
AEA 2008 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. The terms of an arithmetic sequence (un)n≥1 can be written in the form un = a+d(n−1),
where a = u1 is the value of the first term and d = un − un−1 is the common difference.
Given that the first and second terms of the arithmetic series are u1 = 200 and u2 = 197.5,
it is immediate that a = 200 and d = 197.5− 200 = −5

2 . Thus, the nth-term is given by

un = 200− 5

2
(n− 1).

Moreover, for any arithmetic series, the sum of the first n terms satisfies

Sn = u1 + u2 + . . .+ un =
n

2
(u1 + un).

In this case, this means that

Sn =
n

2

(
200 + 200− 5

2
(n− 1)

)
=

1

4
(805n− 5n2).

To find the largest positive value of Sn, we therefore need to study the function s(x) =
1
4(805x − 5x2). This is a polynomial of degree 2 and the maximum value is achieved at
the value of x0 satisfying s′(x0) = 0.

Since s′(x) = 1
4(805−10x), it follows that x0 = 80.5. However, the number of terms of Sn

is necessarily a whole number, and so the maximum value of Sn is obtained either when
n = 80 or n = 81. One can check that S80 = S81 = 8, 100. In conclusion, the largest
positive value of Sn equals 8, 100.

2. (a) To compute the coordinates of P , we will try to put together the information given
in the question about the coordinates of this point to arrive at an equation we can
solve. First, the question tells us that the point P lies both on the curve C and the
line y = 2x + 5. Hence, substituting the latter equation into the former, it follows
that

(x+ 1)(x+ 2)
dy

dx
= x(2x+ 5).

Moreover, because at P the line y = 2x+ 5 is a tangent to C, we know that dy
dx = 2

at P , and so it follows that

2(x+ 1)(x+ 2) = x(2x+ 5). (1)
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Note that it was important to use all the information about the point P that was given
to derive this equation that involves only one variable. Equation (1) is equivalent to
2x2 + 6x+ 4 = 2x2 + 5x, which simplifies to x = −4. This gives us the x-coordinate
of the point P . To find the y-coordinate, it suffices to substitute x = −4 into the
equation y = 2x+ 5. This gives y = −3. Therefore P = (−4,−3).

(b) In trying to solve an equation like (x + 1)(x + 2) dydx = xy, it is often helpful to
separate the variables, i.e. put all the terms involving x on one side, and all the
terms involving y on the other. In this case, doing this and then integrating yields∫

dy

y
=

∫
x

(x+ 1)(x+ 2)
dx. (2)

The right-hand side is a little tricky, but using partial fractions helps simplify the
integrand. In particular, we can check that

x

(x+ 1)(x+ 2)
=

2

x+ 2
− 1

x+ 1
.

Consequently, (2) can be integrated:

ln |y| = 2 ln |x+ 2| − ln |x+ 1|+ C.

It is important not to forget the constant C! Using the standard rules for logarithms,
ln(a) + ln(b) = ln(a b) and p ln(a) = ln(ap), one can see that there exists a constant
A satisfying

y = A
(x+ 2)2

x+ 1
.

At this point, in order to find the value of A, one has to use the extra information
given by the first question: P = (−4,−3) belongs to the curve C. This means that

−3 = A (−4+2)2

−4+1 which gives A = 9
4 . The curve C has equation

y =
9(x+ 2)2

4(x+ 1)
.

A quick sketch of C using this equation shows it looks like this:

3. (a) Values of trigonometric functions at 15◦ are not often quoted, but those at 30◦ are.
In particular, you will hopefully have seen that tan(30◦) = 1√

3
. We will use this fact

and the trigonometric identity

tan(2θ) =
2 tan(θ)

1− tan2(θ)
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to find the value of tan(15◦). First, by defining t = tan(15◦), the trigonometric
identity implies that t satisfies 1√

3
= 2t

1−t2 . This simplifies to the quadratic equation

t2 + 2
√

3t− 1 = 0, which is easily solved to yield

t =
−2
√

3±
√

12 + 4

2
= −
√

3± 2.

