
AEA 2010 Extended Solutions

These extended solutions for Advanced Extension Awards in Mathematics are intended to sup-
plement the original mark schemes, which are available on the Edexcel website.

1. (a) Due to the presence of the unknown quantity x under the square root, the first thing
we have to determine is for which values of x the equation makes sense. Recall that
for a square root to be defined, the argument has be greater or equal than zero. In
particular, {

3x+ 16 ≥ 0 =⇒ x ≥ −16
3 ,

x+ 1 ≥ 0 =⇒ x ≥ −1.

It follows that the solutions have to be greater or equal to −1. We now start solving
the equation. To get rid of the square roots, we will square both of its sides:

√
3x+ 16 = 3 +

√
x+ 1(√

3x+ 16

)2

=

(
3 +
√
x+ 1

)2

3x+ 16 = 9 + x+ 1 + 6
√
x+ 1

2x+ 6 = 6
√
x+ 1

1

3
x+ 1 =

√
x+ 1.

To remove the remaining square root, we need to square both sides of the equation
again. This gives

1

9
x2 + 1 +

2

3
x = x+ 1,

which is easily rearranged to give

x

(
1

9
x− 1

3

)
= 0.

Thus, the two possible solutions are x = 0 and 1
9x−

1
3 = 0 =⇒ x = 3. Since they are

both bigger than −1 they are potentially valid solutions of the equation. Note that,
to check that we did not create extra solutions when squaring, we should verify both
of these values actually solve the original equation (which they do).

(b) For this second equation, again the domain has to be computed. For logarithmic
functions, the argument has to be greater than zero, and so we require{

x− 7 > 0 =⇒ x > 7,
x > 0.

Thus, in this case, valid solutions will be bigger than 7. Recalling the property that a
constant p times a logarithm of a number is equal to the logarithm of the p-th power
of the same number (i.e. p log(x) = log(xp)), we can rewrite 1

2 log3(x) as log3(
√
x).

We can also rewrite the number 1 in a logarithmic form as log3(3), which simply
follows from the definition of logarithm. Thus, the initial equation can be written as

log3(x− 7)− log3(
√
x) = log3(3)− log3(2).
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Now, since the difference of two logarithms with the same base is equal to the loga-
rithm of the ratio (i.e. log(a)− log(b) = log(a/b)), we have that

log3

(
x− 7√
x

)
= log3

(
3

2

)
.

At this point, the logarithm can be cancelled out (by simply applying on both sides
the inverse function of the relevant logarithm, 3x), so that

x− 7√
x

=
3

2

2x− 14 = 3
√
x.

Then one can either square both sides of the equation to get rid of the square root,
or, alternatively, define

√
x = t. In this way the previous equation can be written as

2t2 − 3t− 14 = 0,

and solved as a standard quadratic equation. Thus

t =
3±
√

121

4
=⇒ t =

7

2
or − 2.

Since
√
x = t, then x = t2, and the two possible solutions are therefore 49/4 and 4.

However, since the domain is x > 7, then the only valid solution is x = 49/4.

2. (a) The terms of an arithmetic series u1, u2, u3, . . . can be written in the form

un = u1 + d(n− 1),

where d = un − un−1 is the common difference. Moreover, the sum of the first n
numbers Sn is recalled to be

n(2u1 + d(n− 1))

2
.

Thus, the information given at the beginning of the question can be written as

q =
p(2u1 + d(p− 1))

2
, (1)

p =
q(2u1 + d(q − 1))

2
. (2)

In order to determine d in terms of p and q, we need to eliminate u1 from both the
previous two equations. This can be done in several ways. One possible approach
is to isolate 2u1 in one of the two equations (say (1)) and then plug in the resulting
expression at (2). This can be done in the following way.

