AEA 2007 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. (a) The question requires us to expand an expression of the form (a + b)"™. According to
binomial theorem, if the exponent n is a positive integer, then, for any a and b,

-1 -1 -2
(a+b)n — an+nan—1b+ n(n )an—le + TL(TL )(TL )

T T a”_3b3+---+bn. (1)

More generally, we can write

—1 -1 -2
(a+b)n:an+nan—1b+ n(n )an—2b2+ TL(TL )(n )

- o a3B L, (2)

where the right-hand side here converges whenever n > 0 is an integer, or when
|b/a| < 1. Note that if n > 0 is an integer, then the series terminates after a finite
number of terms (and when n # 0 is equal to the expression at (1)). Comparing
ﬁ to the left-hand side of equation (2), we have n = —2, a = 1 and b = —y.

Substituting these values into the right-hand side, we obtain that, for |y| < 1,

(b) The word ‘hence’ immediately tells us that we should be trying to find a way to use
the previous part of the question. To do this, we start by observing that we can
write the left-hand side of the given equation as

@2 @)2 - <2sini<2>>2 S - = 0)”"

where the second equality is obtained by applying the double-angle formula cos(2«) =
1 —2sin? a with o = 6/2. Now, we recognise that right-hand side above has the form
1/(1 —y)?, with y = cosf. Hence, by applying (3), it follows that

1 0
zcosec4 (2> =1+2cosf +3cos?0 +4cos® 4+ (r+1)cos" 6+ ...

Finally, this series only converges when |cos@| < 1. The values of 0 for which this is
not the case are 0, £m, 27, . ...

(¢) The general term in (3) is given by (r+1)y". This is equal to (r+1)/2" when y = 1.
Thus, by applying (3) with this choice of y, we find that

2 3 (r+1) 1
14+ 242 4., S —
t o gt gt T
2
(d) Similarly to the previous part of the question, by applying (3) with y = —%, we
obtain 5 3 ( 0 ) A
T+
124 2 4 (=1 e ==
SRR A T (1+1)?* 9

AEA EXTENDED SOLUTIONS PRODUCED BY THE UNIVERSITY OF WARWICK DEPARTMENT OF STATISTICS 1



2. (a) The two functions can be sketched as follows:

Note that the intersections occur at (0,0) and (1,1). To check this, we need to solve
x = y/z for > 0. Clearly z = 0 is a solution. If > 0, then we can divide z = \/x
by v/x to obtain y/z = 1, which is solved by = = 1.

(b) We note from the sketch that for 0 < 2 < 1 we have x < y/x. This means that

1 1
/ xdr = / Vadr — Aj,
0 0

where A; > 0 is the area shown here:

L L L | L L
0.5 10 13 a 2.0 a5 0

On the other hand for > 1, we have z > /z. Thus

/xda::/ Vadr + As,
1 1

where As is also shown on the above sketch. Clearly, as a increases from 1 to oo, the
area of As increases continuously from 0 to co. Thus there exists a value a such that
A, is identical to Ay. For this choice of a, we obtain

a 1 a 1 a a
/ xdr = / xdr + / xdr = / Vadr — A + / Vadr + Ay = / Vrdz,
0 0 1 0 1 0

as desired.

(¢) This part of the question requires usual integration. In particular, we have that
a 27a 2
/ xdr = | = a—,
0 2|, 2
a 9,3/21%  943/2
/ Vadr = = .
0

3 3
0

Thus, for the two integrals to be equal, we require

and also
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Since a > 1, we can divide both sides by a*/?/2 to obtain

4
\/a_gv

which implies

a = —.

9

(d) There are several approaches to this part of the question, but since we already know

that f016/ ) pdx = 016/ ? Vadz, we will try to apply this. Firstly, by reflecting about
the line x = 0, we find that

0 16/9 16/9 0
/ (—x)dx = / xdr = Vadr = / V—zdz.
0 0 ~16/9

~16/9

Combining this with our previous result yields

16/9 16/9
/ |z|dx = / V |z|dx,
16/9

—~16/9 -

where we note that |x| = —z for < 0 and |z| = x otherwise. Thus the problem is
solved by setting f(x) = |z| and b = 16/9. An alternative method would be to use a
translation along the z-axis so that the interval (0,16/9) is shifted to an interval of
the form (—b,b). In particular, letting f(x) = = + % and b = g, we obtain

b 8/9 3
/ f(x)dx = / <:c + > dz
b ~8/9 9
16/9
= / xdx
0

16/9

= Vaxdx

0

UGS
= / bb Vf(x)dz.