Clearly tan(15◦) can not be equal to both of these values, and so we need to decide
which of the roots is the correct. This is easy to do though, because tan(15◦) is
positive. Hence it must be the case that tan(15◦) = −

√
3 + 2.

Finally, note that it is often the case that there are multiple ways to compute trigono-
metric quantities. Here, for example, one could have instead used the identities
tan(15◦) = tan(45◦ − 30◦) or tan(15◦) = tan(60◦ − 45◦). Both of these would have
been appropriate, and led to similar computations. As an exercise you could try
solving the question using one of these alternative approaches.

(b) First, we will use the identity sin(a + b) = sin(a) cos(b) + sin(b) cos(a) on the terms
sin(θ+60◦) and sin(θ−60◦) to simplify the arguments of the trigonometric functions in

the equation. In particular, applying the known values sin(60◦) =
√
3
2 and cos(60◦) =

1
2 , we obtain that the equation is equivalent to(

sin(θ)
1

2
+ cos(θ)

√
3

2

) (
sin(θ)

1

2
− cos(θ)

√
3

2

)
= (1−

√
3) cos2(θ). (3)

Subsequently, using the identity (a+ b)(a− b) = a2− b2, equation (3) can be written
as

sin2(θ)
1

4
− cos2(θ)

3

4
= (1−

√
3) cos2(θ). (4)

When dealing with an equation involving terms such as cos2(θ) and sin2(θ), several
identities can be used,

cos2(θ) + sin2(θ) = 1 or cos(2θ) = cos2(θ)− sin2(θ) or tan2(θ) =
sin2(θ)

cos2(θ)
.

The first question asked to compute the exact value of tan(15◦): this is a hint that
it might be best to use the third identity. By dividing by cos2(θ), it easily seen that
equation (4) also reads

tan2(θ) = 7− 4
√

3. (5)

To find the square roots of 7 − 4
√

3 (there are 2 distinct square roots!), one can
expand (a + b

√
3)2 = (a2 + 3b2) + 2ab

√
3. Thus, we need to find a and b such that

a2 + 3b2 = 7 and ab = −2: the choice a = 2 and b = −1 gives a solution. This shows
that the equation (4) is equivalent to

tan(θ) = 2−
√

3 or tan(θ) = −2 +
√

3. (6)

Now, remember that if tan(α) = C then all the solutions of the equation tan(x) = C
are given by x = α + 180◦k for k ∈ Z. Since tan(15◦) = 2 −

√
3, the solutions

0◦ ≤ θ < 360◦ of the equation tan(θ) = 2 −
√

3 are θ = 15◦, 195◦. Also, since
tan(−15◦) = − tan(15◦), the solutions 0◦ ≤ θ < 360◦ of the equation tan(θ) =
−2 +

√
3 are θ = 165◦, 345◦. In summary, the solutions of the original equation are

x = 15◦, 165◦, 195◦, 345◦.
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4. (a) To find the maximum or minimum of a function, the general approach consists in
computing its derivative. To differentiate y = cos(x) ln(secx), use the product rule
and the chain rule

dy

dx
=

(
d

dx
cos(x)

)
ln(secx) + cos(x)

(
d

dx
ln(secx)

)
= − sin(x) ln(secx) + cos(x)

d
dx sec(x)

sec(x)

= − sin(x) ln(secx) + cos(x) tan(x)

= − sin(x) ln(secx) + sin(x).

Here, we have applied that d
dx sec(x) = sec(x) tan(x), and also that tan(x) = sin(x)

cos(x) .

The equation dy
dx = 0 is thus equivalent to

sin(x) (1− ln(secx)) = 0. (7)

Remember that the solutions of an equation of the type f(x)g(x) = 0 are given by
the solutions of f(x) = 0 and the solutions of g(x) = 0. Therefore, the solutions of
(7) are given by the solutions of equation sin(x) = 0 and the solutions of equation
ln(secx) = 1.

• The only solution of sin(x) = 0 for −π
2 < x < π

2 is x = 0. This clearly corre-
sponds to the unique minimum, as indicated by Figure 1.