2q

p
= 2u1 + d(p− 1) =⇒ 2u1 =

2q

p
− d(p− 1). (3)

We now substitute the above expression in (2) to obtain

p =
q

2

(
2q

p
− d(p− 1) + d(q − 1)

)
p =

q2

p
+
dq

2
(q − 1− p+ 1)

=⇒ p− q2

p
=
dq(q − p)

2

p2 − q2

p
=
dq(q − p)

2
.
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From the previous equation we can then isolate d, to conclude that

d =
2(p2 − q2)
pq(q − p)

=
2(p− q)(p+ q)

pq(q − p)
= −2(p+ q)

pq
(4)

(b) In order to determine the first term of the sequence, we can use equation (3), in
which u1 is a function of p, q and d, and substitute d with the result obtained at (4).
We have that,

2u1 =
2q

p
− (p− 1)

(
−2(p+ q)

pq

)
=

2q

p
+

2(p− 1)(p+ q)

pq

=
2q2 + 2p2 + 2pq − 2p− 2q

pq
.

Thus,

u1 =
q2 + p2 + pq − p− q

pq
=
q2 + (p− 1)(p+ q)

pq
. (5)

(Of course, there are other ways to write this final solution.)

(c) By the formula stated in the solution to part (a) for summing terms in an arithmetic
progression, we can immediately write

Sp+q =
(p+ q)(2u1 + (p+ q − 1)d)

2
.

We can use the results in equations (4) and (5) to substitute d and u1 and obtain an
expression in p and q only. Indeed

Sp+q =
p+ q

2

(
2(q2 + p2 + pq − p− q)

pq
+ (p+ q − 1)

(
−2(p+ q)

pq

))
= (p+ q)

(
q2 + p2 + pq − p− q − p2 − 2pq + q2 + p+ q

pq

)
= (p+ q)(−pq

pq
)

= −(p+ q).

Notice that this part of the question used very little knowledge about arithmetic
progressions – just some very careful algebraic manipulation. To reduce the chance
of mistakes in doing this, it is a good idea to simplify expressions whenever possible!

3. (a) To compute the gradient of the curve C, one has to consider y as a function of x, and
calculate its first derivative with respect to x. To do this, we start by differentiating
the entire equation with respect to x, using the chain and product rule where needed.
This gives:

2x+ 2y(x)y′(x) + fy(x) + fxy′(x) = 0.

Rearranging the terms in the previous equation in order to isolate y′(x), one obtains
from this that

y′(x) = −2x+ fy(x)

2y(x) + fx
.
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Finally, since we are looking for the gradient of C at the point (α, β), we have to
substitute x and y(x) with α and β respectively, which yields the relevant gradient
is

m = −2α+ fβ

2β + fα
.

(b) This part requires us to derive an expression for α and β in terms of f and g. For
this purpose, since we have two unknowns, we need to consider a system of at least
two equations. The equation defining the curve C in which x and y are substituted
with α and β respectively can be used for this task. Moreover, since m = 1, one can
use the equation of the gradient as well. In particular, these are:{

α2 + β2 + fαβ − g2 = 0
2β + fα = −2α− fβ.

The second equation looks slightly more manageable, since it does not involve squares.
By moving all the terms to one side and factorising, we can rewrite it as follows:

(α+ β)(f + 2) = 0,

which implies α = −β or f = −2. Since it is an assumption of the question that
f 6= −2, the only valid solution is α = −β. We now substitute this result into the
equation of the curve C, to obtain

α2 + (−α2) + fα(−α)− g2 = 0,

or equivalently,
α2(2− f) = g2.

Clearly this has solutions

α =
±g√
2− f

,

as required. (Note that here we use f < 2, else the square-root does not make sense.)

(c) Given f = −2, the equation of C is x2 + y2 − 2xy = g2. The right-hand side of this
is readily seen to be equal to (x− y)2. It follows that x− y = ±g. Thus C consists
of the two lines

y = x+ g,

y = x− g,

which are easily sketched. Note that the two lines are certainly distinct, since g 6= 0.
The following figure shows C when g = 2. In general the y-intercepts of the two lines
are at g and −g, respectively.
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4. (a) The cosine of the angle ∠CAF can be found recalling the geometric interpretation
of scalar product. Indeed, the scalar product between two vectors a and b is equal to

a · b = ||a|| ||b|| cos θ, (6)

where ||a|| represents the length of a, ||b|| the length of b, and θ is the angle between a

and b. Thus, to answer this question, we first need to determine the vectors
−→
AC and−→

AF , then compute their length and the scalar product between them. We are told
that the point A has coordinates (5, 0, 0), C is at (0, 10, 0), and for F the coordinates
are (5, 10, 20). It follows that

−→
AC =

 −5
10
0

 ,
−→
AF =

 0
10
20

 .