3. (a) We will start by rewriting the equation in such a way that the arguments of the
trigonometric functions are the same. In particular, we will replace cos 2z by 2 cos? z—
1 (which is one of the usual double-angle formulae), to obtain

0=cosz +cos2z =2cos’x + cosz — 1.

This is simply a quadratic equation in the variable cosx, i.e. by letting cosz = y,
we have 242 +y — 1 = 0. For this quadratic, we have the factorisation 2y? +y — 1 =

(2y—1)(y+1), and so the equation has roots 3 and —1. It follows that we need to find

all the values of x € [0,27) such that either cosz = % or cosx = —1. The solutions

of the former equation are given by x = § and = = %’r, and the solution of the latter
is x = m. As with many trigonometry problems, this is not the only approach. An
alternative would be to rewrite cosz + cos 2z as 2 cos(3z/2) cos(z/2) using a factor

formula, and find values of = such that either cos(3z/2) = 0 or cos(z/2) = 0.
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(b) As we are told in the question, the function arccos(zx) is the inverse of cos(z), so that
cos(arccos(x)) = x. Thus, if we apply cos to both sides of the equation

arccos(2r) = g — arccos(x),

then we obtain -
2x = cos (5 - arccos(x)) .

Although the right-hand side here looks complicated, we can simplify it using the
addition formula
cos(A — B) = cos A cos B + sin Asin B.

In particular, we deduce
T . T .
2x = cos (5) cos (arccos(x)) + sin (5) sin (arccos(x)) .

We know that cos § = 0, sin § = 1. This means we can simplify the above equation
to

oy

2z = sin (arccos(z)) .
Now, setting arccosx = y, i.e © = cosy, we can rewrite this as 2cosy = siny, and
squaring both sides yields
dcos’y =sin’y =1 — cos? y.

Hence z = cosy = £1/ V/5. The exact value of z, z > 0, for which the relevant equa-
tion holds must therefore be x = 1/ V5. Again, alternative approaches to simplifying
the equation are possible.

4. (a) This is not a standard equation, so we will proceed by plugging in the information

2
we are given and seeing what happens. In particular, letting h(x) = (%) , we have

/h(az)dm = /\/mdm

and so, squaring both sides of this equation,

/h(x)dac = (y+c)*

This is close to what we want, but we need to get rid of the integral. To do this, we

will differentiate recalling that, if we have a function F' defined as an integral of f,

ie. F(z) = [ f(x)dz, then the derivative of F' at z is given by f(x). Applying this
in our case yields

d dy

h(z) = — ) =2 -

(@) = — ((y+0)°) =20y + ),

AEA EXTENDED SOLUTIONS PRODUCED BY THE UNIVERSITY OF WARWICK DEPARTMENT OF STATISTICS 4



where the second inequality is obtained using the chain rule. Substituting in the
definition of h(x), this is equivalent to

dy\” dy
— ] =2 .
(dm) (y+<) dx
Finally, we are told that h(z) > 0, and so it must also be the case that % # 0. This
means we can divide the above equation by % to obtain

dy

% =Y + c,
as desired.

(b) To find an expression for y, we will integrate the equation Zz = 2(y + ¢). First,
though, let us rearrange so that all the terms involving y are on the left-hand side:
1 d
dy _,
y+cdx

Now, integrating with respect to z,
1 d
/ —ydm = /de
y+cdx
1
/ dy = /2dx
y+c

In(y+¢) = 2x+a,

where « is a constant of integration. Taking exponentials, this implies y + ¢ = Ae?®
for some constant A(= e®), or equivalently

y =A™ —c.

(c) We know that y = Ae?* — ¢ and hence % = 2Ae?®. Substituting this into h(x), we
obtain

dzx

Thus, finding A% will determine h(x) completely. Since we are given that h(0) = 1,
it must hold that 1 = 44%e% = 442 and so h(x) = e**.

h(z) = (dy>2 = (24€%)2 = 4A%4",

5. (a) To the original square S, 4 squares of side § were added to form Sp. To each of
these, 3 squares of side g were added to form S3. To each of these, 3 squares of side
5+ need to be added to form Sy. Thus, in total 4 X 3 x 3 = 36 squares of side 5= need

to be added to S3 to form Sy.