• The equation ln(secx) = 1 is equivalent to sec(x) = e, or alternatively cos(x) =
1/e. The two solutions between −π

2 and π
2 of this equation are given by x =

− arccos
(
1
e

)
and x = arccos

(
1
e

)
. Figure 1 indicates that the x-coordinate of

B is positive. Consequently, the x-coordinate of B is equal to x = arccos
(
1
e

)
.

Therefore

B =

(
arccos

(
1

e

)
,
1

e

)
.

(For the y-coordinate, we used the formula y = cos(x) ln(secx).)

(b) The region R is shown in the following figure, along with the region S enclosed by
the x-axis, the curve C and the line x = arccos(1e ).

The symmetry of cos(x) tells us that y(x) = y(−x). Thus by adding the area of R
to twice the area of S we obtain the area of the rectangle with corners at(

arccos

(
1

e

)
, 0

)
, B,A =

(
− arccos

(
1

e

)
,
1

e

)
,

(
− arccos

(
1

e

)
, 0

)
.
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Since the area of the relevant rectangle is given by 2
e arccos

(
1
e

)
, this implies that

Area(R) =
2

e
arccos(

1

e
)− 2×Area(S).

Consequently, it suffices to find the area of the region S. To do this, we can simply
integrate under the curve C as follows

Area(S) =

∫ arccos(1/e)

0
cos(x) ln(secx) dx

A term involving ln often suggests integration by parts is a good technique to try,
and so that is what we will do here. Since the derivative of ln(sec(x)) is given by
tan(x), we obtain that

I =

∫
cos(x) ln(secx) dx

= sin(x) ln(secx)−
∫

sin(x) tan(x) dx

= sin(x) ln(secx)−
∫

sin2(x)

cos(x)
dx.

This is still not quite in a form we can integrate, but by applying the identity sin2(x)+
cos2(x) = 1, we obtain

I = sin(x) ln(secx)−
∫

sec(x)− cos(x) dx

= sin(x) ln(secx)− ln | sec(x) + tan(x)|+ sin(x).

(We have omitted the constant of integration here.) It follows from this calculation
that

Area(S)

= [sin(x) ln(secx)− ln | sec(x) + tan(x)|+ sin(x)]
arccos(1/e)
0

= 2 sin (arccos(1/e))− ln |e+ tan (arccos(1/e))| .

To complete the question, we need to express sin(arccos(1/e)) and tan(arccos(1/e))
as a function of e. To do this, we will again use the identity cos(θ)2 + sin(θ)2 = 1.
In particular, because arccos(1/e) ∈ (0, π2 ),

sin(arccos(1/e)) =
√

1− (1/e)2 =

√
e2 − 1

e
.

Furthermore,

tan(arccos(1/e)) =
sin(arccos(1/e))

cos(arccos(1/e))
=
√
e2 − 1.

This means that Area(S) = 2
√
e2 − 1/e− ln(e+

√
e2 − 1), and so

Area(R) =
2

e
arccos

(
1

e

)
+ 2 ln

(
e+

√
e2 − 1

)
− 4
√
e2 − 1

e
.
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5. (a) The correct rules for combining logarithms are given by

log3(p) + log3(q) = log3(pq) and q log3(p) = log3(p
q) (8)

for all real numbers p, q > 0. Applying the second of these, if we write a = log3 p,
then the first of Anna’s equations can be written as a2 = 2a, which is equivalent
to a(a − 2) = 0. This quadratic equation has solutions a = 0, 2, which means that
p = 30 = 1 or p = 32 = 9. Now, from Anna’s second statement and the first of the
logarithm rules above, we also have that

log3(p+ q) = log3 p+ log3 q = log3(pq),

which is equivalent to p+ q = pq. If p = 1, then there is no solution to this equation.
If p = 9, then we must have that q = p

p−1 = 9
8 . In conclusion, the only values of p

and q for which the two assertions of Anna are correct are p = 9 and q = 9
8 .

