
AEA 2002 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. It is important in a question like this to get off to the right start — trigonometric identities
abound, and it is not immediately transparent which one to use in order to simplify the
given equation and then solve it. One way of reasoning as to the right approach is to
recognise that, in solving an equation C(x) = 0, it is very beneficial if one can factor it
out to A(x)B(x) = 0 for some functions A and B. It then follows that x solves the original
equation precisely when x solves A(x) = 0 or x solves B(x) = 0. The simplification is
achieved if the functions A and B are more amenable to further analysis than C. Note
here that solutions to both A(x) = 0 as well as B(x) = 0 are solutions to the original
equation, rather than just one or the other!

To obtain the C in our case, we first carry over the terms in the equation sin(5x)−cos(5x) =
cos(x)− sin(x) to one side:

sin(5x) + sin(x)− (cos(5x) + cos(x)) = 0.

Thus the function C includes sums of sines and cosines, and going from sums to products
is achieved by using the sum-to-product rule formulae for the sine and cosine:

cos(θ) + cos(φ) = 2 cos

(
θ + φ

2

)
cos

(
θ − φ

2

)
and

sin(θ) + sin(φ) = 2 sin

(
θ + φ

2

)
cos

(
θ − φ

2

)
.

In particular, using these sum-to-product rules, the equation becomes

2 sin(3x) cos(2x)− 2 cos(3x) cos(2x) = 0.

Cancelling 2 and factorising then gives:

cos(2x)(sin(3x)− cos(3x)) = 0.

As per the discussion in the first paragraph, we obtain solutions to the equation when
either cos(2x) = 0 or sin(3x) = cos(3x). For the first of these options, cos(2x) = 0 is
equivalent to 2x = π/2 + kπ with k an integer. For the second, we start by noting that if
cos(3x) = 0, then sin(3x) is either 1 or −1, i.e. there is no solution x to sin(3x) = cos(3x)
with cos(3x) = 0. We can therefore assume that cos(3x) 6= 0, and divide by it to obtain
that the condition is equivalent to tan(3x) = 1, which means 3x = π/4 + mπ with m
an integer. Finally, since 0 ≤ x ≤ π, it follows that π/4, 3π/4, π/12 and 5π/12 are the
solutions to the equation given (where the 9π/12 already appears as 3π/4).

2. Recall the binomial expansion:

(1 + a)p =
∞∑
k=0

(
p

k

)
ak,

where (
p

k

)
=
p(p− 1) · · · (p− k + 1)

k!
,
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and a is a real number with |a| < 1. Hence, taking a = −4x, we have that (1 − 4x)p is
equal to

1+p(−4x)+
p(p− 1)

2!
(−4x)2+

p(p− 1)(p− 2)

3!
(−4x)3+

p(p− 1)(p− 2)(p− 3)

4!
(−4x)4+· · ·

For the coefficient of x2 to be equal to that of x4, we therefore require that

p(p− 1)42

2!
=
p(p− 1)(p− 2)(p− 3)44

4!
. (1)

For the coefficient of x3 to be positive, we need

p(p− 1)(p− 2)(−4)3

3!
> 0. (2)

Due to (2), it can not be the case that p is equal to 0 or 1 (otherwise the left-hand side of
(2) would be 0, which contradicts that it is strictly greater than 0). Hence, we can divide
(1) by 42p(p− 1) to obtain

1

2
=

16(p− 2)(p− 3)

24
.

Rearranging this gives that
0 = 4p2 − 20p+ 21,

which can be factorised as follows

0 = (2p− 3)(2p− 7).

Hence p = 3/2 or p = 7/2. However if p = 7/2, then the left-hand side of (2) is negative.
Thus it must be the case that p = 3/2.

3. The question implies that the point (14, 1) lies on the curve C. It will be helpful to know
which value of t it corresponds to. To deduce this, we need to solve

14 = 15t− t3 and 1 = 3− 2t2,

simultaneously. The second relation is easily rearranged to t2 = 1, so that t is either −1
or 1. The only choice from these that also satisfies the first relation is t = 1.

Now, to find the normal at to the curve at (14, 1), we will start by computing its derivative
there. For a curve given in a parametric form, as is the case here, we can do this by using
the following rule:

dy

dx
=

(
dy
dt

)
(
dx
dt

) .
In particular, since

dx

dt
= 15− 3t2 and

dy

dt
= −4t,

it follows that
dy

dx (x,y)=(14,1)
=

−4t

15− 3t2 t=1
= −1

3
.