(b) Denote by P, the perimeter of S,,. The perimeter of S; is readily observed to be
Py = 4a. The perimeter of S is obtained from this by adding 2 x § for each of the
4 squares of side 5 added. Hence
a 20a

Similarly, the perimeter of S3 is obtained from P, by adding 2 x § for each of the
4 x 3 =12 squares of side g added. Hence

20a a 28a
Py= " 1 12x2x == 2,
T
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(c) By continuing the iteration described in part (a), we have that, in general, 4 x 371

squares of side 33 need to be added to go from S, to Sp41. For each of these, we

increase the perimeter of S,, by 2 x <% . Hence we obtain the relationship

8
}%H:}h+4xy4x2x§%:RH~§

Thus, we obtain that Py, P, ... is an arithmetic progression with common difference
%. Since P; = 4a, this means that

Py, =4a+ 8a(n3 D _ 43£ + é%an

(d) From part (d), we see that as n increases, so does the perimeter P, in a linear fashion.
A particular consequence of this is that as n — oo, we have P, — oo, i.e. for any
constant C, we can always find a value of n such that the perimeter P, is larger than
C.

(e) Denote by A,, the area of S,,. Clearly 4; = a?. The area of Sy is obtained from this

by adding (%)2 for each of the 4 squares of side § added. Hence

a2 13a?
A2:a2—|—4x<§) = 9

Similarly, the area of S3 is obtained from As by adding (%)2 for each of the 12 squares
of side § added. Hence

13a?
9

2 2
A = a) _ 43a

12 <f .
T12x(g 27

(f) As we have already noted, in general, 4 x 3”1 squares of side 3r need to be added

to go from S, to S,41. For each of these we add (3%)2 to the area of A,,. Hence

_ a2 4a?
An+1:An+4X3n 1X (37) :An—i-w
Since A; = a?, this implies that
4 9 n—1 4 n—2
bt 2 S 8 e
m=1 m=0

Now, for any geometric series, we have that

N
m 1 — N1
= :
17
m=0

(assuming r # 1), and so

40> 1-3"071
A, =a’+ — x ———
L O
This value is strictly smaller than

S— a4 4a? 1 5a>
=4+ — x — =
9 1 — 31 3
Moreover, by letting n — oo, the area A, can be made as close as we like to this
value, and so this is the smallest value of a constant with this property.
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6.

(a)

The area of the rectangle R in Figure 2 of the exam paper is obtained by multiplying
its width, § —x, by its height, tan J (since point P has coordinates (x,tan 5)). Hence

its area is - .
A= (f - ) tan .
5 T ) tan 5

The area A is a product of two functions, f(z) = § — 2 and g(z) = tan(z/2). As a
consequence, we can apply the product rule when differentiating it:

A df dg
= 9@+ flz)

% x
T m d(tan %
= —tang+ (5 (d:c2)
We now recall that the derivative of tanz is given by sec? z, and so
% = —tang + 1 (f —:U) secQE
dx 2 21\2 2
Moreover, because
x sing 2 x T oz 1 9 X

tan — =
2 COS & 2

= cos — sin — sec” — = = sinx sec” —
2 2 2 2’
where we have applied the identity sinz = 2sin § cos 7, it follows that

dA 1. 2x+1 (77 ) 9 X
2 — _Zgin Tz (2 d
T 5 sinasec” 5 + o (5 — @) sec” o

= Z(?T—Ql’—QSiD.%)SGCQE

as required.

The quantlty 4 i a measure of rate of change in the area A in terms of z, and to find
a maximum 1t Would be helpful to find where it takes the value of 0. However, the
function is a bit too complicated to do this directly. Instead we start by observing
that A is increasing 1f is positive and decreasing 1f is negative. Hence, because
% is a continuous functlon to show that A has a max1mum in the interval (7, %),
it will be enough to check that 4 >0 for x < 7/4 and A <0 for z > m/3. To do

this, first note that if 0 <z < 77/4, then sinz <sin 7} = 1/\f Hence, for x € [0, 1]7

we have A1 ) .
dx24<7r—7r—>sec2§><;r—\@)sec2;>0.
(Note that sec? x is always strictly positive.) Similarly, if z € [, 5], we have sinz >
sin Z = v/3/2, and so

dA 1 2 ox 1w 9 &
— << = - — = — | = = — A
<7r 3) sec 5 =1 ( 3 \/§) sec 5 <0

This confirms that A does indeed reach its maximum at a value of x that is strictly
between r = 7 and z = 3.