(b) Since log3(9) = 2, we can rewrite the equation as

log3(3x
3 − 23x2 + 40x)

= log3(9) (0.5 + log3(3x− 8))

= 1 + 2 log3(3x− 8)

= 1 + log3
(
(3x− 8)2

)
,

where for the final line we use the rule that q log3(p) = log3(p
q), as stated at (8).

To simplify the equation, we proceed by trying to combine the two terms involving
logarithms as follows

1 = log3(3x
3 − 23x2 + 40x)− log3

(
(3x− 8)2

)
= log3(3x

3 − 23x2 + 40x) + log3
(
(3x− 8)−2

)
= log3

(
3x3 − 23x2 + 40x

(3x− 8)2

)
.

This is the same as

3x3 − 23x2 + 40x

(3x− 8)2
= 3. (9)

At this point, one could be tempted to re-write equation (9) as 3x3 − 23x2 + 40x =
3(3x− 8)2 and to expand both sides, but this leads to an equation of degree 3 which
is not very easily solved. Instead, the fact that x divides the numerator suggests that
we could try factorising it, and if we do this we obtain

3x3 − 23x2 + 40x = x(3x2 − 23x+ 40) = x(3x− 8)(x− 5).

Therefore equation (9) also reads x(x − 5) = 3(3x − 8), which simplifies to (x −
12)(x− 2) = 0. Clearly the solutions to this are x = 2 and x = 12.

Note that in both parts of the question, all that was needed to deduce the answer
were the two rules for combining logarithms and a bit of careful manipulation.

6. (a) If we define z = f−1(x), then it must be the case that f(z) = f(f−1(x)) = x. This
also reads

az + b

z + 2
= x.
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By multiplying both sides by z+ 2 and expressing z as a function of x it follows that

z =
2x− b
a− x

.

Consequently, the inverse function f−1 is defined by

f−1(x) =
2x− b
a− x

x ∈ R, x 6= a.

(b) To find the value of a such that ff(x) = x, one could try to expand

ff(x) =
a
(
ax+b
x+2

)
+ b(

ax+b
x+2

)
+ 2

,

but this leads to a complicated equation. Instead, we will try to apply the previous
part of the question. In particular, by applying f−1 to both sides of the equation
ff(x) = x, we obtain that f(x) = f−1(x), i.e.

ax+ b

x+ 2
=

2x− b
a− x

∀x ∈ R, x 6= −2, a,

so that (ax+ b)(a− x)− (x+ 2)(2x− b) = 0 for all x 6= −2, a. This is equivalent to
−(a+ 2)x2 + (a2 − 4)x+ b(a+ 2) = 0, and it therefore follows that ff(x) = x if and
only if a = −2.

(c) (i) By the previous part of the question, we will sketch the curve y = f(x), where

f(x) =
−2x+ b

x+ 2
x ∈ R, x 6= −2.

First we establish where the asymptotes are. One of these is at x = −2, as this
is where the function explodes. We also note that the function converges to the
line y = −2 as x → ±∞. To decide where the function crosses the x-axis, we
need to solve f(x) = 0. This is clearly the case when x = b/2. Similarly, the
function crosses the y-axis at f(0) = b/2.

x = −2

4 2 2

8

6

4

2

2

4

b/2

b/2

y = −2

(ii) For this part of the question, we do not need to do any complicated calculations,
but simply note that the curve y = f(x) + 2 is the same as y = f(x), apart from
being shifted ‘up’ by two. Moreover, the curve y = f(x − 2) + 2 is the same as
y = f(x) + 2, apart from shifted ‘to the right’ by two. Hence, the sketch looks
like:
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5

5

10

15

(d) The normal to a curve at a point is a line that is perpendicular to the curve at that
point. Thus, because y = f(x − 2) + 2 is obtained by a simple shift from C, the
image of the normal to the curve C at P on the curve y = f(x− 2) + 2 has equation
y = 4(x− 2)− 39 + 2 = 4x− 45.