Given that the slope of the tangent at (14, 1) is k = −1/3, the slope of the normal must
be k′ := −1/k = 3, and its equation is therefore given by y − 1 = k′(x− 14), i.e.

y = 3x− 41. (3)
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We now need to find where this line cuts C. Substituting the original parametric equations
(x = 15t− t3 and y = 3− 2t2) into (3) yields:

3− 2t2 = 3(15t− t3)− 41,

which is a cubic in t, alternatively expressed as

3t3 − 2t2 − 45t+ 44 = 0. (4)

With a cubic, it always makes sense to check if we can find one solution by a trial-and-
guess method, since explicit expressions for cubics, whilst known, are quite complicated.
In fact, we already know that 1 is a root, since obviously the normal to C at (14, 1) cuts C
there, and this corresponds to setting t = 1; a quick calculation confirms that this choice
of t does indeed solve (4). Thus we can factor t−1 out in the left-hand side by polynomial
long division as follows:

3t3 − 2t2 − 45t+ 44 = (t− 1)3t2 + t2 − 45t+ 44

= (t− 1)3t2 + (t− 1)t− 44t+ 44

= (t− 1)
(
3t2 + t− 44

)
.

Thus, apart from t = 1, the intersections of the normal and C are given by the equation

3t2 + t− 44 = 0.

This quadratic in t is most easily solved directly by employing the formula

t =
−b±

√
b2 − 4ac

2a
,

where a = 3, b = 1 and c = −44. Thus, the two solutions are

t =
−1 +

√
1 + 12 · 44

6
=
−1 + 23

6
=

11

3

and

t =
−1− 23

6
= −4.

Hence the sought after values of t constitute the set {−4, 11/3} (we do not include 1,
because we are looking for the points where the normal cuts C again).

Although we did not need it to solve the question, it is perhaps enlightening to see what
the curve C corresponds to. This is shown in the following figure, in which the dotted line
is the relevant normal.
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4. The curve y(x) is given in implicit form. To find its stationary points, we need to find the
values of x for which y′(x) = 0. To do this, we will try differentiating the equation we are
given. In particular, if we differentiate both sides of the identity

x3 + y(x)3 − 3xy(x) = 48 (5)

with respect to x, using the product and chain rule, we obtain

3x2 + 3y(x)2y′(x)− 3xy′(x)− 3y(x) = 0. (6)

Since we are looking for values of x where y′(x) = 0, we set y′(x) = 0 in the above equation
to give that 3x2 = 3y, i.e. y = x2. Now, plug this back into the original implicit equation
for the curve (5) to get

x3 + x6 − 3x3 = 48.

This might look complicated, but we notice that it is actually just a quadratic equation
in u = x3. In particular, u2 − 2u− 48 = 0. This is easily factorised to

(u− 8)(u+ 6) = 0.

Thus x3 = u = 8 or x3 = u = −6. On the real numbers, the map x 7→ x3 is one-to-one,
with inverse given by the cubic root. Hence x = 2 or x = −61/3 are the only possible
values for x at which y is stationary. As noted above, the corresponding values of y
satisfy y = x2, and so are equal to 4 and 62/3, respectively. Finally, we need to check
that y′(x) = 0 does indeed hold at these points. To do this, we first substitute the values
(x, y) = (2, 4) back into (6) to obtain

12 + 48y′(x)− 6y′(x)− 12 = 0.

Clearly this implies y′(x) = 0, as desired. We may proceed similarly for the point (x, y) =
(−61/3, 62/3). (Of course, one should also check that the points (2, 4) and (−61/3, 62/3) in
fact lie on the curve, by checking the validity of (5) at these points)

To establish the nature of the stationary points, we will investigate the second derivative.
So, differentiate the identity (6) again to get:

6x+ 6y(x)y′(x)2 + 3y(x)2y′′(x)− 3y′(x)− 3xy′′(x)− 3y′(x) = 0. (7)

Now use the fact that y′(x) = 0 at a stationary point, to get

y′′(x) =
2x

x− y(x)2
.

The point (2, 4) has y′′(x) = −2 < 0, hence this is a local maximum. The point
(−61/3, 62/3) has y′′(x) = 2 · 61/3/(61/3 + 64/3) > 0, hence this is a local minimum. This is
nicely seen in the following figure.
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(Note that the figure also shows that the equation does not in fact define a function
x 7→ y(x) uniquely – for some values of x, we can choose from multiple values for y.)