To solve this part of the question, we start by recalling that tan 7 = 1. Applying
this fact in conjunction with the double-angle formula

X
2tan§

tany = ———=—
1 —tan? %’
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we obtain

2tan§

2"
1 — tan g

Rearranging, this implies that

tan2%+2tang—1:().

Now, the solutions of the quadratic equation 2% 4+ 22 — 1 = 0 are —1 + /2. Hence,
because tan g is positive, we must have that

tang:\/i—l.

(e) From 6(c) we know that at x = 7 the area A of the rectangle R is smaller than its
maximum value. Moreover, by applying the conclusion of part (d) we know that the

area of A when x = 7 is given by

T x
A\x:% = (5 - x) tan§

Thus the maximum value of A is strictly greater than Z(v/2 —1).

— <g—%)tangzg(\/§—l).

_r
T=7

7. (a) The key to solving this part of the question is the observation that the angles formed
by drawing lines from the ends of the diameter of a circle to its circumference form
a right angle. In particular, the angle ZOPQ is a right-angle, and so

PO - PO = |PO||PO| cos(£OPQ) = 0.

Now, we can write that ﬁ = —pand 1@ = q—Pp, which means the above inequality
can be written as

—p-(qa—p)=0.
Since the dot product is distributive (i.e. a-(b+c) =a-b-+a-c), this implies that
p-a=p-p=p*

(b) A quick sketch using the facts about S given in the question helps us to clarify where
the point lies:

Since ﬁ = A\q — p is perpendicular to @ = q, it must be the case that

(\a—p)-q=0.
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Rearranging, again using the distributivity of the dot product, we obtain
Mq-q=p-q=pf

where we have applied the conclusion of part (a) to deduce the second inequality.

Now, q-q = |q|? = 22 +12+(—2)2 = 9, while |p|> = 124224 (~1)? = 6. Substituting

these values into the above equation, we find that

2
A=—.
3
(c) Since OPQR is a kite, the triangle OQR is just a mirror image of OQP (with respect
to the line of reflection OQ). It follows that

Sk — —SP = PS,
PR = PS + Sk = 2P3.

Therefore, the position of R relative to O is given by
O_}§:ﬁ+13_}§:ﬁg+2ﬁ:07>’+2<@—ﬁ) — 205 — OP = 2\q — p.
Substituting p =i+ 2j — k, g = 2i+j — 2k and A = 2/3, we obtain

@ *l—ﬁ]—*k

(d) The area of K is equal to the sum of the areas of the triangles OPQ and OQR. Since
by symmetry both triangles have the same area, we must therefore have the area of
K is equal to twice the area of OP(). Thus,

Area of K =2 x Area of OPQ

_2x gr(ﬁup‘ﬁ\
_ VIS,

and subsequently

since \06| = |q| = 3 and

=6 6 6) -

(e) Since OQP and OQR are mirror images, it suffices just to look at one triangle OQP.
We are told that the circle C] is tangent to the sides of the kite, which includes the
lines OP and PQ. This means that if we draw a radius from the centre of the circle,
U say, to the point where it touches OP, T say, then this will be perpendicular to
the line OP. A similar observation may be made about the radius that touches PQ.
Hence, we obtain the square shown in the following figure:
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As a consequence, we are able to deduce that

‘Pﬁ’ = tan = tan = =
ﬁ—t (LPOQ) = tan(£LTOU) oF " OBy

and rearranging gives

. V18
V6 + V3
(f) We are given that K is to Cy as K is to C. Moreover, we know that the radius of C
is given by |g| = 2 and the radius of C; is given by v/6(v/2—1). This means that the
ratio between the side lengths of the kite K7 to those of K is equal to g\/é(\/? —1).

(Note that similarity means the angles of the two kites will be the same.) Since areas
scale like length squared, it follows that

=v6(v2 - 1).

2 2
Area of K; = Area of K x (3\/6(\@ — 1))

= V18 x <§\/6(x/§— 1))2
—sv2 (V2 - 1)2.

Notice that we did not have to do any complicated calculations to compute the area
directly.
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