Now, from the sketch in the previous part of the question, we can see that there
are exactly two points where the normal to the curve y = f(x− 2) + 2 has gradient
4. Moreover, by the symmetry of the graph, if the point P ′ = (a, b) has normal
y = 4x− 45, then the other is at Q′ = (−a,−b) and has normal y = 4x+ 45.

Clearly Q′ is the image of Q under the transformation that takes y = f(x) to y =
f(x−2)+2, and so reversing this transformation yields that the normal to the curve
C at Q is given by y = 4(x+ 2) + 45− 2 = 4x+ 51, i.e. k = 51.

7. (a) The angle ABC is that between the vectors
−−→
BA =

−→
OA −

−−→
OB = −4i + j − 8k and

−−→
BC = 4i + 2j− 4k. In general, to find the cosine of the angle θ between two vectors
~u and ~v, we can use the formula

~u · ~v = ‖~u‖‖~v‖ cos(θ), (10)

where the norm of a vector ~u = ai + bj + ck is given by ‖~u‖ =
√
a2 + b2 + c2. In

the particular case with ~u =
−−→
BA and ~v =

−−→
BC, so that ‖

−−→
BA‖ =

√
42 + 12 + 82 = 9,

‖
−−→
BC‖ = 6 and

−−→
BA ·

−−→
BC = −16 + 2 + 32 = 18, formula (10) shows that

cos(θ) =
18

9× 6
=

1

3
.

(b) To find the equation of the line L, the simplest idea is to construct a rhombus CBDE
as described by the following figure.

To be precise, D is chosen on the line passing through B and A such that ‖
−−→
BD‖ =
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‖
−−→
BC‖ = 6. In particular, this implies that

−−→
BD = 2

3

−−→
BA, and so

−−→
BE =

−−→
BC +

−−→
BD =

−−→
BC +

2

3

−−→
BA =

4

3
(i + 2j− 7k) .

Consequently ~v = i + 2j − 7k is a gradient of the line L. Since B ∈ L, an equation
of L is given by

L : r = i− k + t(i + 2j− 7k), t ∈ R. (11)

Note that L is not the line that goes through B and the midpoint of AC.

(c) Since
−→
AC = 8i + j + 4k we have ‖

−→
AC‖ =

√
82 + 12 + 42 = 9 = ‖

−−→
BA‖

(d) The centre of the inscribed circle S is the intersection of the 3 angle bisectors of the
triangle ABC. In fact, it is always enough to find the intersection of just two of
these. Since we already known that the equation of the bisector L of angle ABC is
given by (11), we only need to find one more of the bisectors. A hint for doing this

was given in the previous part of the question. In particular, since ‖
−→
AC‖ = ‖

−−→
AB‖, a

gradient of the bisector of angle BAC is ~u = 1
2(
−−→
AB+

−→
AC) = 6(i+k). Consequently,

an equation of the bisector of angle BAC is

r = −3i + j− 9k + s(i + k), s ∈ R.

The centre N of the circle S can thus be found by solving the equation

i− k + t(i + 2j− 7k) = −3i + j− 9k + s(i + k). (12)

By matching the coefficients of the vectors i, j and k, we find that this is equivalent
to the system of linear equations

1 + t = −3 + s

2t = 1

−1− 7t = −9 + s

The second equation gives t = 1
2 and the first equation then gives s = 9

2 . One can
check that (s, t) = (92 ,

1
2) is indeed solution of the third equation, which confirms that

(s, t) = (92 ,
1
2) is the unique solution of equation (12). Finally, this shows that the

vector
−−→
ON = 3

2 i + j− 9
2k.

(e) Since ‖
−→
AC‖ = ‖

−−→
AB‖ the intersection between the circle S and the side BC is precisely

located at the mid-point X of the segment BC. The radius r of S is thus equal to

the length of the segment NX. Since
−−→
OX = 1

2(
−−→
OB +

−−→
OC) = 3i + j − 3k and

−−→
ON = 3

2 i + j− 9
2k it follows that

r = ‖
−−→
NX‖ =

√(
3− 3

2

)2

+ (1− 1)2 +

(
−3 +

9

2

)2

=
3
√

2

2
.
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