5. (a) The coordinates of the points A and C are obtained by setting y = 0 in the equation
y = sin(cos(x)). Thus sin(cos(x)) = 0 which requires cos(x) = kπ for some integer
k. Since cos(x) takes values in between −1 and 1 for all x and π > 1, it follows that
k = 0 is the only possibility. It follows that x = π

2 + mπ for some integer m. From
the figure given in the question (see below), we see that A and C are the first points
of intersection with the x-axis, in the negative and positive x directions, respectively.
Therefore,

A =
(
−π

2
, 0
)

and C =
(π

2
, 0
)
.

The coordinates of B are obtained by setting x = 0, thus y = sin(cos(0)) = sin(1),
hence C = (0, sin(1)).

(b) To check thatB is a stationary point, we will show that y′(x) = 0 there. Differentiating
using the chain rule gives

y′(x) = cos(cos(x))(− sin(x)).

Hence y′(0) = 0, since sin(0) = 0. It follows that B is indeed a stationary point.

(c) For all θ ≥ 0, sin θ ≤ θ, with equality only if θ = 0. Therefore for all x ∈ [0, π/2],

sin(cos(x)) ≤ cos(x),

with equality only if x = π/2 (since this is the only x, for which cos(x) = 0 on
x ∈ [0, π/2]).

For the second relation observe that by convexity the line BC lies below the curve.
(There is nothing profound here in trying out this fact, except for the hint that one
should use convexity in some fashion. The fact that one has sin(1) and π/2 entering
the relation that we are trying to show, however, gives some indication that the points
B and C might be a suitable choice! We would arrive at the same result by using
instead the points B and A.) Writing down the equation for the line which passes
through B and C is easy,

y − sin(1) =
sin(1)− 0

0− π/2
(x− 0).
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Therefore, by the observation made above about this line lying beneath the curve,

sin(1)− sin(1)

π/2
x ≤ sin(cos(x)),

and rearranging gives (
1− 2

π
x

)
sin(1) ≤ sin(cos(x)),

as required. One has equality only when the line BC intersects the curve, hence at
x = 0 and x = π/2.

(d) By comparing the areas under the relevant curves, the two relations established in
part (c) yield immediately that:

I1 :=

∫ π/2

0

(
1− 2

π
x

)
sin(1)dx <

∫ π/2

0
sin(cos(x))dx <

∫ π/2

0
cos(x)dx =: I2.

Moreover, the integrations in I1 and I2 are straightforward. In particular,

I1 =
π

4
sin(1)

and
I2 = sin(π/2)− sin(0) = 1,

and hence the required result. (Notice that I1 could also have been computed as the
area of a triangle.)

6. (a) In the question, we are given a lot of information, and so we will start by summarising
what this means for the values of m1, n1,m2, n2:

• m2 > m1 and m1, n1,m2, n2 are all positive integers.

• Symmetry about the line x = 0 (and the first condition) means that n1 and n2
are both even.

• The points (±3, 0) lie on both curves, or equivalently m1 = 3n1 and m2 = 3n2 .
(In conjunction with the condition m2 > m1, this implies n2 > n1.)

• n1 + n2 = 12.

From the first and second conditions, we know that n1 and n2 take values from
2, 4, 6, 8, 10, 12. The only possible pairs that do this and also satisfy the third and
fourth conditions are (n1, n2) = (2, 10) and (n1, n2) = (4, 8). None of the conditions
above rules out either of these choices, and so they are both possible.

(b) The area between C1 and C2 is obtained by subtracting the area below C1 from the
area below C2. Hence, taking into account the symmetry about the line x = 0 to get
the factor 2 and save up on some of the algebra,

A := 2

∫ 3

0
(m2 − xn2) dx− 2

∫ 3

0
(m1 − xn1) dx

= 2

[
m2x−

xn2+1

n2 + 1

]3
0

− 2

[
m1x−

xn1+1

n1 + 1

]3
0

= 6(m2 −m1) + 2

(
3n1+1

n1 + 1
− 3n2+1

n2 + 1

)
.
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Now, since 3n1 = m1 and 3n2 = m2 (by the third condition in part (a)), this reduces
to

A = 6(m2 −m1) + 2

(
3m1

n1 + 1
− 3m2

n2 + 1

)
= 6

(
m2

n2
n2 + 1

−m1
n1

n1 + 1

)
.