The length of a vector is defined as the square root of the sum of the squares of its

components. Applying this definition, we can compute the length of
−→
AC and

−→
AF as

||
−→
AC|| =

√
(−5)2 + 102 + 02 =

√
125 = 5

√
5,

||
−→
AF || =

√
02 + 102 + 202 =

√
500 = 10

√
5.

The scalar product of two products is defined as the sum of the products of corre-
sponding entries. Thus,

−→
AC ·

−→
AF = −5× 0 + 10× 10 + 0× 20 = 100.

We can now use equation (6) to compute the cosine of ∠CAF , which is

cos∠CAF =

−→
AC ·

−→
AF

||
−→
AC|| ||

−→
AF ||

=
100

(5
√

5)(10
√

5)
=

100

250
=

2

5
.

(b) The following sketch shows the point X:

To answer the question, we will first define the vectors
−−→
OX, representing the position

of X, and
−−→
FX, of which the length has to computed. We can think of

−−→
OX as the

composition of a movement from O to A and then a further part from A to a generic

point X along the vector
−→
AC, parameterised by t. This can be done saying

−−→
OX =

 5
0
0

+ t

 −5
10
0

 =

 5− 5t
10t
0

 .
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The same reasoning can be developed for
−−→
FX, thinking of it as composed by

−−→
FO

and
−−→
OX, which has been already derived parametrically. Thus,

−−→
FX =

 −5
−10
−20

+

 5− 5t
10t
0

 =

 −5t
10t− 10
−20

 .

We now use the information that
−→
AC and

−−→
FX are perpendicular to derive the value

of t. Recall that two vectors are perpendicular if their scalar product is equal to

zero. So, we may assume that
−→
AC ·

−−→
FX = 0, and evaluating the left-hand side of this

explicitly gives

−5× (−5t) + 10× (10t− 10) + 0× (−20) = 0.

A rearrangement of this yields 125t = 100, i.e. t = 4/5. So the position vector of X

and the vector
−−→
FX are

−−→
OX =

 1
8
0

 ,
−−→
FX =

 −4
−2
−20

 .

From the second of these expressions, we can compute the length of
−−→
FX, which is

||
−−→
FX|| =

√
(−4)2 + (−2)4 + (−20)2 =

√
420.

(c) To write the two vector equations of l1 and l2 we need, first of all, to determine the
midpoint of the face ABFE and the midpoint of the edge FG. The former is also
the midpoint of the line segment AF , which is given by

1

2

(−→
OA+

−−→
OF
)

=

 5
5
10

 .

Similarly, the midpoint of the edge FG is given by

1

2

(−−→
OF +

−−→
OG
)

=

 5/2
5
10

 .

Thus, the vector equations for the two lines are

l1 :

 0
0
0

+ λ

 5
5
10

 and l2 :

 5
0
0

+ µ

 −5/2
10
20

 .

Now, to find the intersection point, we need to solve the following system of equations.
5λ = 5− 5

2µ
5λ = 10µ
10λ = 20µ.

It is straightforward to see that the latter two equations imply the same solution
λ = 2µ. Substituting into the first one, then we can conclude that µ = 2/5, and
consequently λ = 4/5. Finally, plugging the value of λ into the vector equation of l1,
we can find the point of intersection, which is (4, 4, 8).
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5. (a) Using the substitution suggested in the text, we start by rewriting the integrand:

1

(x− 1)
√
x2 − 1

=
1

u−1
√

(1 + u−1)2 − 1
=

u√
u−2 + 2u−1

.

We also compute
dx

du
= − 1

u2
.

Hence the integral can be rewritten as

I =

∫
u√

u−2 + 2u−1
(−u−2)du.

We now use algebra to simplify this:

I = −
∫ (

1

u2
+

2

u

)−1/2(1

u

)
du

= −
∫ (

1 + 2u

u2

)−1/2(1

u

)
du

= −
∫

(1 + 2u)−1/2du.

This is an integral we can solve to give

I = −(1 + 2u)1/2

1/2

1

2
+ c

= −(1 + 2u)1/2 + c,

where c is the constant of integration. Finally, using that u = 1/(x − 1), we derive
that

I = −
(

1 + 2
1

x− 1

)1/2

+ c = −
(
x+ 1

x− 1

)1/2

+ c.

