

σ, η,a,b are real-valued continuous functions and a(·) ≤ b(·).

• Description of the game:

g(Xπ
τ )︸ ︷︷ ︸

↙ ↘
minimizer maximizer
chooses π chooses τ
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Question 3: does the game have a value? That is, is it true that

sup
τ

inf
π

Ex,y e−ατg(Xπ
τ ) = inf

π
sup
τ

Ex,y e−ατg(Xπ
τ ) ?

• We show the existence of a saddle point (τ̂ , π̂), that is,

Ex,y [e−ατg(X π̂
τ )] ≤ Ex,y [e−ατ̂g(X π̂

τ̂ )]︸ ︷︷ ︸
value

≤ Ex,y [e−ατ̂g(Xπ
τ̂ )]

for all stopping rules τ and controls π.
• Intuitive guess:

- π̂t = a(Yt),
- τ̂ the optimal stopping rule for the problem supτ Ex,y e−ατg(X π̂

τ ).

• The value of the game may be interpreted as the price of an
American-type option in the

- worst-case scenario for the writer (seller), or
- best-case scenario, for the holder (buyer).
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Monotonicity: diffusion case

• Let (X ,Y ) have dynamics (weakly unique solution)

Xt = X0+

∫ t

0
σ(Xs) Ys dBs, Yt = Y0+

∫ t

0
η(Ys)dBY

s +

∫ t

0
θ(Ys)ds.

with values in R× S, where S ⊆ (0,∞).
• Consider v(x , y) = supτ Ex,y e−ατg(Xτ ),

g is only assumed to be non-negative and measurable.

• We apply time-change and coupling techniques to show that

y 7→ v(x , y) is monotone.

• Method of proof inspired by (amongst others)
- E. Ekström (2004),
- D. Hobson (2010).
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Time-change heuristics
• We can rewrite

Xt = x +

∫ t

0
σ(Xs)dMs, where Mt =

∫ t
0 YsdBs.

• M defines a time-change Γ = 〈M〉−1.

• Assuming 〈M〉∞ =∞, G = X ◦ Γ, ξ = Y ◦ Γ satisfy

Gt = x +

∫ t

0
σ(Gs) dWs, ξt = y +

∫ t

0
η(ξs) ξ

−1
s dW ξ

s +

∫ t

0
π(ξs) ξ

−2
s ds.

• Heuristically, set A = Γ−1 and ρ = Aτ so that

Ex,y e−ατg(Xτ )←→ Ex,y e−αΓAτ g(GAτ
)←→ Ex,y e−αΓρg(Gρ)

• Advantage: G does NOT depend on Y .
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Time-change
• Assume that there is a unique non-exploding strong solution in
R× S for:

Gt = x +

∫ t

0
σ(Gs) dWs, ξt = y +

∫ t

0
η(ξs) ξ

−1
s dW ξ

s +

∫ t

0
π(ξs) ξ

−2
s ds.

on some (Ω̃, F̃ , P̃) carrying (W ,W ξ) with natural, augmented
filtration (F̃t ).

• Simple path-comparison: for 0 < y ≤ y ′,

0 < ξt ≤ ξ′t , t ≥ 0 a.s.

by strong uniqueness.

• Define Γt =
∫ t

0 ξ
−2
s ds, Γ′t =

∫ t
0 (ξ′s)−2ds so that Γt ≥ Γ′t and

also define

X̃ = G ◦ A, Ỹ = ξ ◦ A; X̃ ′ = G ◦ A′, Ỹ ′ = ξ′ ◦ A′.

with A = Γ−1, A′ = (Γ′)−1.
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Coupling
• We constructed (X̃ , Ỹ ) and (X̃ ′, Ỹ ′) on (Ω̃, F̃ , P̃) such that

(X̃ , Ỹ )
law
= (X ,Y )︸ ︷︷ ︸

under Px,y

and (X̃ ′, Ỹ ′) law
= (X ′,Y ′)︸ ︷︷ ︸

under Px,y ′

• It remains to establish

v(x , y) = sup
ρ∈M

Ẽ e−αΓρg(Gρ)

whereM is the class of stopping times ρ w.r.t. (F̃t )t≥0.
Similarly for v(x , y ′).