By part (a), we have the choice (n1, n2) = (2, 10) or (n1, n2) = (4, 8). Clearly as n1
goes from 2 to 4, m1

n1
n1+1 increases. Conversely, as n2 goes from 10 to 8, m2

n2
n2+1

decreases. Therefore the smaller of the two areas will be achieved by the second
choice, and then

A = 6 ·
(

38
8

9
− 34

4

5

)
= 2 · 35

(
9 · 8− 4

5

)
= 35

2 · 356

5
=

712

5
× 35 =

173, 016

5
.

(c) Equating the gradient means

−n1xn1−1 = −n2xn2−1.

Excluding the solution x = 0, this is equivalent to

xn2−n1 =
n1
n2
,

or

x = n2−n1

√
n1
n2
.

So, with (n1, n2) = (2, 10), one has

x =
8

√
1

5
,

and with (n1, n2) = (4, 8), one has

x =
4

√
1

2
.

We now just have to decide which of these values is larger. To check this, we note
that taking the 8th power of the first option gives 1/5, and taking the 8th power of
the second option gives 1/4. Since 1/5 is smaller than 1/4, it follows that the largest
possible value of x at which the gradients are the same is 4

√
1/2.

7. (a) The error occurs in line 3, where the form of the argument is

pq = 1/2⇒ (p = 1/2 or q = 1/2),

which is clearly false in general.

(b) Since we know 1/2 is a root, we may proceed to factor it out by polynomial long
division:

x3 +
3

4
x− 1

2
=

(
x− 1

2

)
x2 +

1

2
x2 +

3

4
x− 1

2

=

(
x− 1

2

)
x2 +

(
x− 1

2

)
1

2
x+

1

4
x+

3

4
x− 1

2

=

(
x− 1

2

)
x2 +

(
x− 1

2

)
1

2
x+

(
x− 1

2

)
=

(
x− 1

2

)(
x2 +

1

2
x+ 1

)
.
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Since the discriminant of x2 + x/2 + 1 is D = (1/2)2 − 4 · 1 · 1 < 0 (using the formula
D = b2− 4ac for the discriminant of ax2 + bx+ c), it follows that x2 + x/2 + 1 has no
real roots and hence 1/2 is the only real root of the original cubic equation.

(c) That α is a root of the equation means that

α3 + βα− α = 0.

Hence, taking into account that α 6= 0, it must be the case that β = 1 − α2. This
answers the first part of the question. To show that α is the only real root provided
|α| < 2, we proceed with long division as above:

x3 + βx− α = x3 +
(
1− α2

)
x− α

= (x− α)x2 + αx2 +
(
1− α2

)
x− α

= (x− α)x2 + (x− α)αx+ (x− α)

= (x− α)
(
x2 + αx+ 1

)
.

The latter will have α as its only real root precisely when the discriminant of x2+αx+1,
D = α2 − 4 · 1 · 1 < 0, i.e. α2 < 4, or |α| < 2. We have used here two facts:

• A quadratic polynomial has two real, one multiple real, or two complex roots,
according as its discriminant D is positive, zero, or negative.

• The number α is never a root of x2 + αx+ 1, so that even if D = 0, α is still not
the only root of our cubic equation.

(d) The student’s method is as follows: x(x2 + β) = α implies that x = α or x2 + β = α.
So to get two distinct roots, each distinct from α, we require that α > β. (If α − β
was negative, then clearly there would be no real x satisfying x2 = α−β. If α−β was
zero, then the only solution to x2 = α − β would be x = 0.) Now, using β = 1− α2,
this means α2 +α−1 > 0. The two solutions of the quadratic equation α2 +α−1 = 0
can be computed using the quadratic formula to be

−1±
√

5

2
.

Since the coefficient of α2 in α2 +α− 1 is greater than 0, the curve y(α) = α2 +α− 1
is only strictly positive for α < (−1 −

√
5)/2 or α > (−1 +

√
5)/2. This takes care

of the student’s requirement. At the same time, there should in fact be only one real
solution to the equation, and this requires that |α| < 2 (by part (c) of the question).
It follows that the range of possible values for α is given by(

−2,
−1−

√
5

2

)
∪

(
−1 +

√
5

2
, 2

)
.

That both these intervals are non-empty is easily checked.
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