(b) To answer this question, it is clear we need to use the result obtained in the previous
part. Indeed, by applying the limits of integration, we obtain

I1 :=

∫ secβ

secα

1

(x− 1)
√

(x2 − 1)
dx = −

(
secβ + 1

secβ − 1

)1/2

+

(
secα+ 1

secα− 1

)1/2

.

The difficulty is converting this to the desired form. Observing that the above ex-
pression involves the angles α and β, but the solution is in terms of α/2 and β/2,
our first guess is to somehow use a half-angle formula for trigonometric functions. To
start with, using the definition of the secant of an angle α, that is secα = 1/ cosα,
we rewrite the previous expression as

I1 = −
(

1 + cosβ

1− cosβ

)1/2

+

(
1 + cosα

1− cosα

)1/2

.

Now we can use the half-angle trigonometric formulae, 2 cos2
(
α
2

)
= 1 + cosα and

2 sin2
(
α
2

)
= 1− cosα, to obtain

I1 = −

cos2
(
β
2

)
sin2

(
β
2

)
1/2

+

(
cos2

(
α
2

)
sin2

(
α
2

))1/2

= −
cos
(
β
2

)
sin
(
β
2

) +
cos
(
α
2

)
sin
(
α
2

) .
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Finally, using the definition of cotangent of an angle, cot(α) = cos(α)/ sin(α), we
conclude that

I1 = cot
(α

2

)
− cot

(
β

2

)
.

6. (a) To show that A = x2 + y2 is maximised when x = ±y, we will start by using the
fact that x4 + y4 = 1 to reduce the expression for A to one variable. In particular,
applying x4 + y4 = 1, or equivalently y4 = 1− x4, we can compute:

A = x2 + y2 = x2 +
√

1− x4.

Now to find the stationary points of this expression, we will calculate its first deriva-
tive with respect to x, and equate it to zero. Since

dA

dx
= 2x− 1

2
√

1− x4
4x3

= 2x

(
1− x2√

1− x4

)
,

we find that there are stationary points at x = 0 and where x2/
√

1− x4 = 1. When
x = 0, we have that A = 1. For the second solution, note that it corresponds to
x2 =

√
1− x4, which consequently implies x2 = y2 (recall that y4 = 1−x4), and thus

x = ±y. Now, when x = ±y, recalling the initial constraint x4 + y4 = 1, it follows
that x4 = 1/2 and consequently x2 = y2 = 1/

√
2, since x = ±y. In this case, we

therefore have A =
√

2. Thus, in summary, the minimum of A is 1 (and is obtained
at x = 0, y = ±1), while the maximum is

√
2, which is attained when x = ±y.

(b) We immediately recognise that C2 is the equation of a circle of radius 1 centred at
the origin. For C1 one should expect a behaviour similar to that of C2, resembling a
circle, but drawing it does take some thought. First, let us set u = x2 and v = y2,
then we can rewrite the equation x4 + y4 = 1 as u2 + v2 = 1, which is clearly the
unit circle centred at the origin in the (u, v)-plane (the figure on the left-hand side
below shows the curve in the first quadrant of this plane). We now need to consider
how the curve is transformed when we revert back to the (x, y)-plane. To do this, we
note that lines of the form u = c appear in the (x, y)-plane at x2 = c, that is x =

√
c.

Since for 0 ≤ c ≤ 1 we have that
√
c ≥ c (with equality only when c = 0 or c = 1),

one can sketch how the relevant part of the (u, v)-plane is deformed away from the
origin (the right-hand figure shows the (x, y)-plane):

In particular, the curve C1 passes through the points (0, 1), (0,−1), (1, 0) and (−1, 0)
but is otherwise further from the origin than C2. Hence we can sketch these curves
as follows:
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(c) The equation of a generic circle, centred at the origin is x2 + y2 = c2. To derive
the value c of the radius of the circle C3 touching C1 at the points where x = ±y,
we have to consider a system of equations with the equations of C1 and C3 and the
constraints x = ±y, i.e. 

x4 + y4 = 1,
x2 + y2 = c2,
x = ±y,

which are equivalent to 
2x4 = 1,
2x2 = c2,
x = ±y.