• Since Γt ≥ Γ′t , for all t ≥ 0,

Ẽ e−αΓρg(Gρ) ≤ Ẽ e−αΓ′
ρg(Gρ)

and finally taking supremum

v(x , y) ≤ v(x , y ′).
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"Back to the game"
We show the existence of a saddle point (τ̂ , π̂), that is,

Ex,y [e−ατg(X π̂
τ )] ≤ Ex,y [e−ατ̂g(X π̂

τ̂ )]︸ ︷︷ ︸
value

≤ Ex,y [e−ατ̂g(Xπ
τ̂ )]

for all stopping rules τ and controls π.

Assume
• g is continuous, non-negative and bounded (for convenience).
• (X π̂,Y π̂) is a strong solution of

dXt = σ(Xt ) Yt dBs, dYt = η(Yt ) dBY
t + π̂(Yt ) dt .

Recall. Intuitive guess:
- π̂t = a(Yt ),
- τ̂ the optimal stopping rule for v̂(x , y) = supτ Ex,y e−ατg(X π̂

τ ):

τ̂ = τ̂ x,y,π = inf{t ≥ 0 : (Xπ
t ,Y

π
t ) /∈ C}

where C = {(x , y) ∈ R× S : v̂(x , y) > g(x)} is fixed.
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• g is continuous, non-negative and bounded (for convenience).
• (X π̂,Y π̂) is a strong solution of

dXt = σ(Xt ) Yt dBs, dYt = η(Yt ) dBY
t + π̂(Yt ) dt .

Recall. Intuitive guess:
- π̂t = a(Yt ),
- τ̂ the optimal stopping rule for v̂(x , y) = supτ Ex,y e−ατg(X π̂

τ ):

τ̂ = τ̂ x,y,π = inf{t ≥ 0 : (Xπ
t ,Y

π
t ) /∈ C}

where C = {(x , y) ∈ R× S : v̂(x , y) > g(x)} is fixed.
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Bellman’s principle

Define
u(x , y) := inf

π
Ex,y e−ατ̂g(Xπ

τ̂ ).

Bellman’s principle:

e−ατ̂∧tu(Xπ
τ̂∧t ,Y

π
τ̂∧t ) is a submartingale for arbitrary π and a
martingale for the optimal.

Candidate value function is

w(x , y) := Ex,y e−ατ̂g(X π̂
τ̂ ).
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Optimality of π̂ = a
Recall that π ∈ A satisfies 0 ≤ a(Yt ) ≤ πt ≤ b(Yt ).
• Note that w(x , y) ≡ supτ Ex,y e−ατg(X π̂

τ ) and so
- w(x , ·) is non-decreasing.
- (Lπ̂w − αw)(x , y) = 0 for (x , y) ∈ C where

Lπ̂w(x , y) =
1
2

wxx(x , y)σ2(x)y2 +
1
2

wyy (x , y)η(y)2 + wy (x , y)π̂(y).

• Since πt ≥ π̂t and wy ≥ 0 we have

(Lπt w − αw) ≥
(
Lπ̂w − αw

)
= 0 in C.

• Using a localization argument, the process

Nt (π) := e−ατ̂∧tw(Xπ
τ̂∧t ,Y

π
τ̂∧t )

stopped at τR = first exit from the open ball of radius R, is a
submartingale.

• Dominated convergence (g is bounded) yields, as R →∞,

w(x , y) ≤ Ex,y e−ατ̂g(Xπ
τ̂ ).
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Conclusion

1. Value function v(x , y) of the optimal stopping problem
associated to π̂ is monotone in y .

2. By time-change we transfer
dependance of X on y −→ dependance of Γ on y

3. By coupling we compare the time-changes Γ pathwise.
4. Bellman’s principle establishes the existence of a saddle point.

THANK YOU!
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