Consequently, from the equation for C1, one can derive x4 = 1/2, and thus x2 = 1√
2
.

It follows that, c2 =
√

2, and so the equation of C3 is x2 + y2 =
√

2.

7. (a) Recalling the trigonometric addition formulae

sin(a+ b) = sin a cos b+ cos a sin b,

cos(a+ b) = cos a cos b− sin a sin b,

and that cos(π/4) = sin(π/4) = 1/
√

2, we can rewrite f(x) as[
1 +

1√
2

cosx− 1√
2

sinx

] [
1 +

1√
2

sinx+
1√
2

cosx

]
.

By multiplying out the terms in the previous expression, we have that

f(x) = 1 +
2√
2

cos(x) +
1

2
cos2(x)− 1

2
sin2(x).

Since the question requires to write f(x) only as a function of the cosine, we eliminate
the sine using that sin2(x) = 1− cos2(x). By simple rearrangements, it holds that

f(x) =
1

2
+

2√
2

cos(x) + cos2(x) =

(
1√
2

+ cosx

)2

,

as required.
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(b) To determine the range of f(x), we need to find its maximum and its minimum.
Since −1 ≤ cosx ≤ 1, the maximum value of f(x) is attained when cosx = 1 and
corresponds to (

1√
2

+ 1

)2

=
1

2
+ 1 +

2√
2

=
3

2
+
√

2.

For the minimum, we just have to note that 1/
√

2 + cosx can be equal to zero (e.g.
at x = 3π/4), and, because of the presence of the square, this corresponds to the
minimum. Thus, the range of f(x) is [0, 32 +

√
2].

(c) In the previous part of the question we deduced that global maxima are obtained
when cosx = 1, which implies that x = 0 or x = 2π. Thus, the coordinates of the
two global maxima are (0, 32 +

√
2) and (2π, 32 +

√
2). For the global minima, we have

to find the solutions of 1√
2

+ cos(x) = 0, which are x = 3π
4 and x = 5π

4 . To find the

x-coordinate of the local maxima of the curve, we will compute the first derivative
and find where it is equal to zero. In particular, we need to solve

f ′(x) = −2 sinx

(
1√
2

+ cosx

)
= 0.

The solutions are given by solutions to sinx = 0 or 1√
2

+cosx = 0. The only solution

that does not correspond to a point we have already identified is x = π. At this value
of x, we have that cosx = −1, and so

f(x) =

(
1√
2

+ cos(x)

)2

=
3

2
−
√

2.

Thus, the local maximum has coordinates (π, 32 −
√

2).

(d) The region R is enclosed by the horizontal line y = 2 and by f(x). Its area can be
computed by solving the integral

A :=

∫ b

a
(2− f(x)) dx,

where a and b correspond to the x-coordinate of the points of intersection between
these two lines (see the following figure).

To compute a and b, we need to solve(
1√
2

+ cosx

)2

= 2.
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Taking square roots of both sides of this equation gives

1√
2

+ cosx =
√

2,

which can be rewritten as cosx = 1√
2
. This has solutions x = π

4 and x = 7π
4 . (Note

that we have not considered the equation 1/
√

2 + cosx = −
√

2, since it would have
had no solutions.)

Now, to compute the value of the area of R, we start deriving the indefinite integral
of 2− f(x): ∫

(2− f(x))dx =

∫ (
2− 1

2
− cos2 x−

√
2 cosx

)
dx.

All the terms here are straightforward to deal with, apart from the cos2 x. For
this, we will use the double-angle trigonometric formula to substitute cos2 x with
1
2(cos(2x) + 1), so that∫

(2− f(x))dx =

∫ (
1− 1

2
cos(2x)−

√
2 cosx

)
dx

= x− 1

4
sin(2x)−

√
2 sinx+ c,

where c is a constant of integration. At this point we can consider the definite version
of the integral just computed, with limits π/4 and 7π/4, obtaining

A =

(
7π

4
−
√

2

(
− 1√

2

)
− 1

4
(−1)

)
−
(
π

4
−
√

2

(
1√
2

)
− 1

4
(1)

)
.

After some simplification, this gives that

A =
3π

2
+

5

2
.
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